Will Transaction Costs and Economies of Scale Tip the Balance in Farm Size in Industrial Agriculture? An Illustration for Non-Food Biomass Production in Germany
Abstract
:1. Introduction
2. Conceptual Framework: Combining Arguments of Transaction Costs and Production Scale
3. Methodology
3.1. The Model
3.2. Data and Scenarios
4. Results
4.1. Scenario 1: Neutral-to-Scale Technologies
4.2. Scenario 2: Increasing Demand for Non-Food Biomass
4.2.1. Average Sectoral Effects
4.2.2. Effects for Farm Size Groups
4.2.3. Regional Effects for Different Ownerships Types
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cochrane, W.W. Farm Prices: Myth and Reality; University of Minnesota Press: Minneapolis, MN, USA, 1958. [Google Scholar]
- Uekötter, F. Die Wahrheit ist auf dem Feld: Eine Wissensgeschichte der Deutschen Landwirtschaft; Vandenhoeck & Ruprecht: Göttingen, Germany, 2010. [Google Scholar]
- Chatalova, L.; Müller, D.; Valentinov, V.; Balmann, A. The Rise of the Food Risk Society and the Changing Nature of the Technological Treadmill. Sustainability 2016, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- BMBF. National Bioeconomy Strategy. Federal Ministry of Education and Research, Division “Bioeconomy, Material Biomass Use”. 2020. Available online: www.bmbf.de/bioeconomy (accessed on 7 January 2020).
- Wesseler, J.; Zilberman, D. The economic power of the Golden Rice opposition. Env. Dev. Econ. 2014, 19, 724–742. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, P. Beyond industrial agriculture? Some questions about farm size, productivity and sustainability. J. Agrar. Chang. 2010, 10, 437–453. [Google Scholar] [CrossRef]
- Thiele, H.; Brodersen, C.M. Differences in farm efficiency in market and transition economies: Empirical evidence from West and East Germany. Eur. Rev. Agric. Econ. 1999, 26, 331–347. [Google Scholar] [CrossRef]
- Deininger, K. Global land investments in the bio-economy: Evidence and policy implications. Agric. Econ. 2013, 44, 115–127. [Google Scholar]
- BECOTEPS. The European Bioeconomy in 2030: Delivering Sustainable Growth by Addressing the Grand Societal Challenges. 2011. Available online: www.epsoweb.org/file/560 (accessed on 31 March 2011).
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- EC. Making Europe’s Businesses Future-Ready: A New Industrial Strategy for a Globally Competitive, Green and Digital Europe; European Commission (EC): Brussels, Belgium, 2020. [Google Scholar]
- Schwab, K. The Fourth Industrial Revolution; Crown Business: New York, NY, USA, 2017. [Google Scholar]
- EC. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment: Updated Bioeconomy Strategy; European Commission (EC): Brussels, Belgium, 2018. [Google Scholar]
- OECD. The Bioeconomy in 2030: Designing a Policy Agenda; OECD: Paris, France, 2009. [Google Scholar]
- BMBF. Mit vereinter Kraft für die Bioökonomie; Pressemitteilung: Berlin, Germany, 2018. [Google Scholar]
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’Barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- MWW, SA. Regionale Innovationsstrategie Sachsen-Anhalt 2014–2020. Ministerium für Wissenschaft und Wirtschaft des Landes Sachsen-Anhalt (MWW SA). 2014. Available online: https://mw.sachsenanhalt.de/fileadmin/Bibliothek/Politik_und_Verwaltung/MW/Publikationen/RIS/Regionale_Innovationsstrategie_2014-2020_final.pdf (accessed on 27 January 2015).
- Gent, R. Bioökonomie: Erdöl versus Biomasse? Chancen und Risiken aus Sicht der Deutschen Industrievereinigung Biotechnologie. Rundbr. Forum Umw. Entwickl. Mit Bioökonomie Die Welt Rett. 2018, 1, 4–5. [Google Scholar]
- Troost, C.; Walter, T.; Berger, T. Climate, energy and environmental policies in agriculture: Simulating likely farmer responses in Southwest Germany. Land Use Policy 2015, 46, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, N.; Dallemand, J.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Zinngrebe, Y.; Pe’er, G.; Schueler, S.; Schmitt, S.; Schmidt, J.; Lakner, S. The EU’s ecological focus areas-How experts explain farmers’ choices in Germany. Land Use Policy 2017, 65, 93–108. [Google Scholar] [CrossRef]
- Arbo, M.; Utstumo, T.; Brekke, E.; Gravdahl, J. Unscented multi-point smoother for fusion of delayed displacement measurements: Application to agricultural robots. Model. Identif. Control 2017, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wesseler, J.; von Braun, J. Measuring the bioeconomy: Economics and policies. Annu. Rev. Resour. Econ. 2017, 9, 275–298. [Google Scholar] [CrossRef]
- Adenle, A.A.; De Steur, H.; Hefferon, K.; Wesseler, J. Two Decades of GMOs. Science, Technology, and Innovation for Sustainable Development Goals: Insights from Agriculture, Health, Environment, and Energy; Oxford University Press: Oxford, UK, 2020; pp. 401–412. [Google Scholar]
- Bagheri, A.; Bondori, A.; Damalas, C.A. Modeling cereal farmers’ intended and actual adoption of integrated crop management (ICM) practices. J. Rural Stud. 2019, 70, 58–65. [Google Scholar] [CrossRef]
- Lurie, S.; Brekken, C.A. The role of local agriculture in the new natural resource economy (NNRE) for rural economic development. Renew. Agric. Food Syst. 2019, 34, 395–405. [Google Scholar] [CrossRef]
- Asada, R.; Stern, T. Competitive bioeconomy? Comparing bio-based and non-bio-based primary sectors of the world. Ecol. Econ. 2018, 149, 120–128. [Google Scholar] [CrossRef]
- Pretty, J.; Brett, C.; Gee, D.; Hine, R. Mason, C.; Morison, J.; Rayment, M.; van der Bijl, G.; Dobbs, T. Policy challenges and priorities for internalizing the externalities of modern agriculture. J. Environ. Plann. Manag. 2001, 44, 263–283. [Google Scholar] [CrossRef]
- DBV. Deutscher Bauernverband: Situationsbericht 2019/20. Trends und Fakten der Landwirtschaft. 2019. Available online: https://www.bauernverband.de/situationsbericht (accessed on 12 December 2019).
- Eurostat. 2020. Available online: https://ec.europa.eu/eurostat/databrowser/view/ef_lus_main/default/table?lang=en (accessed on 15 December 2020).
- Landatlas. 2018. Available online: https://www.landatlas.de/ (accessed on 1 January 2018).
- Tietz, A. Überregional aktive Kapitaleigentümer in ostdeutschen Agrarunternehmen: Bestandsaufnahme und Entwicklung. In Thünen Report 35; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2015. [Google Scholar] [CrossRef]
- Word Bank. Germany: Employment in Agriculture. 2020. Available online: https://tradingeconomics.com/germany/employment-in-agriculture-percent-of-total-employment-wb-data.html (accessed on 30 June 2020).
- Nikolaeva, E.; Pletnev, D. The role of the transaction costs in the business success of small and medium sized enterprises in Russia. Procedia Soc. Behav. Sci. 2016, 221, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Benoît, M.; Rizzo, D.; Marraccini, E.; Moonen, A.C.; Galli, M.; Lardon, S.; Rapey, H.; Thenail, C.; Bonari, E. Landscape agronomy: A new field for addressing agricultural landscape dynamics. Landsc. Ecol. 2012, 27, 1385–1394. [Google Scholar] [CrossRef]
- Rogers, M. Networks, firm size and innovation. Small Buz. Econ. 2004, 22, 141–153. [Google Scholar] [CrossRef]
- Jochen, D. The political economy of agriculture for development today: The “small versus large” scale debate revisited. Agric. Econ. 2016, 47, 671–681. [Google Scholar]
- Batáry, P.; Gallé, R.; Riesch, F.; Fischer, C.; Dormann, C.F.; Mußhoff, O.; Császár, P.; Fusaro, S.; Gayer, C.; Happe, A.K.; et al. The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nat. Ecol. Evol. 2017, 1, 1279–1284. [Google Scholar]
- Hayami, A. A great transformation: Social and Economic change in sixteenth and seventeenth-century Japan. In Population, Family and Society in Pre-Modern Japan; Global Oriental: Kent, UK, 2010; pp. 42–51. [Google Scholar]
- Villoria, N. Technology spillovers and land use change: Empirical evidence from global agriculture. Am. J. Agric. Econ. 2017, 12, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.; Zacune, J. Bio-Economies: The EU’s Real ‘Green Economy’ Agenda; World Development Movement and the Transnational Institute: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Davies, S.; Griestop, L.; Vironen, H.; Bachtler, J.; Dozhdeva, V.; Michie, R. Case studies of national bioeconomy strategies in Finland and Germany. BioSTEP Deliv. 2016. Available online: https://strathprints.strath.ac.uk/62217/ (accessed on 1 February 2016).
- Efken, J.; Dirksmeyer, W.; Kreins, P.; Knecht, M. Measuring the importance of the bioeconomy in Germany: Concept and illustration. NJAS Wagening. J. Life Sci. 2016, 77, 9–17. [Google Scholar] [CrossRef]
- Budzinski, M.; Bezama, A.; Thrän, D. Monitoring the progress towards bioeconomy using multi-regional input-output analysis: The example of wood use in Germany. J. Clean. Prod. 2017, 161, 1–11. [Google Scholar] [CrossRef]
- Nooteboom, B. Firm Size Effects on Transaction Costs. Small Bus. Econ. 1993, 5, 283–295. [Google Scholar] [CrossRef]
- Blesh, J.; Hoey, L.; Jones, A.D.; Friedmann, H.; Perfecto, I. Development pathways toward “zero hunger”. World Dev. 2019, 118, 1–14. [Google Scholar] [CrossRef]
- Liobikiene, G.; Chen, X.; Streimikiene, D.; Balezentis, T. The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach. Land Use Policy 2020, 91, 104375. [Google Scholar] [CrossRef]
- Castrejon-Campos, O.; Aye, L.; Hui, F.K.P. Making policy mixes more robust: An integrative and interdisciplinary approach for clean energy transitions. Energy Res. Soc. Sci. 2020, 64, 101425. [Google Scholar] [CrossRef]
- Coase, R.H. The nature of the firm. Economica 1937, 4, 386–405. [Google Scholar] [CrossRef]
- Coase, R.H. The Problem of social cost. J. Law Econ. 1960, 25, 1–44. [Google Scholar] [CrossRef]
- Dahlman, C.J. Problem of externality. J. Law Econ. 1979, 22, 141–162. [Google Scholar] [CrossRef] [Green Version]
- Arrow, K.J. The organization of economic activity: Issues pertinent to the choice of market versus nonmarket allocation. Anal. Eval. Public Expend. PPB Syst. 1969, 1, 59–73. [Google Scholar]
- Williamson, O.E. Markets and hierarchies: Some elementary considerations. Am. Econ. Rev. 1973, 63, 316–325. [Google Scholar]
- Buckley, P.J.; Chapman, M. The perception and measurement of transaction costs. Camb. J. Econ. 1997, 21, 127–145. [Google Scholar] [CrossRef]
- Eggertsson, T. Economic Behavior and Institutions; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Williamson, O.E. Transaction cost economics. Handb. Ind. Organ. 1989, 1, 135–182. [Google Scholar]
- Vatn, A. Transaction costs and multifunctionality. In Proceedings of the OECD Workshop on Multifunctionality by the Directorate for Food Agriculture, and Fisheries, Paris, France, 2–3 July 2001. [Google Scholar]
- McCann, L.; Colby, B.; Easter, K.W.; Kasterine, A.; Kuperan, K.V. Transaction cost measurement for evaluating environmental policies. Ecol. Econ. 2005, 52, 527–542. [Google Scholar] [CrossRef]
- Rørstad, P.K.; Vatn, A.; Kvakkestad, V. Why do transaction costs of agricultural policies vary? Agric. Econ. 2007, 36, 1–11. [Google Scholar] [CrossRef]
- James, H., Jr.; Klein., P.; Sykuta, M. Markets, contracts, or integration? The adoption, diffusion, and evolution of organizational form. Presented at the American Agricultural Economics Association Annual Meeting, Providence, Rhode Island, 24–27 June 2005. [Google Scholar]
- Carter, M.R. Resource allocation and use under collective rights and labour management in peruvian coastal agriculture. Econ. J. 1984, 94, 826–846. [Google Scholar] [CrossRef]
- Deininger, K. Collective agricultural production: A solution for transition economies? World Dev. 1995, 23, 1317–1334. [Google Scholar] [CrossRef]
- North, D.C.; Wallis, J.J. Integrating institutional change and technical change in economic history a transaction cost approach. J. Inst. Theor. Econ. 1994, 150, 609–624. [Google Scholar]
- Altman, I.; Klein, P.G.; Johnson, T. Scale and Transaction Costs in the U.S. Biopower Industry. J. Agric. Food Ind. Org. 2007, 5, 1–19. [Google Scholar] [CrossRef]
- Perrin, R.; Winkelmann, D. Impediments to technical progress on small versus large farms. Am. J. Agric. Econ. 1976, 58, 888–894. [Google Scholar] [CrossRef]
- McCann, L.M.J. Transaction costs of environmental policies and returns to scale: The case of comprehensive nutrient management plans. Rev. Agric. Econ. 2009, 31, 561–573. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, A.; Wen, L.; Bin, P. How horizontal integration affects transaction costs of rural collective construction land market? An empirical analysis in Nanhai District, Guangdong Province, China. Land Use Policy 2019, 82, 138–146. [Google Scholar] [CrossRef]
- Stoll, H.R.; Whaley, R.E. Transaction costs and the small firm effect. J. Financ. Econ. 1983, 12, 57–79. [Google Scholar] [CrossRef]
- Holloway, G.; Nicholson, C.; Delgado, C.; Staal, S.; Ehuia, S. Agroindustrialization through institutional innovation Transaction costs, cooperatives and milk-market development in the east-African highlands. Agric. Econ. 2000, 23, 279–288. [Google Scholar] [CrossRef]
- Lyons, B.R. Specific investment, economies of scale, and the make-or-buy decision: A test of transaction cost theory. J. Econ. Behav. Org. 1995, 26, 431–443. [Google Scholar] [CrossRef]
- Xu, C. Transaction cost, economic size and economic growth. J. Audit Econ. 2016, 31, 120–128. [Google Scholar]
- John, G.; Weitz, B.A. Forward integration into distribution: An empirical test of transaction cost analysis. J. Law Econ. Org. 1988, 4, 337. [Google Scholar]
- Masten, S.E. Transaction-Cost Economics and the Organization of Agricultural Transactions; Baye, M.R., Ed.; Industrial Organization, Emerald Group Publishing Limited: Bingley, UK, 2000; pp. 173–195. [Google Scholar]
- Valentinov, V. Why are cooperatives important in agriculture? An organizational economics perspective. J. Ins. Econ. 2007, 3, 55–69. [Google Scholar] [CrossRef]
- He, Y.; Luo, B. Industrial characteristics, transactional costs and economic performance—Based on the positive analysis of China’s agricultural economic transition (1958–2008). J. Shanxi Fan. Econ. Univ. 2011, 33, 57–62. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E.L. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Introduction to Data Envelopment Analysis and Its Uses: With DEA-Solver Software and References; Springer: New York, NY, USA, 2006. [Google Scholar]
- Dulá, J.H. Mining nonparametric frontiers. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Zhu, J., Wade, D.C., Eds.; Springer Science & Business Media: Boston, MA, USA, 2007; pp. 155–170. [Google Scholar]
- Thanassoulis, E. Introduction to the Theory and Application of Data Envelopment Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Accesstoland, A. European Network of Grassroots Organisations Securing Land for Agroecological Farming. 2013. Available online: https://www.accesstoland.eu/Background-10 (accessed on 1 February 2013).
- Mathijs, E.; Swinnen, J.F. Production organization and efficiency during transition: An empirical analysis of East German agriculture. Rev. Econ. Statis. 2001, 83, 100–107. [Google Scholar] [CrossRef]
- Fernandez-Cornejo, J.; Gempesaw, C.; Elterich, J.; Stefanou, S. Dynamic measures of scope and scale economies: An application to German agriculture. Am. J. Agric. Econ. 1992, 74, 329–342. [Google Scholar] [CrossRef]
- Petrick, M.; Kloss, M. Identifying agricultural factor productivity from micro-data: A review of approaches with an application to EU countries. German J. Agric. Econ. 2018, 67, 67–69. [Google Scholar]
- EC. EU Biodiversity Strategy for 2030: Bringing Nature Back into our Lives; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2020. [Google Scholar]
- Klärle, M. Landmanagement 4.0. Mehrwert durch künstliche Intelligenz. Landtechnik 2018, 73, 37–38. [Google Scholar]
- Piotrowski, S.; Carus, M.; Carrez, D. European bioeconomy in figures. Ind. Biotechnol. 2016, 12, 78–82. [Google Scholar] [CrossRef]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Eco. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- Huettel, S.; Margarian, A. Structural change in the West German agricultural sector. Agric. Econ. 2010, 40, 759–772. [Google Scholar] [CrossRef]
- Alvarez, A.; Arias, C. Diseconomies of size with fixed managerial ability. Am. J. Agric. Econ. 2003, 85, 134–142. [Google Scholar] [CrossRef]
- De Roest, K.; Ferrari, P.; Knickel, K. Specialisation and economies of scale or diversification and economies of scope? Assessing different agricultural development pathways. J. Rural. Stud. 2018, 59, 222–231. [Google Scholar] [CrossRef]
- Lindberg, M.B.; Markard, J.; Andersen, A.D. Policies, actors and sustainability transition pathways: A study of the EU’s energy policy mix. Res. Policy 2019, 48, 103668. [Google Scholar] [CrossRef]
- Alemu, M. Applications of biotechnology for characterization of plants and pests as the key components of plant protection and production strategies: A review. Intern. J. Appl. Sci. Biotechnol. 2020, 8, 247–288. [Google Scholar] [CrossRef]
- Emerick, K.; de Janvry, A.; Sadoulet, E.; Dar, M.H. Technological innovations, downside risk, and the modernization of agriculture. Am. Econ. Rev. 2016, 106, 1537–1561. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The future of farming technology. In Proceedings of the World Government Summit, Dubai, UAE, 24 February 2018; pp. 11–13. [Google Scholar]
- Liobikiene, G.; Balezentis, T.; Streimikiene, D.; Chen, X. Evaluation of bioeconomy in the context of strong sustainability. Sustain. Dev. 2019, 27, 955–964. [Google Scholar] [CrossRef]
- Zilberman, D.; Kim, E.; Kirschner, S.; Kaplan, S.; Reeves, J. Technology and the future bioeconomy. Agric. Econ. 2013, 44, 95–102. [Google Scholar] [CrossRef]
- Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Sec. 2015, 6, 34–42. [Google Scholar] [CrossRef]
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five cornerstones of a global bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Iqbal, Y. Prospects of bioenergy cropping systems for a more social-ecologically sound bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Rada, N.E.; Fuglie, K.O. New perspectives on farm size and productivity. Food Policy 2019, 84, 147–152. [Google Scholar] [CrossRef]
- Xie, L.; Qiu, Z.; You, L.; Kang, Y. A Macro Perspective on the Relationship between Farm Size and Agrochemicals Use in China. Sustainanility 2020, 12, 9299. [Google Scholar] [CrossRef]
- Falcone, P.M.; Lopolito, A.; Sica, E. Policy mixes towards sustainability transition in the Italian biofuel sector: Dealing with alternative crisis scenarios. Energy Res. Soc. Sci. 2017, 33, 105–114. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Imbert, E.; Morone, P. Exploring regional transitions to the bioeconomy using a socio-economic indicator: The case of Italy. Econ. Politica 2020, 1–33. [Google Scholar] [CrossRef]
- Schultz, T.W. The Economic Organization of Agriculture; McGrawHill: New York, NY, USA, 1953; p. 8. [Google Scholar]
- Gawel, E.; Pannicke, N.; Hagemann, N. A path transition towards a bioeconomy-the crucial role of sustainability. Sustainability 2019, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- Grossauer, F.; Stoeglehner, G. Bioeconomy-Spatial requirements for sustainable development. Sustainability 2020, 12, 1877. [Google Scholar] [CrossRef] [Green Version]
Scenarios and Assumptions | Estimated Production Functions | Adjusted Production Functions |
---|---|---|
SCENARIO 1: Neutral-to-scale technologies | Y = −2.77L0.50 S0.56 | Y = −2.45L0.67 S0.49 |
• Annual increase in factor productivity by 1% | ||
• Constant profit rate and output price | ||
• Hicks-neutral technology | ||
SCENARIO 2: Higher demand for non-food biomass | ||
• Annual increase in demand by 2% | ||
• Constant profit rate and product price | ||
• Constant factor productivity/technology | ||
2a: Average sectoral effects | Y = −2.77L0.50 S0.56 | Y = −2.45L0.67 S0.49 |
2b: Effects for farm size groups | ||
Group 1: <10 ha | Y = −3.47L0.53 S0.54 | Y = −8.41L1.35 |
Group 2: 10 ha–50 ha | Y = 4.54L−0.99S2.13 | Y = 21.49L−4.36S5.36 |
Group 3: 50 ha–100 ha | Y = 2.98L−0.89S2.12 | Y = S1.49 |
Group 4: 100 ha–200 ha | Y = L−0.35S1.7 | Y = L−0.33S1.64 |
Group 5: >200 ha | Y = S1.07 | Y = S0.81 |
2c: Regional effects for different ownerships types | ||
Western Germany | Y = 31.69L−0.7S2.47 | Y = −8.3L5.64S−4.82 |
Eastern Germany | Y = 38.44L−0.16S15.47 | Y = 16.59L−3.92S5.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Chatalova, L. Will Transaction Costs and Economies of Scale Tip the Balance in Farm Size in Industrial Agriculture? An Illustration for Non-Food Biomass Production in Germany. Sustainability 2021, 13, 733. https://doi.org/10.3390/su13020733
Wen L, Chatalova L. Will Transaction Costs and Economies of Scale Tip the Balance in Farm Size in Industrial Agriculture? An Illustration for Non-Food Biomass Production in Germany. Sustainability. 2021; 13(2):733. https://doi.org/10.3390/su13020733
Chicago/Turabian StyleWen, Lanjiao, and Lioudmila Chatalova. 2021. "Will Transaction Costs and Economies of Scale Tip the Balance in Farm Size in Industrial Agriculture? An Illustration for Non-Food Biomass Production in Germany" Sustainability 13, no. 2: 733. https://doi.org/10.3390/su13020733
APA StyleWen, L., & Chatalova, L. (2021). Will Transaction Costs and Economies of Scale Tip the Balance in Farm Size in Industrial Agriculture? An Illustration for Non-Food Biomass Production in Germany. Sustainability, 13(2), 733. https://doi.org/10.3390/su13020733