Sustainable Application of ZIF-8 for Heavy-Metal Removal in Aqueous Solutions
Abstract
:1. Introduction
2. Metal-Organic Frameworks
Zeolitic Imidazolate Framework [ZIF-8]
3. ZIF-8 Synthesis Methods
4. ZIF-8 Heavy-Metal Removal Mechanism
5. Factors that Influence ZIF-8 Metal-Adsorption Mechanisms
6. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pena, M.B.; Bulka, C.M.; Swett, K.; Perreira, K.; Kansal, M.; Loop, M.; Daviglus, M.; Rodriguez, C. Occupational environmental exposures and cardiac structure and function: The echocardiographic study of latinos (echo-sol). J. Am. Coll. Cardiol. 2018, 71, A1666. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Z.; Wang, Z.; Feng, X.; Wang, Y.; Wu, A. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Trans. 2016, 45, 12653–12660. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Balaguru, S.; Arthanareeswaran, G.; Das, D.B. Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Sep. Sci. Technol. 2018, 54, 434–446. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- El-Said, M. Scientists Reveal New Method to Remove Heavy Metals from Water. Available online: https://dailynewsegypt.com/2018/03/14/scientists-reveal-new-method-remove-heavy-metals-water/ (accessed on 2 December 2020).
- United Nations. The Sustainable Development Goals Report 2019. Available online: https://undocs.org/E/2019/68 (accessed on 2 December 2020).
- Sun, D.T.; Peng, L.; Reeder, W.S.; Moosavi, S.M.; Tiana, D.; Britt, D.K.; Oveisi, E.; Queen, W.L. Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite. ACS Central Sci. 2018, 4, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Ping, Q.; Cohen, B.; Dosoretz, C.; He, Z. Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells. Desalination 2013, 325, 48–55. [Google Scholar] [CrossRef]
- Dias, E.M.; Petit, C. Towards the use of metal–organic frameworks for water reuse: A review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J. Mater. Chem. A 2015, 3, 22484–22506. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Mu, C.; Yan, B.; Qin, X.; Shen, C.; Xue, H.; Panga, H. Nanoparticle/MOF composites: Preparations and applications. Mater. Horizons 2017, 4, 557–569. [Google Scholar] [CrossRef]
- Milburn, K. Synthesis and Characterization of ZIF-8 and ZIF-8/Polymer Composites. Available online: https://livrepository.liverpool.ac.uk/2006519/1/MilburnKat_Oct2014_2003880.pdf (accessed on 2 December 2020).
- Paseta, L.; Antorán, D.; Coronas, J.; Téllez, C. 110th Anniversary: Polyamide/Metal–Organic Framework Bilayered Thin Film Composite Membranes for the Removal of Pharmaceutical Compounds from Water. Ind. Eng. Chem. Res. 2019, 58, 4222–4230. [Google Scholar] [CrossRef] [Green Version]
- Echaide-Górriz, C.; Sorribas, S.; Téllez, C.; Coronas, J. MOF nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes. RSC Adv. 2016, 6, 90417–90426. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, N.; Sun, X.; Sun, X. Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells. Catalysts 2016, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, H.; Yuan, X.-Z.; Zhang, J.; Chew, J.W. Metal-organic framework membranes for wastewater treatment and water regeneration. Co-ord. Chem. Rev. 2020, 404, 213116. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Liu, D.; Zhang, J. From Zeolitic Imidazolate Framework-8 to Metal-Organic Frameworks (MOFs): Representative Substance for the General Study of Pioneering MOF Applications. Energy Environ. Mater. 2018, 1, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Jang, E.; Kim, E.; Kim, H.; Lee, T.; Yeom, H.-J.; Kim, Y.-W.; Choi, J. Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability. J. Membr. Sci. 2017, 540, 430–439. [Google Scholar] [CrossRef]
- Malekmohammadi, M.; Fatemi, S.; Razavian, M.; Nouralishahi, A. A comparative study on ZIF-8 synthesis in aqueous and methanolic solutions: Effect of temperature and ligand content. Solid State Sci. 2019, 91, 108–112. [Google Scholar] [CrossRef]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O’Keeffe, M.; Yaghi, O.M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts Chem. Res. 2010, 43, 58–67. [Google Scholar] [CrossRef]
- Cravillon, J.; Münzer, S.; Lohmeier, S.-J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater. 2009, 21, 1410–1412. [Google Scholar] [CrossRef]
- Nordin, N.A.H.M.; Ismail, A.; Mustafa, A.; Goh, P.S.; Rana, D.; Matsuura, T. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Adv. 2014, 4, 33292–33300. [Google Scholar] [CrossRef]
- Abdi, J.; Abedini, H. MOF-based polymeric nanocomposite beads as an efficient adsorbent for wastewater treatment in batch and continuous systems: Modelling and experiment. Chem. Eng. J. 2020, 400, 125862. [Google Scholar] [CrossRef]
- Tatarko, J.L., Jr. ThinkIR: The University of Louisville ’ s Institutional Repository The production, properties and applications of the zinc. Electron. theses Diss. 2015, 5, 168. [Google Scholar]
- Lai, L.S.; Yeong, Y.F.; Lau, K.K.; Shariff, A.M. Effect of Synthesis Parameters on the Formation of ZIF-8 Under Microwave-assisted Solvothermal. Procedia Eng. 2016, 148, 35–42. [Google Scholar] [CrossRef]
- Wu, Y.-N.; Zhou, M.; Zhang, B.; Wu, B.; Li, J.; Qiao, J.; Guan, X.; Li, F. Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale 2014, 6, 1105–1112. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Duan, Q.; Alsaedi, A.; Hayat, T.; Chen, C. Decoration of ZIF-8 on polypyrrole nanotubes for highly efficient and selective capture of U(VI). J. Clean. Prod. 2018, 204, 896–905. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, Y.; Liu, W.; Zhanga, L. Removal of Heavy Metal Ions from Aqueous Solutions by Adsorption onto ZIF-8 Nanocrystals. Chem. Lett. 2015, 44, 758–760. [Google Scholar] [CrossRef]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Co-ord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, X.; Guo, L.; Lan, J.; Zhang, L.; Cao, D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 2018, 194, 462–469. [Google Scholar] [CrossRef]
- Shen, B.; Wang, B.; Zhu, L.; Jiang, L. Properties of cobalt-and nickel-doped zif-8 framework materials and their application in heavy-metal removal from wastewater. Nanomaterials 2020, 10, 1636. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Liu, B.; Zhang, G.; Liu, R.; Zhang, X. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 465, 67–76. [Google Scholar] [CrossRef]
- Liu, B.; Jian, M.; Wang, H.; Zhang, G.; Liu, R.; Zhang, X.; Qu, J. Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 164–172. [Google Scholar] [CrossRef]
- Begum, J.; Hussain, Z.; Noor, T. Adsorption and kinetic study of Cr(VI) on ZIF-8 based composites. Mater. Res. Express 2020, 7, 015083. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.U.; Jaafar, J.; Jilani, A.; Ismail, A.; Hashim, H.; Jaafar, J.; Rahman, M.A.; Rehman, G.U. Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption. Arab. J. Chem. 2018, 11, 1072–1083. [Google Scholar] [CrossRef]
- Yahya, A.; Shomar, B.H. Potential use of treated wastewater and sludge in the agricultural sector of the Gaza Strip. Clean Technol. Environ. Policy 2004, 6, 128–137. [Google Scholar] [CrossRef]
- Abbasi, Z.; Cseri, L.; Zhang, X.; Ladewig, B.P.; Wang, H. Metal–Organic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 163–194. [Google Scholar] [CrossRef]
- Wanga, X.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wanga, X. Metal–organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Manousi, N.; Giannakoudakis, D.A.; Rosenberg, E.; Zachariadis, G.A. Extraction of Metal Ions with Metal–Organic Frameworks. Molecules 2019, 24, 4605. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Li, N.; Owens, G.; Chena, Z. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chem. Eng. J. 2019, 362, 628–637. [Google Scholar] [CrossRef]
- Jung, B.K.; Jun, J.W.; Hasan, Z.; Jhung, S.H. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem. Eng. J. 2015, 267, 9–15. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Lin, H.; Gupta, S.; Wang, C.; Tao, Z.; Fu, H.; Wang, T.; Zheng, J.; Wu, G.; et al. Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy 2016, 25, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Niknam Shahrak, M.; Ghahramaninezhad, M.; Eydifarash, M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Environ. Sci. Pollut. Res. 2017, 24, 9624–9634. [Google Scholar] [CrossRef]
Metal | Surface Area of ZIF-8 [BET] m2/g | Adsorption Capacity (mg g−1) | Metal Ion Source | Adsorption Equilibrium Time (Mins) | Optimal pH | Reference |
---|---|---|---|---|---|---|
Copper (Cu2+) | 1340 | 800 | Cu(NO3)2 | 30 | 4 | [2] |
1065 | 224.3 | CuCl2·2H2O | 20 | [32] | ||
1370 | 454.72 | Cu(NO3)·3H2O | 120 | 5.2 ± 0.2 | [34] | |
1072 | 1191.67 | Cu(CH3COO)2 | -- | 6 | [35] | |
Arsenic [As (III)] | 1063.5 | 49.49 | NaAsO2 | 780 | 7 | [36] |
151.34 | NaAsO2 | [37] | ||||
Arsenate [As(V)] | 1063.5 | 60.03 | Na3AsO4·12H2O | 420 | 7 | [36] |
1167 | 90.92 | Na2HAsO4·7H2O | -- | 7 | [30] | |
197.26 | Na3AsO4·12H2O | [37] | ||||
Nickle (Ni2+) | 1065 | 52.8 | NiCl2·6H2O | 20 | -- | [32] |
Cobalt (Co2+) | 1065 | 33 | CoCl2·6H2O | 20 | -- | [32] |
Cadmium (Cd2+) | 1065 | 77.56 | CdCl2 | 20 | -- | [32] |
Lead (Pb2+) | 1370 | 1119.80 | Pb(NO3)2 | 120 | 5.1 ± 0.4 | [34] |
Chromium (VI) | 719 | 2.34 | K2Cr2O7 | 80 | 7 | [38] |
1072 | 43 | K2Cr2O7 | -- | 6 | [35] | |
Uranium | 1300 | 534 | UO2(NO3)2·6H2O | 90 | 3.5 | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Miwornunyuie, N.; Chen, L.; Jingyu, H.; Amaniampong, P.S.; Ato Koomson, D.; Ewusi-Mensah, D.; Xue, W.; Li, G.; Lu, H. Sustainable Application of ZIF-8 for Heavy-Metal Removal in Aqueous Solutions. Sustainability 2021, 13, 984. https://doi.org/10.3390/su13020984
Li K, Miwornunyuie N, Chen L, Jingyu H, Amaniampong PS, Ato Koomson D, Ewusi-Mensah D, Xue W, Li G, Lu H. Sustainable Application of ZIF-8 for Heavy-Metal Removal in Aqueous Solutions. Sustainability. 2021; 13(2):984. https://doi.org/10.3390/su13020984
Chicago/Turabian StyleLi, Ke, Nicholas Miwornunyuie, Lei Chen, Huang Jingyu, Paulette Serwaa Amaniampong, Desmond Ato Koomson, David Ewusi-Mensah, Wencong Xue, Guang Li, and Hai Lu. 2021. "Sustainable Application of ZIF-8 for Heavy-Metal Removal in Aqueous Solutions" Sustainability 13, no. 2: 984. https://doi.org/10.3390/su13020984
APA StyleLi, K., Miwornunyuie, N., Chen, L., Jingyu, H., Amaniampong, P. S., Ato Koomson, D., Ewusi-Mensah, D., Xue, W., Li, G., & Lu, H. (2021). Sustainable Application of ZIF-8 for Heavy-Metal Removal in Aqueous Solutions. Sustainability, 13(2), 984. https://doi.org/10.3390/su13020984