Regional CO2 Budget and Abatement Countermeasures for Forest Scenic Spots: A Case Study of the Shenyang National Forest Park
Abstract
:1. Introduction
2. Study Area and Data Collection
3. Methods
3.1. Research System
3.2. Method of Determining the Annual CO2 Emissions Inventory of Forest Scenic Spots
3.2.1. Cc Annual Average CO2 Emissions in the Infrastructure Construction Stage
3.2.2. CE Energy Consumption CO2 Emissions
3.2.3. CD Water and MSW Embodied CO2 Emissions
3.3. Method of Measuring the Annual CO2 Sinks of Forest Tourism Scenic Spots
3.4. Evaluation of the Status of the Carbon Budget
4. Results
4.1. Results of the CO2 emissions inventory of CC
4.2. Results of the CO2 Emissions Inventory of CE
4.2.1. CO2 Emissions from Tourists Driving Personal Vehicles in the Scenic Area
4.2.2. CO2 Emissions Related to the Energy Consumption of the Park Operations
4.3. Results of the CO2 Emissions Inventory of CD
4.4. Results of the Annual Carbon Sinks in the Forest Scenic Spot
4.5. Regional CO2 Budget and Abatement Countermeasures for Forest Tourism Scenic Spots
4.5.1. Regional CO2 Budget of the Forest Scenic Spot
4.5.2. Countermeasures and Their Impacts
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, T.M.; Tien, C.M. Assessing Tourists’ Preferences of Negative Externalities of Environmental Management Programs: A Case Study on Invasive Species in Shei-Pa National Park. Sustainability 2019, 11, 2953. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.; Amelung, B.; Becken, S.; Geron, J.P.; Gössling, B.; Simpson, M.C. Climate Change and Tourism: Responding to Global Challenges. Clim. Chang. Tour. Responding Glob. Chall. 2007, 12, 168–181. [Google Scholar] [CrossRef]
- Gössling, S. Carbon neutral destinations: A conceptual analysis. J. Sustain. Tour. 2009, 17, 17–37. [Google Scholar] [CrossRef]
- Fernando, J.; Garrigós, S.; Narangajavana, Y.; Daniel, P.M. Carrying capacity in the tourism industry: A case study of Hengistbury Head. Tour. Manag. 2004, 25, 275–283. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P. Economic Growth, Carrying Capacity, and the Environment. Environ. Dev. Econ. 1996, 1, 104–110. [Google Scholar] [CrossRef]
- Zha, J.P.; He, L.M.; Guo, H.F. Evaluation method of carbon emission performance and marginal CO2 abatement costs for tourism scenic area. Areal Res. Dev. 2017, 36, 145–150. [Google Scholar] [CrossRef]
- Walz, A.; Calonder, G.P.; Hagedorn, F.; Hagedorn, C.; Limdström, C.; Stoeckli, V. Regional CO2 budget, countermeasures and reduction aims for the alpine tourist region of Davos, Switzerland. Energy Policy 2008, 36, 811–820. [Google Scholar] [CrossRef]
- Winiwarter, W. National greenhouse gas inventories: Understanding uncertainties versus potential for improving reliability. Water Air Soil Pollut. Focus 2007, 7, 443–450. [Google Scholar] [CrossRef]
- Koch, J.R.J.; Bhatia, P. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard, Revised Edition. 2004. Available online: https://www.researchgate.net/publication/258261856 (accessed on 15 January 2021).
- Villalba, G.; Tarnay, L.; Campbell, E.; Gabarrell, X. A life-cycle carbon footprint of Yosemite National Park. Energy Policy 2013, 62, 1336–1343. [Google Scholar] [CrossRef]
- Ding, Y.L. The Research of Net Carbon Emissions Evaluating and Offsets in Rural Tourism Destination from the Perspective of Carbon Neutral. Ph.D. Thesis, Nanjing Normal University, Nanjing, China, 2015. [Google Scholar]
- Chan, Y.S.; Woo, C.; Suk-Hwan, H. Estimating the annual carbon budget of a weekend tourist resort in a temperate secondary forest in Korea. Urban. For. Urban. Green. 2015, 14, 413–419. [Google Scholar] [CrossRef]
- Zhang, X.J. Study on the Emission and Absorption of Carbon for Tourism Industry on Wutai Mountain Scenic Spot. Master’s Thesis, Shanxi University, Taiyuan, China, 2016. [Google Scholar]
- Kennedya, D.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havránek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, J.; Mendez, G.V. Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 2010, 38, 4828–4837. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhang, X.L.; Qiu, X.Y. Estimation of net carbon emissions and construction of low carbon scenic area based on carbon neutralization—A case study of Jiaoshan in Zhenjiang city. J. Nanjing Norm. Univ. Nat. Sci. Ed. 2016, 254. [Google Scholar] [CrossRef]
- Tang, C.C.; Zhong, L.S.; Ng, P. Factors that influence the tourism industry’s carbon emissions: A tourism area life cycle model perspective. Energy Policy 2017, 10, 704–718. [Google Scholar] [CrossRef]
- Wang, L.G. Stakeholders Making Behaviors in Forest-Tourism: The Perspective of Carbon Offset. Ph.D. Thesis, Jiangxi Agriculture University, Nanchang, China, 2012. [Google Scholar]
- Dong, H.J.; Geng, Y. Study on carbon footprint of the household consumption in Beijing based on input-output analysis. Resour. Sci. 2012, 34, 494–501. [Google Scholar]
- Wu, J.G.; Zhang, X.Q.; Xu, Y.D. Impact of land-use change on soil carbon storage. Chin. J. Appl. Ecol. 2004, 4, 593–599. [Google Scholar]
- Shang, C.J.; Chu, C.L.; Zhang, Z.H. Quantitative assessment on carbon emission of different structures in building life cycle. Build. Sci. 2011, 12, 66–70. [Google Scholar] [CrossRef]
- Wang, J. Calculation and analysis of life cycle CO2 emission of Chinese urban residential communities. Master’s Thesis, Tsinghua University, Beijing, China, 2009. [Google Scholar]
- Cui, C. Evaluation and application for pavement energy consumption using the life cycle assessment methodology. Master’s Thesis, Zhenzhou University, Zhenzhou, China, 2004. [Google Scholar]
- Jiang, S. Scientific Concept of Water-Energy Nexus and Coupling Simulation. Master’s Thesis, China Institute of Water Conservancy and Hydropower Science, Beijing, China, 2017. [Google Scholar]
- Li, H.; Jing, Y.Y.; Li, Y.Y. Carbon emission and its reduction strategies during municipal solid waste treatment. China Environ. Sci. 2011, 2, 259–264. [Google Scholar]
- Schelhaas, M.J.; van Esch, P.W.; Groen, T.A.; de Jong, B.H.J.; Kanninen, M.; Liski, J.; Masera, O.; Mohren, G.M.J.; Nabuurs, G.J.; Palosuo, T.; et al. CO2FIX V 3.1 A Modelling Framework for Quantifying Carbon Sequestration in Forest Ecosystems. 2004. Available online: https://www.researchgate.net/publication/40124193 (accessed on 15 January 2021).
- Pandey, K.K.; Bhosale, T.A.; Awasthi, A.K.; Gupta, G.; Maurya, D. Oak (Quercus Floribunda): A Prominent indigenous multipurpose tree for carbon storage and sequestration potential. Curr. World Environ. 2015, 10, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Yin, M.F.; Zhou, Y.B.; Guo, Y.T.; Liu, Y.Y.; Yin, W.D.; Shang, S.D.; Wu, C.L. Current annual growth rate of forest volume in Baishilazi national nature reserve. J. Northwest. For. 2010, 6, 203–206. [Google Scholar]
- Zhen, W.; Huang, M.; Zhai, Y.L.; Chen, K.; Gong, Y.Z. Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province. Chin. J. Appl. Ecol. 2014, 5, 1259–1265. [Google Scholar]
- Yin, M.F.; Zhao, L.; Chen, X.F.; Gao, S.; Hou, C.S. Carbon storage maturity age of Larix olgensis and Japanese larch. Chin. J. Appl. Ecol. 2008, 12, 2567–2571. [Google Scholar]
- Yin, M.F.; Yang, L.; Yin, W.D.; Lei, Q.G.; Tan, X.B.; Zhang, H.Y.; Li, Z.W. Dynamic changes of carbon storage in trunk volume of Pinus tabulaeformis, Robinia pseudoacacia and Populus euramericana. J. Beijing For. Univ. 2011, 5, 65–68. [Google Scholar]
- Xu, B.; Guo, Z.D.; Piao, S.L.; Fang, J.Y. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Jong, B.H.D.; Masera, O.; Olguín, M.; Martínez, R. Green house gas mitigation potential of combining forest management and bioenergy substitution: A case study from Central Highlands of Michoacan, Mexico. For. Ecol. Manag. 2001, 242, 398–411. [Google Scholar] [CrossRef]
- Dong, L.H. Developing individual and stand-level biomass equations in northeast China forest area. Ph.D. Thesis, Northeast Agricultural University Harbin, Heilongjiang, China, 2015. [Google Scholar]
- Lv, J.W.; Le, Q.; Wang, Z.; Zhang, G.J. Carbon sequestration potential in Fujian’s forest ecosystems. Acta Ecol. Sin. 2010, 8, 2188–2196. [Google Scholar]
- Bekele, L.; Dan, B.K.; Mats, O. Factors controlling soil organic carbon sequestration under exotic tree plantations: A case study using the CO2Fix model in southwestern Ethiopia. For. Ecol. Manag. 2007, 6, 124–131. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wang, X.P.; Zhu, B.; Zong, Z.J.; Peng, C.H.; Fang, J.Y. Litter fall production in relation to environmental factors in Northeast China’s forests. Chin. J. Plant. Ecol. 2008, 5, 1031–1040. [Google Scholar] [CrossRef]
- Sun, H.Z.; Qu, H.J.; Hao, Y.; Shi, Y.L.; Ren, Q.S. Several patterns for improvement of secondary forests. J. Northeast. For. Univ. 2004, 3, 103–104. [Google Scholar] [CrossRef]
- Chen, B.J.; Li, D.Z.; Li, Q.M. Comprehensive benefit analysis on energy-saving renovation of existing residential buildings in hot summer and cold winter zone. Build. Sci. 2017, 8, 42–48. [Google Scholar] [CrossRef]
Building Construction | Land Use Change from Forestland to Settled Land | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Building Types | Emissions Standard 2 (kg CO2 m−2 yr−1) | Facility Name 1 | Construction Year 1 | Area 1 (m2) | Lifetime 1 (year) | CO2 Emissions (t CO2 yr−1) | Default Assumptions of Carbon Stock Changes (20 years) | Biomass Carbon Density Lost 3 (t C ha−1) | Soil Carbon Density Lost 3 (t C ha−1) | CO2 Emissions (t CO2 yr−1) |
Reinforced concrete building c | 0.135 | New hotels and villas (2 story) | 2000 | 4050 | 50 | 0.547 | 2000–2019 | 23.691 | 51.124 | 2.778 |
Performance venue | 2002 | 1339 | 0.181 | 2002–2021 | 1.837 | |||||
Office building (2 story) | 2002 | 1015 | 0.137 | 2002–2021 | 0.697 | |||||
Landscape architecture | 2003 | 6094 | 0.823 | 2003–2022 | 8.359 | |||||
Reserve room | 2007 | 1038 | 0.140 | 2007–2026 | 1.424 | |||||
Asphalt pavement | 1.318 | Primary road | 2000 | 33,950 | 20 | 44.746 | 2000–2019 | 46.569 | ||
Secondary road | 2002 | 13,650 | 17.991 | 2002–2021 | 18.724 | |||||
Parking lots | 2003 | 21,800 | 28.732 | 2003–2022 | 29.903 | |||||
Secondary road | 2008 | 5950 | 7.842 | 2008–2027 | 8.162 | |||||
Parking lots for ski facility | 2010 | 8500 | 11.203 | 2010–2029 | 11.659 | |||||
Concrete pavement | 2.033 | Sales square | 2001 | 2500 | 20 | 5.083 | 2001–2020 | 3.429 | ||
Observation decks trails | 2003 | 10,300 | 20.940 | 2003–2022 | 14.129 | |||||
Farmland | 0 | Picking farm | 2003 | 8500 | - | 0 | 2002–2021 | 30.674 | 8.473 | |
Grassland | 0 | Lawn | 2002 | 12,000 | - | 0 | 2003–2022 | 18.405 | 9.262 | |
In 2019 | - | - | - | - | - | 138.365 | - | - | 165.405 |
Percent of Tourists 1 (%) | Percent of Vehicles into Park 1 (%) | Avg. Number of Occupants Inside Vehicle 1 (persons) | Vehicles into Park 1 (104 cars) | Avg. Travel Distance in the Park 1 (km) | Carbon Emissions Factor 2 (kg CO2 km−1) | CO2 Emissions (t CO2 yr−1) | |
---|---|---|---|---|---|---|---|
Personal vehicles | 61 | 78 | 3.740 | 2.417 | 3.180 | 0.208 | 15.987 |
Group tours buses | 36 | 42 | 33.160 | 0.087 | 2.360 | 0.236 | 0.485 |
Total | - | - | - | - | - | - | 16.472 |
Raw Coal 1 (kg) | Gasoline 1 (kg) | Diesel Oil 1 (kg) | LPG 1 (kg) | Electricity 1 (kW·h) | Total | |
---|---|---|---|---|---|---|
Administrative committee | 206,720 | 15,764 | 20,042 | 2166 | 435,887 | - |
Catering, accommodations, shopping, and entertainment enterprises | 7000 | 3987 | - | 2560 | 66,000 | - |
Carbon emissions factor 2 (kg CO2 kg−1 or kW·h) | 1.900 | 2.925 | 3.096 | 3.101 | 1.129 | - |
CO2 emissions (t CO2 yr−1) | 406.068 | 57.772 | 62.050 | 14.655 | 566.630 | 1107.175 |
Water Consumption 1 (m3) | Wastewater/Water 2 (%) | Wastewater Treatment 1 (m3) | MSW Treatment 1 (kg) | Total | |
---|---|---|---|---|---|
Administrative committee and enterprises | 2737.5 | 0.8 | 2190 | 730,000 | - |
Carbon emissions factor 2 (kg CO2 m−3 or kg−1) | 1.007 | - | 0.837 | 0.561 | - |
CO2 emissions (t CO2 yr−1) | 2.757 | - | 1.83 | 409.53 | 414.117 |
Starting Age (Year) | Area (ha) | Stems, Foliage, Branches, Roots Initial Carbon (t C ha−1) | Wood Density (dry mass) (t m−3) | Foliage, Branches, Roots Turnover Rate (1 yr−1) | Foliage, Branches, Roots, Stems, Litter Fall (t ha−1 yr−1) | ΔC (t C ha−1) | CO2 Sinks (t CO2) | |
---|---|---|---|---|---|---|---|---|
Data Sources | Forest Inventory Data | [31,33] | [34]; | [34,35] | [36] | Output Data | − | |
Oak | 28 | 28.00 | 16.6/0.8/3.9/5.9 | 0.68 | 1.0/0.05/0.08 | 2.78/0.57/0.04/0.10 | 0.97 | 99.583 |
38 | 52.99 | 22.1/1.1/5.3/7.9 | 1.26 | 244.814 | ||||
43 | 67.60 | 25.1/1.2/6.0/7.9 | 0.95 | 235.473 | ||||
Larch | 43 | 3.90 | 36.5/1.6/4.0/15.3 | 0.49 | 0.05/1.0/0.1 | 1.02/0.87/0.17/0.03 | 4.18 | 59.774 |
Acacia | 35 | 3.09 | 22.9/1.0/4.2/8.5 | 0.47 | 1.0/0.05/0.1 | 3.32/0.48/0.15/0.05 | −1.33 | −15.069 |
38 | 1.10 | 24.9/1.0/4.5/9.2 | −1.34 | −5.400 | ||||
48 | 0.80 | 31.5/1.3/5.7/11.7 | −1.43 | −4.165 | ||||
Northeast China ash | 38 | 99.80 | 15.5/0.8/3.2/5.4 | 0.68 | 0.33/0.05/0.1 | 2.78/0.57/0.04/0.20 | 0.37 | 135.395 |
43 | 9.80 | 17.0/0.9/3.4/5.9 | 1.03 | 37.011 | ||||
Pinus tabulaeformis | 18 | 44.80 | 10.9/0.5/1.2/4.6 | 0.36 | 0.33/0.05/0.1 | 1.43/0.57/0.04/1.03 | −1.29 | −211.900 |
38 | 38.50 | 24.1/1.1/2.7/10.1 | −0.02 | −2.823 | ||||
43 | 126.20 | 25.7/1.1/2.8/10.8 | 0.51 | 235.994 | ||||
48 | 59.70 | 26.6/1.2/2.9/11.2 | 1.13 | 247.357 | ||||
53 | 40.30 | 27.2/1.2/2.9/11.4 | 1.90 | 280.743 | ||||
Total | - | 576.570 | - | - | - | − | − | 1336.787 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; Chen, K.; Zhang, T.; Yin, M.; Shi, X.; Xu, Z. Regional CO2 Budget and Abatement Countermeasures for Forest Scenic Spots: A Case Study of the Shenyang National Forest Park. Sustainability 2021, 13, 861. https://doi.org/10.3390/su13020861
He D, Chen K, Zhang T, Yin M, Shi X, Xu Z. Regional CO2 Budget and Abatement Countermeasures for Forest Scenic Spots: A Case Study of the Shenyang National Forest Park. Sustainability. 2021; 13(2):861. https://doi.org/10.3390/su13020861
Chicago/Turabian StyleHe, Dan, Ke Chen, Tingting Zhang, Mingfang Yin, Xiaoliang Shi, and Zhe Xu. 2021. "Regional CO2 Budget and Abatement Countermeasures for Forest Scenic Spots: A Case Study of the Shenyang National Forest Park" Sustainability 13, no. 2: 861. https://doi.org/10.3390/su13020861
APA StyleHe, D., Chen, K., Zhang, T., Yin, M., Shi, X., & Xu, Z. (2021). Regional CO2 Budget and Abatement Countermeasures for Forest Scenic Spots: A Case Study of the Shenyang National Forest Park. Sustainability, 13(2), 861. https://doi.org/10.3390/su13020861