Sustainability and Waste Imports in China: Pollution Haven or Resources Hunting
Abstract
:1. Introduction
2. Literature Review
3. Overview of China’s Waste Import
3.1. China’s Waste Import
3.2. China’s Laws on Waste Imports
4. Methodology and Data
4.1. Econometric Specification
4.2. Data and Descriptions of Variables
5. Results
6. Further Discussions
7. Conclusions and Policy Implication
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Appendix A
RE | RE | RE | RE | LSDV | LSDV | LSDV | LSDV | |
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
0.45 ** | 0.45 ** | 0.45 ** | 0.45 ** | |||||
(2.07) | (2.07) | (2.10) | (2.10) | |||||
−0.43 | −0.43 | −0.43 | −0.43 | |||||
(−0.49) | (−0.49) | (−0.54) | (−0.54) | |||||
−28.04 *** | −28.15 *** | 1.31 *** | 1.00 * | |||||
(−5.37) | (−5.39) | (14.83) | (1.92) | |||||
29.62 *** | 29.74 *** | 1.40 *** | 1.04 * | |||||
(5.37) | (5.39) | (16.20) | (1.89) | |||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 12,813 | 12,813 | 12,813 | 12,813 | 12,169 | 12,169 | 12,169 | 12,169 |
R2 | 0.14 | 0.14 | 0.14 | 0.14 | 0.20 | 0.20 | 0.20 | 0.20 |
Metal Waste | Paper Waste | Plastic Waste | Textile Waste | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | |
0.58 | 0.58 | −0.14 | −0.14 | −1.30 * | −1.30 * | −0.31 | −0.31 | |||||||||
(1.46) | (1.46) | (−0.19) | (−0.19) | (−1.73) | (−1.73) | (−0.51) | (−0.51) | |||||||||
−0.33 | −0.33 | 0.08 | 0.08 | 0.09 | 0.09 | −0.30 | −0.30 | |||||||||
(−1.22) | (−1.22) | (0.15) | (0.15) | (0.18) | (0.18) | (−0.74) | (−0.74) | |||||||||
1.45 *** | 1.45 *** | 0.38 | 0.38 | −0.25 | −0.25 | 1.45 ** | 1.45 ** | |||||||||
(3.44) | (3.44) | (0.48) | (0.48) | (−0.32) | (−0.32) | (2.24) | (2.24) | |||||||||
2.74 | 2.74 | 2.17 | 2.17 | 7.23 ** | 7.23 ** | 6.10 ** | 6.10 ** | |||||||||
(1.62) | (1.62) | (0.68) | (0.68) | (2.25) | (2.25) | (2.34) | (2.34) | |||||||||
0.76 *** | 0.76 *** | 0.54 | 0.54 | 0.94 ** | 0.94 ** | 0.92 *** | 0.92 *** | |||||||||
(3.40) | (3.40) | (1.29) | (1.29) | (2.27) | (2.27) | (2.67) | (2.67) | |||||||||
−0.89 ** | −0.89 ** | −0.74 | −0.74 | −1.29 * | −1.29 * | −1.01 | −1.01 | |||||||||
(−2.23) | (−2.23) | (−0.98) | (−0.98) | (−1.72) | (−1.72) | (−1.64) | (−1.64) | |||||||||
19.88 ** | 22.89 *** | 16.23 | 19.89 | 21.90 | 39.38 ** | 3.25 | 15.10 | |||||||||
(2.56) | (2.66) | (1.11) | (1.22) | (1.51) | (2.44) | (0.27) | (1.14) | |||||||||
0.18 ** | 0.21* | 0.11 | 0.18 | 0.06 | 0.43 ** | 0.01 | 0.23 | |||||||||
(2.43) | (1.84) | (0.80) | (0.87) | (0.44) | (2.02) | (0.06) | (1.35) | |||||||||
−0.17 *** | −0.04 | −0.10 | −0.05 | −0.10 | −0.08 | −0.06 | 0.04 | |||||||||
(−3.21) | (−0.80) | (−1.04) | (−0.46) | (−1.02) | (−0.83) | (−0.80) | (0.53) | |||||||||
10.44 ** | 11.94 *** | 24.21 | 29.70 | 9.71 | 17.18 ** | 1.14 | 4.84 | |||||||||
(2.57) | (2.65) | (1.10) | (1.22) | (1.52) | (2.43) | (0.29) | (1.11) | |||||||||
−0.01 | −0.01 | −0.35 | −0.37 | −0.28 *** | −0.14 | −0.03 | 0.11 | |||||||||
(−0.35) | (−0.25) | (−1.21) | (−1.30) | (−2.73) | (−1.16) | (−0.52) | (1.13) | |||||||||
−0.09 *** | 0.06* | −0.02 | 0.06 | −0.03 | 0.05 | −0.05 | 0.13 *** | |||||||||
(−2.92) | (1.70) | (−0.41) | (0.98) | (−0.49) | (0.65) | (−1.17) | (2.62) | |||||||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 4157 | 4157 | 4157 | 4157 | 1185 | 1185 | 1185 | 1185 | 1185 | 1185 | 1185 | 1185 | 1791 | 1791 | 1791 | 1791 |
R2 | 0.14 | 0.14 | 0.14 | 0.14 | 0.16 | 0.16 | 0.16 | 0.16 | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 |
Waste Metal | Waste Paper | Waste Plastic | Waste Textile | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | |
−2.50 ** | −2.50 ** | −3.29 * | −3.29 * | −3.91 ** | −3.91 ** | −0.14 | −0.14 | |||||||||
(−2.44) | (−2.44) | (−1.72) | (−1.72) | (−1.97) | (−1.97) | (−0.09) | (−0.09) | |||||||||
−0.60 | −0.60 | 0.64 | 0.64 | −1.06 | −1.06 | −0.18 | −0.18 | |||||||||
(−1.25) | (−1.25) | (0.72) | (0.72) | (−1.16) | (−1.16) | (−0.25) | (−0.25) | |||||||||
0.84 | 0.84 | 2.55 | 2.55 | 0.47 | 0.47 | 4.18 | 4.18 | |||||||||
(0.50) | (0.50) | (0.82) | (0.82) | (0.15) | (0.15) | (1.63) | (1.63) | |||||||||
−6.37 ** | −6.37 ** | −2.81 | −2.81 | −8.13 | −8.13 | −4.96 | −4.96 | |||||||||
(−2.25) | (−2.25) | (−0.52) | (−0.52) | (−1.48) | (−1.48) | (−1.14) | (−1.14) | |||||||||
−0.10 | −0.10 | −0.76 | −0.76 | 0.61 | 0.61 | −0.43 | −0.43 | |||||||||
(−0.26) | (−0.26) | (−1.07) | (−1.07) | (0.83) | (0.83) | (−0.74) | (−0.74) | |||||||||
−0.12 | −0.12 | −0.85 | −0.85 | 0.46 | 0.46 | 0.17 | 0.17 | |||||||||
(−0.19) | (−0.19) | (−0.70) | (−0.70) | (0.37) | (0.37) | (0.17) | (0.17) | |||||||||
79.61 *** | 87.75 *** | 53.48 *** | 50.70 *** | 68.26 *** | 67.87 *** | 75.27 *** | 74.05 *** | |||||||||
(6.66) | (7.47) | (4.49) | (4.25) | (5.57) | (5.53) | (7.76) | (7.62) | |||||||||
0.63 *** | 0.81 *** | −0.44 ** | −0.39 ** | 0.06 | −0.01 | −0.22 | −0.20 | |||||||||
(5.17) | (6.93) | (−2.22) | (−2.09) | (0.31) | (−0.07) | (−1.33) | (−1.31) | |||||||||
−0.47 *** | −0.44 *** | −0.62 *** | −0.46 *** | −0.48 ** | −0.45 *** | −0.78 *** | −0.54 *** | |||||||||
(−3.90) | (−6.35) | (−3.13) | (−4.95) | (−2.35) | (−4.63) | (−4.80) | (−7.14) | |||||||||
41.74 *** | 45.91 *** | 173.16 *** | 180.31 *** | 36.84 *** | 29.04 *** | 45.14 *** | 44.77 *** | |||||||||
(6.66) | (7.47) | (5.18) | (5.48) | (3.17) | (2.59) | (7.42) | (7.51) | |||||||||
−0.14 *** | −0.04 | −2.29 *** | −2.17 *** | −0.62 *** | −0.39 * | −0.07 | −0.03 | |||||||||
(−2.74) | (−0.90) | (−5.33) | (−5.12) | (−2.73) | (−1.83) | (−0.84) | (−0.38) | |||||||||
−0.15 | −0.08 *** | −0.25 | −0.06 | −0.23 | −0.06 | −0.33 ** | −0.07 * | |||||||||
(−1.47) | (−2.90) | (−1.27) | (−1.40) | (−1.11) | (−0.67) | (−2.07) | (−1.79) | |||||||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 1817 | 1817 | 1817 | 1817 | 519 | 519 | 519 | 519 | 519 | 519 | 519 | 519 | 777 | 777 | 777 | 777 |
R2 | 0.16 | 0.16 | 0.16 | 0.16 | 0.21 | 0.20 | 0.21 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 | 0.18 | 0.18 |
RE | LSDV | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | |
−0.05 | −0.05 | −0.05 | −0.05 | |||||
(−0.22) | (−0.22) | (−0.23) | (−0.23) | |||||
−0.01 | −0.01 | −0.01 | −0.01 | |||||
(−0.01) | (−0.01) | (−0.01) | (−0.01) | |||||
7.29 *** | 7.30 *** | 0.83 *** | 0.82 | |||||
(5.19) | (5.04) | (8.73) | (1.35) | |||||
11.39 *** | 11.40 *** | 1.06 *** | 1.06 * | |||||
(4.69) | (4.66) | (11.08) | (1.65) | |||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 |
R2 | 0.07 | 0.07 | 0.07 | 0.07 | 0.14 | 0.14 | 0.14 | 0.14 |
RE | LSDV | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | |
0.14 | 0.14 | 0.14 | 0.14 | |||||
(0.55) | (0.55) | (0.58) | (0.58) | |||||
−0.76 *** | −0.76 *** | −0.76 *** | −0.76 *** | |||||
(−4.42) | (−4.42) | (−4.26) | (−4.26) | |||||
0.76 *** | 0.76 *** | 0.76 ** | 0.76 ** | |||||
(2.65) | (2.65) | (2.45) | (2.45) | |||||
0.05 | 0.05 | 0.05 | 0.05 | |||||
(0.05) | (0.05) | (0.05) | (0.05) | |||||
0.19 * | 0.19 * | 0.19 * | 0.19 * | |||||
(1.71) | (1.71) | (1.81) | (1.81) | |||||
0.04 | 0.04 | 0.04 | 0.04 | |||||
(0.24) | (0.24) | (0.27) | (0.27) | |||||
19.75 *** | 19.63 *** | 0.90 *** | 0.89 * | |||||
(7.14) | (7.09) | (9.93) | (1.86) | |||||
0.12 *** | 0.06 | 0.03 * | −0.03 ** | |||||
(2.61) | (1.43) | (1.85) | (−2.03) | |||||
−0.13 *** | −0.10 *** | −0.03 * | 0.01 | |||||
(−5.22) | (−4.21) | (−1.75) | (0.42) | |||||
11.49 *** | 11.69 *** | 0.86 *** | 0.83 * | |||||
(4.70) | (4.74) | (9.38) | (1.79) | |||||
−0.05 *** | −0.10 *** | 0.07 *** | 0.01 | |||||
(−3.04) | (−5.79) | (4.44) | (0.70) | |||||
−0.05 *** | −0.01 | −0.04 * | 0.00 | |||||
(−2.71) | (−0.89) | (−1.90) | (0.27) | |||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 |
R2 | 0.07 | 0.07 | 0.07 | 0.07 | 0.14 | 0.14 | 0.14 | 0.14 |
Developed Countries | Developing Countries | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | |
−0.04 | −0.04 | −1.94 *** | −1.94 *** | |||||
(−0.13) | (−0.13) | (−2.74) | (−2.74) | |||||
−0.91 *** | −0.91 *** | 0.59 * | 0.59 * | |||||
(−4.17) | (−4.17) | (1.79) | (1.79) | |||||
1.13 *** | 1.13 *** | −2.61 ** | −2.61 ** | |||||
(3.31) | (3.31) | (−2.25) | (−2.25) | |||||
5.20 *** | 5.20 *** | −8.85 *** | −8.85 *** | |||||
(3.79) | (3.79) | (−4.51) | (−4.51) | |||||
0.46 ** | 0.46 ** | 0.65 ** | 0.65 ** | |||||
(2.57) | (2.57) | (2.50) | (2.50) | |||||
−0.02 | −0.02 | 0.67 | 0.67 | |||||
(−0.07) | (−0.07) | (1.47) | (1.47) | |||||
12.70 *** | 12.79 *** | 71.72 *** | 81.52 *** | |||||
(3.61) | (3.63) | (8.65) | (10.05) | |||||
0.17 *** | 0.10 * | 0.55 *** | 0.77 *** | |||||
(2.92) | (1.68) | (6.45) | (9.53) | |||||
−0.11 *** | −0.05 | −0.23 *** | −0.39 *** | |||||
(−3.28) | (−1.35) | (−2.76) | (−8.23) | |||||
6.24 *** | 6.31 *** | 35.82 *** | 40.71 *** | |||||
(3.58) | (3.61) | (8.64) | (10.04) | |||||
0.03 | −0.04 | −0.21 *** | −0.10 *** | |||||
(0.51) | (−0.65) | (−5.96) | (−2.96) | |||||
−0.06 ** | 0.01 | 0.07 | −0.06 *** | |||||
(−2.04) | (0.25) | (0.98) | (−3.20) | |||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 8318 | 8318 | 8318 | 8318 | 3632 | 3632 | 3632 | 3632 |
R2 | 0.06 | 0.06 | 0.06 | 0.06 | 0.12 | 0.13 | 0.12 | 0.13 |
1995–2000 | 2001–2005 | 2006–2010 | 2011–2015 | 2015–2018 | |
---|---|---|---|---|---|
RE | RE | RE | RE | RE | |
−0.40 *** | 0.32 ** | 0.45 *** | 0.56 *** | −19.35 *** | |
(−3.94) | (2.45) | (3.07) | (4.30) | (−3.48) | |
4.45 *** | 7.18 *** | 2.11 *** | 8.16 *** | −18.38 | |
(6.64) | (4.94) | (3.06) | (3.26) | (−0.95) | |
Control | Yes | Yes | Yes | Yes | Yes |
Obs | 2986 | 2616 | 2627 | 2508 | 1432 |
R2 | 0.04 | 0.06 | 0.01 | 0.02 | 0.06 |
References
- Kellenberg, D. The economics of the international trade of waste. Annu. Rev. Resour. Econ. 2015, 7, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Gregson, N.; Crang, M. From waste to resource: The trade in wastes and global recycling economies. Annu. Rev. Environ. Resour. 2015, 40, 151–176. [Google Scholar] [CrossRef] [Green Version]
- Almer, C.; Goeschl, T. The Sopranos redux: The empirical economics of waste crime. SSRN 2010, 1908–1921. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, A.; Mazzanti, M.; Nicolli, F. Waste and organized crime in regional environments: How waste tariffs and the mafia affect waste management and disposal. Resour. Energy Econ. 2015, 41, 185–201. [Google Scholar] [CrossRef]
- Gray, W.B.; Shimshack, J.P. The effectiveness of environmental monitoring and enforcement: A review of the empirical evidence. Rev. Environ. Econ. Policy 2011, 5, 3–24. [Google Scholar] [CrossRef]
- Kellenberg, D. Consumer waste, backhauling, and pollution havens. J. Appl. Econ. 2010, 13, 283–304. [Google Scholar] [CrossRef]
- Kellenberg, D. Trading wastes. J. Environ. Econ. Manag. 2012, 64, 68–87. [Google Scholar] [CrossRef]
- Walter, I.; Ugelow, J.L. Environmental policies in developing countries. AMBIO 1979, 8, 102–109. [Google Scholar]
- Yoshida, J.; Kim, H.; Nagaki, A. Green and sustainable chemical synthesis using flow microreactors. ChemSusChem 2011, 4, 331–340. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, L.; Lim, M.K.; Chen, W.; Sutherland, J.W. Structure of the global plastic waste trade network and the impact of China’s Import Ban. Resour. Conserv. Recycl. 2020, 153, 104591. [Google Scholar] [CrossRef]
- Velis, C.A. Global Recycling Markets-Plastic Waste: A Story for One Player–China; International Solid Waste Association—Global Waste Management Task Force (ISWA): Vienna, Austria, 2014. [Google Scholar]
- Michida, E. International Trade of Recyclables in Asia: Is Cross-border Recycling Sustainable? In Economic Integration and Recycling in Asia; Institute of Developing Economics: Chiba, Japan, 2011; pp. 9–27. [Google Scholar]
- Baggs, J. International trade in hazardous waste. Rev. Int. Econ. 2009, 17, 1–16. [Google Scholar] [CrossRef]
- Nunez-Rocha, T. Waste Haven Effect: Unwrapping the Impact of Environmental Regulation; Centre d’Economie de la Sorbonne: Paris, France, 2016. [Google Scholar]
- Okubo, T.; Watabe, Y.; Furuyama, K. Export of Recyclable Materials: Evidence from Japan. Asian Econ. Pap. 2016, 15, 134–148. [Google Scholar] [CrossRef]
- Sun, M. The effect of border controls on waste imports: Evidence from China’s Green Fence campaign. China Econ. Rev. 2019, 54, 457–472. [Google Scholar] [CrossRef]
- Sawhney, A.; Majumder, P. Is India becoming a waste haven of metal scrap? Munich Pers. Repec Arch. 2015, 67186. Available online: https://mpra.ub.uni-muenchen.de/id/eprint/67186 (accessed on 14 January 2021).
- Hu, X.; Wang, C.; Lim, M.K.; Chen, W. Characteristics of the global copper raw materials and scrap trade systems and the policy impacts of China’s import ban. Ecol. Econ. 2020, 172, 106626. [Google Scholar] [CrossRef]
- Petridis, N.E.; Petridis, K.; Stiakakis, E. Global e-waste trade network analysis. Resour. Conserv. Recycl. 2020, 158, 104742. [Google Scholar] [CrossRef]
- Pethig, R. Pollution, Welfare, and Environmental Policy in the Theory of Comparative Advantage. J. Environ. Econ. Manag. 1976, 2, 160–169. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is free trade good for the environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.A.; Elliott, R.J.R.; Fredriksson, P.G. Endogenous pollution havens: Does FDI influence environmental regulations? Scand. J. Econ. 2006, 108, 157–178. [Google Scholar] [CrossRef]
- Becker, R.; Henderson, V. Effects of Air Quality Regulations on Polluting Industries. J. Political Econ. 2000, 108, 379–421. [Google Scholar] [CrossRef]
- Higashida, K.; Managi, S. Determinants of trade in recyclable wastes: Evidence from commodity-based trade of waste and scrap. Environ. Dev. Econ. 2014, 19, 250–270. [Google Scholar] [CrossRef]
- Yang, K.; Yoshida, H. Effect of mist injection position on particle separation performance of cyclone scrubber. Sep. Purif. Technol. 2004, 37, 221–230. [Google Scholar] [CrossRef]
- Baumol, W.J.; Bradford, D.F. Detrimental externalities and non-convexity of the production set. Economica 1972, 39, 160–176. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade, spatial separation, and the environment. J. Int. Econ. 1999, 47, 137–168. [Google Scholar] [CrossRef] [Green Version]
- Barrett, S. The strategy of trade sanctions in international environmental agreements. Resour. Energy Econ. 1997, 19, 345–361. [Google Scholar] [CrossRef]
- Carraro, C.; Siniscalco, D. Strategies for the international protection of the environment. J. Public Econ. 1993, 52, 309–328. [Google Scholar] [CrossRef]
- Kellenberg, D.; Levinson, A. Waste of effort? international environmental agreements. J. Assoc. Environ. Resour. Econ. 2014, 1, 135–169. [Google Scholar] [CrossRef]
- Henderson, D.J.; Millimet, D.L. Pollution abatement costs and foreign direct investment inflows to US states: A nonparametric reassessment. Rev. Econ. Stat. 2007, 89, 178–183. [Google Scholar] [CrossRef]
- Kheder, S.B.; Zugravu, N. The Pollution Haven Hypothesis: A Geographic Economy Model in a Comparative Study; Climate Change Modelling and Policy Working Papers 44223; Fondazione Eni Enrico Mattei (FEEM): Milan, Italy, 2008. [Google Scholar]
- Ma, Z.; Chen, Y.; Melville, D.; Fan, J.; Liu, J.; Dong, J.; Tan, K.; Cheng, X.; Fuller, R.; Xiao, X.; et al. Changes in area and number of nature reserves in China. Conserv. Biol. 2019, 33, 1066–1075. [Google Scholar] [CrossRef]
- Wen, H.; Dai, J. Trade openness, environmental regulation, and human capital in China: Based on ARDL cointegration and Granger causality analysis. Environ. Sci. Pollut. Res. 2020, 27, 1789–1799. [Google Scholar] [CrossRef]
- Lepawsky, J.; McNabb, C. Mapping international flows of electronic waste. Can. Geogr. Le Géographe Can. 2010, 54, 177–195. [Google Scholar] [CrossRef]
- Kusch, S.; Hills, C.D. The link between e-waste and GDP—New insights from data from the pan-European region. Resources 2017, 6, 15. [Google Scholar] [CrossRef]
- Kumar, A.; Holuszko, M.; Espinosa, D.C.R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recycl. 2017, 122, 32–42. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Gokmenoglu, K.K.; Taspinar, N.; Cantos-Cantos, J.M. An approach to the pollution haven and pollution halo hypotheses in MINT countries. Environ. Sci. Pollut. Res. 2019, 26, 23010–23026. [Google Scholar] [CrossRef] [PubMed]
- Dussaux, D. The Effects of Environmental Regulations on Waste Trade, Clean Innovation, and Competitiveness in a Globalized World; Ecole Nationale Supérieure des Mines de Paris: Paris, France, 2015. [Google Scholar]
- Chaturvedi, A.; McMurray, N. China’s Emergence as a Global Recycling Hub—What Does it Mean for Circular Economy Approaches Elsewhere? IDS Evidence Report 146; IDS: Brighton, UK, 2015. [Google Scholar]
- Rodić, L.; Wilson, D.C. Resolving governance issues to achieve priority sustainable development goals related to solid waste management in developing countries. Sustainability 2017, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Tozanlı, Ö.; Kongar, E.; Gupta, S.M. Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain. Sustainability 2020, 12, 5416. [Google Scholar] [CrossRef]
Categories | HS6 Code | HS6 Description |
---|---|---|
waste metal | 720410 | Waste and scrap of cast iron |
720421 | Waste and scrap of stainless steel | |
720429 | Waste and scrap of alloy steel other than stainless steel | |
720430 | Waste and scrap of tinned iron/steel | |
720441 | Ferrous turnings, shavings, chips, milling waste, sawdust, filings | |
720449 | Ferrous waste and scrap (excl. of 7204.10–7204.41) | |
740400 | Copper waste and scrap | |
750300 | Nickel waste and scrap | |
760200 | Aluminum waste and scrap | |
780200 | Lead waste and scrap | |
790200 | Zinc waste and scrap | |
800200 | Tin waste and scrap | |
810420 | Magnesium waste and scrap | |
810600 | Bismuth and arts. thereof, incl. waste and scrap | |
waste paper | 470710 | Recovered (waste and scrap) unbleached kraft paper/paperboard |
470720 | Recovered (waste and scrap) paper/paperboard mainly of bleached chem. | |
470730 | Recovered (waste and scrap) paper/paperboard made mainly of mech. Pulp | |
470790 | Recovered (waste and scrap) paper/paperboard (excl. of 4707.10–4707.30) | |
waste plastic | 391510 | Waste, parings and scrap, of polymers of ethylene |
391520 | Waste, parings and scrap, of polymers of styrene | |
391530 | Waste, parings and scrap, of polymers of vinyl chloride | |
391590 | Waste, parings and scrap, of plastics n.e.s. in 39.15 | |
waste textile | 500390 | Silk waste (incl. cocoons unsuit. for reeling, yarn waste, and garnetted stock) |
510320 | Waste of wool/of fine animal hair, incl. yarn waste | |
520210 | Yarn waste (incl. thread waste), of cotton | |
520299 | Cotton waste other than yarn waste | |
550510 | Waste (incl. noils, yarn waste, and garnetted stock) of synth. fibers | |
550520 | Waste (incl. noils, yarn waste, and garnetted stock) of art. Fibers |
Variable Name | Descriptions | Data Source |
---|---|---|
Explained variable () | ||
Log of China’s import value for product k from country j at time t. | CEPII-BACI Database | |
Log of China’s import quantity for product k from country j at time t. | CEPII-BACI Database | |
Pollution haven hypothesis variable () | ||
Following Ben and Zugravn (2008); Wen and Dai (2019) and Ma et al. (2019), a ratio of log GDP/CO2 emission between orientation and China at time t was used as a proxy for PHH. A higher value presents the orientation’s effectiveness of environmental regulation being better than China’s, thus more likely to export waste products to China for searching relative cheaper environment costs. | World Bank WDI Carbon Dioxide Information Analysis Center (CDIAC) | |
Following Baggs (2009), Lepawsky and McNabb (2010), Kusch and Hills (2017), Kumar et al. (2017), and Balsalobre-Lorente et al. (2019), the ratio of log GDP per Capita between orientation and China at time t was used as a proxy for PHH. A higher value presents the orientation’s GDP per Capita to China’s, suggest a positive relationship to more restricted environment regulations. | World Bank WDI | |
Resource hunting hypothesis variable () | ||
Uses the log of China’s import value of intermediate material with Broad Economic Categories code as 21, 22, 111, 121, excluding all waste import, at time t as a proxy for RHH. The higher the value indicates a higher demand for intermediate input resources. | CEPII-BACI Database | |
We used the log of China’s export value with HS2 code as 39, 47–49, 50–55, and 72–83 at time t as a proxy for RHH. According to Dussaux (2015), these sectors use the intermediate input related to waste imports. Different sectors’ exporting values associated with different categories of waste were adopted. | CEPII-BACI Database | |
Control variables’ vector () | ||
Log of orientation j’s GDP at time t. | World Bank WDI | |
Log of China’s GDP at time t. | World Bank WDI | |
Following Kellenberg (2010) and Sun (2019), we used China’s trade surplus relative to country j at time t for the “reverse-haulage” logistics effect. | CEPII-BACI Database | |
Log of patents per million capita in country j at time t as a proxy of technology level. | WIPO IP Database | |
Effective tariff China collected for products k from country j at time t. | WITS Database | |
Dummy variable equals 1 if China has a free trade agreement with country j. | WTO Database | |
Dummy variable equals 1 if China has a common border with country j. | CEPII-Gravity Database | |
Dummy variable equals 1 if China has the same official language as country j. | CEPII-Gravity Database | |
Environmental laws variable () | ||
Dummy variable equals 1 after 2011 presents the endorsement of “Measures on the Administration of Import of Solid Waste.” | ||
Dummy variable equals 1 after 2017 presents the endorsement of “Measures on the Administration of Import of Solid Waste.” |
Name | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|
13,440 | 6.62 | 2.92 | 0.00 | 11.81 | |
13,440 | 6.90 | 3.16 | −6.91 | 12.26 | |
13,440 | 1.18 | 0.39 | 0.35 | 2.58 | |
13,440 | 1.59 | 0.78 | −0.61 | 3.02 | |
13,440 | 19.18 | 0.94 | 17.80 | 20.33 | |
13,440 | 18.53 | 0.94 | 17.10 | 19.68 | |
13,440 | 27.79 | 1.05 | 25.87 | 30.63 | |
13,440 | 29.72 | 0.63 | 28.68 | 30.67 | |
13,384 | 0.09 | 0.64 | −2.08 | 0.98 | |
13,440 | 5.80 | 1.61 | 0.84 | 9.35 | |
12,869 | −1.00 | 1.89 | −2.30 | 3.56 | |
13,440 | 0.16 | 0.37 | 0.00 | 1.00 | |
13,440 | 0.05 | 0.22 | 0.00 | 1.00 | |
13,440 | 0.15 | 0.36 | 0.00 | 1.00 | |
13,440 | 0.33 | 0.47 | 0.00 | 1.00 | |
13,440 | 0.08 | 0.28 | 0.00 | 1.00 |
RE | RE | RE | RE | LSDV | LSDV | LSDV | LSDV | |
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
0.47 ** | 0.47 ** | 0.47 ** | 0.47 ** | |||||
(2.10) | (2.10) | (2.11) | (2.11) | |||||
−0.83 | −0.83 | −0.83 | −0.83 | |||||
(−0.93) | (−0.93) | (−1.02) | (−1.02) | |||||
7.85 *** | 7.39 *** | 1.31 *** | 0.73 | |||||
(6.25) | (5.70) | (14.49) | (1.34) | |||||
16.43 *** | 16.09 *** | 1.38 *** | 0.75 | |||||
(7.56) | (7.34) | (15.86) | (1.31) | |||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 |
R2 | 0.15 | 0.15 | 0.15 | 0.15 | 0.20 | 0.20 | 0.20 | 0.20 |
RE | RE | RE | RE | LSDV | LSDV | LSDV | LSDV | |
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
0.41 * | 0.41 * | 0.41 * | 0.41 * | |||||
(1.77) | (1.77) | (1.78) | (1.78) | |||||
−0.19 | −0.19 | −0.19 | −0.19 | |||||
(−1.21) | (−1.21) | (−1.19) | (−1.19) | |||||
0.77 *** | 0.77 *** | 0.77 *** | 0.77 *** | |||||
(3.04) | (3.04) | (2.84) | (2.84) | |||||
−0.62 | −0.62 | −0.62 | −0.62 | |||||
(−0.69) | (−0.69) | (−0.76) | (−0.76) | |||||
0.55 *** | 0.55 *** | 0.55 *** | 0.55 *** | |||||
(5.43) | (5.43) | (5.44) | (5.44) | |||||
−0.34 ** | −0.34 ** | −0.34 ** | −0.34 ** | |||||
(−2.00) | (−2.00) | (−1.98) | (−1.98) | |||||
21.79 *** | 21.60 *** | 1.40 *** | 1.01 ** | |||||
(8.79) | (8.71) | (15.85) | (2.36) | |||||
−0.02 | −0.06 | 0.00 | −0.05 *** | |||||
(−0.41) | (−1.38) | (0.11) | (−3.81) | |||||
−0.18 *** | −0.12 *** | −0.04 ** | 0.01 | |||||
(−7.68) | (−5.77) | (−2.40) | (0.51) | |||||
16.73 *** | 16.48 *** | 1.30 *** | 0.89 ** | |||||
(7.64) | (7.47) | (14.53) | (2.16) | |||||
−0.11 *** | −0.15 *** | 0.03 ** | −0.03 | |||||
(−7.18) | (−9.67) | (1.97) | (−1.56) | |||||
−0.08 *** | −0.02 | −0.05 *** | 0.01 | |||||
(−4.47) | (−1.36) | (−2.64) | (0.36) | |||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 | 12,169 |
R2 | 0.15 | 0.15 | 0.15 | 0.15 | 0.20 | 0.20 | 0.20 | 0.20 |
Developed Countries | Developing Countries | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
0.01 | 0.01 | −2.29 *** | −2.29 *** | |||||
(0.04) | (0.04) | (−3.16) | (−3.16) | |||||
−0.21 | −0.21 | −0.41 | −0.41 | |||||
(−1.10) | (−1.10) | (−1.21) | (−1.21) | |||||
1.06 *** | 1.06 *** | 1.78 | 1.78 | |||||
(3.54) | (3.54) | (1.50) | (1.50) | |||||
4.01 *** | 4.01 *** | −5.82 *** | −5.82 *** | |||||
(3.34) | (3.34) | (−2.89) | (−2.89) | |||||
0.78 *** | 0.78 *** | −0.15 | −0.15 | |||||
(4.98) | (4.98) | (−0.57) | (−0.57) | |||||
−0.95 *** | −0.95 *** | −0.08 | −0.08 | |||||
(−3.36) | (−3.36) | (−0.18) | (−0.18) | |||||
15.68 *** | 15.08 *** | 99.26 *** | 105.68 *** | |||||
(5.10) | (4.90) | (11.73) | (12.72) | |||||
0.11 ** | 0.06 | 0.81 *** | 0.96 *** | |||||
(2.18) | (1.20) | (9.33) | (11.69) | |||||
−0.12 *** | −0.01 | −0.63 *** | −0.55 *** | |||||
(−4.34) | (−0.24) | (−7.46) | (−11.19) | |||||
7.75 *** | 7.46 *** | 49.72 *** | 52.81 *** | |||||
(5.08) | (4.89) | (11.74) | (12.72) | |||||
−0.06 | −0.10 * | −0.24 *** | −0.15 *** | |||||
(−1.06) | (−1.85) | (−6.69) | (−4.70) | |||||
−0.06 ** | 0.06 ** | −0.23 *** | −0.12 *** | |||||
(−2.56) | (2.24) | (−3.39) | (−6.06) | |||||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 8318 | 8318 | 8318 | 8318 | 3632 | 3632 | 3632 | 3632 |
R2 | 0.14 | 0.14 | 0.14 | 0.14 | 0.16 | 0.16 | 0.16 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Alleyne, A.; Zhang, Z.; Mu, Y. Sustainability and Waste Imports in China: Pollution Haven or Resources Hunting. Sustainability 2021, 13, 932. https://doi.org/10.3390/su13020932
Li B, Alleyne A, Zhang Z, Mu Y. Sustainability and Waste Imports in China: Pollution Haven or Resources Hunting. Sustainability. 2021; 13(2):932. https://doi.org/10.3390/su13020932
Chicago/Turabian StyleLi, Bowen, Antonio Alleyne, Zhaoyong Zhang, and Yifei Mu. 2021. "Sustainability and Waste Imports in China: Pollution Haven or Resources Hunting" Sustainability 13, no. 2: 932. https://doi.org/10.3390/su13020932
APA StyleLi, B., Alleyne, A., Zhang, Z., & Mu, Y. (2021). Sustainability and Waste Imports in China: Pollution Haven or Resources Hunting. Sustainability, 13(2), 932. https://doi.org/10.3390/su13020932