The Influence of Sedimentation Ponds of the Former Soda “Solvay” Plant in Krakow on the Chemistry of the Wilga River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohan, D.; Chander, S. Removal and recovery of metal ions from acid mine drainage using lignite—A low cost sorbent. J. Hazard. Mater. 2006, 137, 1545–1553. [Google Scholar] [CrossRef]
- Valente, T.; Grande, J.; De La Torre, M.; Santisteban, M.; Cerón, J. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Appl. Geochem. 2013, 39, 11–25. [Google Scholar] [CrossRef]
- Likus-Cieślik, J.; Smoliński, A.; Pietrzykowski, M.; Bak, A. Sulphur contamination impact on seasonal and surface water chemistry on a reforested area of a former sulphur mine. Land Degrad. Dev. 2019, 30, 212–225. [Google Scholar] [CrossRef]
- Katzur, J.; Haubold-Rosar, M. Amelioration and reforestation of sulfurous mine soils in Lusatia (Eastern Germany). Water Air Soil Pollut. 1996, 91, 17–32. [Google Scholar] [CrossRef]
- Likus-Cieślik, J.; Pietrzykowski, M.; Chodak, M. Chemistry of Sulfur-Contaminated Soil Substrate from a Former Frasch Extraction Method Sulfur Mine Leachate with Various Forms of Litter in a Controlled Experiment. Water Air Soil Pollut. 2018, 229, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doumas, P.; Munoz, M.; Banni, M.; Becerra, S.; Bruneel, O.; Casiot, C.; Cleyet-Marel, J.-C.; Gardon, J.; Noack, Y.; Sappin-Didier, V. Polymetallic pollution from abandoned mines in Mediterranean regions: A multidisciplinary approach to environmental risks. Reg. Environ. Chang. 2018, 18, 677–692. [Google Scholar] [CrossRef]
- Blodau, C. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci. Total. Environ. 2006, 369, 307–332. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, C.R.; Olias, M.; Vazquez-Suñé, E.; Ayora, C.; Nieto, J.M. Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain). Sci. Total. Environ. 2012, 416, 418–428. [Google Scholar] [CrossRef]
- Dold, B. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals 2014, 4, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Jarvie, H.P.; Oguchi, T.; Neal, C. Exploring the linkages between river water chemistry and watershed characteristics using GIS-based catchment and locality analyses. Reg. Environ. Chang. 2002, 3, 36–50. [Google Scholar] [CrossRef]
- Gliniak, M.; Pawul, M.; Sobczyk, W. Wpływ transportu i składowisk poprzemysłowych byłych Krakowskich Zakładów Sodowych “Solvay” na stan i jakość wody rzeki Wilga w Krakowie. Logistyka 2014, 4, 4295–4302. (In Polish) [Google Scholar]
- Rodzkin, A.; Volk, T.A. Using shrub willow for biological reclamation of areas with raised soil salinity. In Proceedings of the 12th Eco-Conference® on Environmental Protection of Urban and Suburban Settlements, Novi Sad, Serbia, 27–29 September 2017. [Google Scholar]
- Sprague, L.A. Drought effects on water quality in the South Platte River Basin, Colorado. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.; Van Vliet, M.T.H. Drought impacts on river salinity in the southern US: Implications for water scarcity. Sci. Total. Environ. 2018, 644, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Kitheka, J.U. Salinity and salt fluxes in a polluted tropical river: The case study of the Athi river in Kenya. J. Hydrol. Reg. Stud. 2019, 24, 100614. [Google Scholar] [CrossRef]
- Steinhauser, G. Cleaner production in the Solvay Process: General strategies and recent developments. J. Clean. Prod. 2008, 16, 833–841. [Google Scholar] [CrossRef]
- Womble, R.N.; Driscoll, C.T.; Effler, S.W. Calcium carbonate deposition in Ca2+ polluted Onondaga Lake, New York, USA. Water Res. 1996, 30, 2139–2147. [Google Scholar] [CrossRef]
- Sroczyński, W. Perspektywy zagospodarowania tzw. “Białych Mórz” na terenach po byłych Krakowskich Zakładach Sodowych “Solvay”. Pr. Kom. Kraj. Kult. 2008, 10, 423–430. (In Polish) [Google Scholar]
- Baścik, M. Wody Powierzchniowe (Surface Water). In Opracowanie Ekofizjograficzne Miasta Krakowa (An Ecophysio-Graphic Study of the City of Krakow); Degórska, B., Ed.; Urząd Miasta Krakowa: Krakow, Poland, 2010; pp. 40–47. [Google Scholar]
- RME, Regulation of the Ministry of Maritime Economy and Inland Navigation of 11 October 2019—Regulation Establishing Way of Classifying the State of Uniform Parts of Surface Waters and Environmental Quality Standards for Priority Substances, (Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 Października 2019 r. w Sprawie Klasyfikacji stanu Ekologicznego, Potencjału Ekologicznego i Dtanu Chemicznego oraz Sposobu Klasyfikacji Stanu Jednolitych Części wód Powierzchniowych, a Także Środowiskowych norm Jakości dla Substancji Priorytetowych (Dz. U. poz. 2149)). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002149 (accessed on 1 December 2020). (In Polish)
- Chief Inspectorate for Environmental Protection. Assessment of the State of Water Bodies of Rivers and Dam Reservoirs in 2017–2018. Available online: https://www.gios.gov.pl/pl/stan-srodowiska/monitoring-wod (accessed on 1 December 2020). (In Polish)
- EQS Environmental Quality Standards Applicable to Surface Water. Directive 2008/105/EC Setting Environmental Quality Standards in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al28180 (accessed on 15 June 2020).
- EPA Federal Regulation for Water Quality Standards (40 CFR 131). Available online: https://www.epa.gov/wqs-tech/federal-water-quality-standards-requirements (accessed on 15 June 2020).
- TuTiempo.net. Available online: https://en.tutiempo.net/climate/poland.html (accessed on 1 December 2020).
- OP On Lake Partners. Cleaning Up Onondaga Lake. Available online: http://www.onlakepartners.org (accessed on 15 June 2020).
- Rowell, H.C. Paleolimnology of Onondaga Lake: The History of Anthropogenic Impacts on Water Quality. Lake Reserv. Manag. 1996, 12, 35–45. [Google Scholar] [CrossRef]
- Edser, C. Solvay accelerates its development in India with the acquisition of Sunshield Chemicals. Focus Surfactants 2012, 2012, 2–3. [Google Scholar] [CrossRef]
- Subyani, A. Hydrochemical identification and salinity problem of ground-water in Wadi Yalamlam basin, Western Saudi Arabia. J. Arid. Environ. 2005, 60, 53–66. [Google Scholar] [CrossRef]
- Rakib, M.; Sasaki, J.; Matsuda, H.; Quraishi, S.B.; Mahmud, J.; Doza, B.-; Ullah, A.K.M.A.; Fatema, K.J.; Newaz, A.; Bhuiyan, M.A. Groundwater salinization and associated co-contamination risk increase severe drinking water vulnerabilities in the southwestern coast of Bangladesh. Chemosphere 2020, 246, 125646. [Google Scholar] [CrossRef] [PubMed]
- NDPI Sodium Compounds. NSW Department of Primary Industries. Available online: https://www.resourcesandgeoscience.nsw.gov.au/__data/assets/pdf_file/0006/238209/Sodium.pdf (accessed on 15 June 2020).
Sampling Point No | Coordinates | Short Description of Localization |
---|---|---|
1 | 50.001281 N, 19.935144 E | Before entering the sedimentation ponds area |
2 | 50.004980 N, 19.935918 E | Between the sedimentation ponds |
3 | 50.009018 N, 19.936852 E | |
4 | 50.010905 N, 19.937221 E | |
5 | 50.013738 N, 19.941125 E | |
6 | 50.015905 N, 19.939702 E | |
7 | 50.019201 N, 19.933157 E | |
8 | 50.024140 N, 19.927871 E | After flowing through the premises of former soda factories |
Sampling Point | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | RME Standards (MAC-EQS) 1 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Very Good Quality Class | Good Quality Class | ||||||||||
pH | Mean | 7.5 | 7.6 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 7.4 | 7.4–8.0 | 6.5–8.0 |
SD | 0.29 | 0.24 | 0.25 | 0.27 | 0.35 | 0.34 | 0.25 | 0.42 | |||
EC [µS cm−1] | Mean | 845↑ | 960 | 1399 | 1434 | 2123 | 2211 | 2811 | 2888 | 542 | 677 |
SD | 259 | 322 | 766 | 746 | 1371 | 1340 | 1732 | 1658 | |||
Na+ [mg L−1] | Mean | 57.98 | 70.91 | 110.50 | 113.32 | 178.63 | 186.23 | 254.95 | 271.90 | n.d. | n.d. |
SD | 19.45 | 23.50 | 59.12 | 54.59 | 117.52 | 111.25 | 162.76 | 162.45 | |||
K+ [mg L−1] | Mean | 6.00 | 5.96 | 6.24 | 6.27 | 7.02 | 7.23 | 8.04 | 7.75 | n.d. | n.d. |
SD | 2.54 | 2.17 | 2.60 | 2.60 | 3.45 | 3.31 | 3.91 | 3.14 | |||
Cl− [mg L−1] | Mean | 105.62 | 160.01 | 310.09 | 318.67 | 528.36 | 583.44 | 758.55 | 799.98 | 29.9 | 44.8 |
SD | 42.73 | 58.16 | 222.50 | 194.14 | 397.98 | 428.17 | 527.48 | 506.34 | |||
NH4+ [mg L−1] | Mean | 0.06 | 0.05 | 0.07 | 0.05 | 0.12 | 0.12 | 0.30 | 0.15 | 0.377 | 1.205 |
SD | 0.02 | 0.03 | 0.07 | 0.03 | 0.098 | 0.13 | 0.44 | 0.12 | |||
NO3− [mg L−1] | Mean | 10.54 | 11.08 | 12.51 | 12.80 | 13.62 | 13.32 | 11.64 | 7.33 | 8.86 | 22 |
SD | 4.74 | 4.74 | 6.75 | 5.05 | 4.04 | 5.29 | 5.14 | 4.92 | |||
SO42− [mg L−1] | Mean | 95.96 | 92.61 | 96.86 | 96.13 | 100.17 | 105.20 | 113.70 | 116.44 | 49.5 | 79.8 |
SD | 24.74 | 23.43 | 26.76 | 27.17 | 31.13 | 33.72 | 24.66 | 25.35 | |||
Ca [mg L−1] | Mean | 88.3 | 105.5 | 148.5 | 155.3 | 215.6 | 224.1 | 263.4 | 269.0 | 80.1 | 89.5 |
SD | 25.2 | 33.0 | 76.0 | 73.9 | 131.1 | 119.2 | 134.9 | 121.6 | |||
Mg [mg L−1] | Mean | 10.39 | 10.44 | 10.43 | 10.60 | 10.77 | 11.09 | 11.32 | 11.78 | 6.6 | 12 |
SD | 2.60 | 2.66 | 2.83 | 3.11 | 3.39 | 2.99 | 2.32 | 2.35 | |||
IC [mg L−1] | Mean | 36.96 | 36.51 | 38.53 | 38.45 | 37.41 | 37.56 | 38.69 | 40.71 | n.d. | n.d. |
SD | 7.73 | 8.40 | 13.01 | 13.37 | 13.18 | 12.74 | 12.11 | 10.59 | |||
Zn [mg L−1] | Mean | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | n.d. | n.d. |
SD | 0.04 | 0.03 | 0.05 | 0.041 | 0.05 | 0.04 | 0.05 | 0.04 | |||
Al. [mg L−1] | Mean | 0.037 | 0.021 | 0.033 | 0.024 | 0.029 | 0.041 | 0.038 | 0.05 | 0.04 | 0.04 |
SD | 0.022 | 0.015 | 0.015 | 0.004 | 0.0 | 0.02 | 0.01 | 0.02 |
Season | pH | EC [µS cm−1] | Cl− [mg L−1] | HCO3− [mg L−1] | SO42− [mg L−1] | Na [mg L−1] | Ca [mg L−1] | IC [mg L−1] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
spring | 7.7 | a | 1134.63 | a | 234.51 | a | 140.94 | a | 89.01 | a | 91.9575 | a | 162.24 | a | 27.73 | a |
summer | 7.2 | b | 1252.13 | a | 317.34 | a | 152.37 | a | 74.40 | a | 109.16 | a | 123.43 | a | 29.97 | a |
autumn | 7.4 | c | 3288.63 | b | 871.40 | b | 250.33 | b | 250.33 | b | 279.75 | b | 309.41 | b | 49.25 | b |
winter | 7.8 | a | 1660.00 | a | 359.11 | a | 231.08 | b | 231.08 | b | 141.35 | a | 139.78 | a | 45.46 | b |
Sampling Point | Cl− [%mval] | HCO3− [%mval] | SO42− [%mval] | Na+ [%mval] | Ca2+ [%mval] | Total Mineralisation [mg L−1] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 1 | 35.57 | a | 37.78 | a | 24.92 | a | 25.74 | a | 43.65 | a | 601 | a |
SD | 5.85 | 5.08 | 4.48 | 6.20 | 6.38 | 131 | |||||||
Mean | 2 | 46.26 | b | 31.71 | a | 20.43 | ab | 27.70 | ab | 45.82 | a | 680 | a |
SD | 4.12 | 3.71 | 3.04 | 5.41 | 5.56 | 175 | |||||||
Mean | 3 | 58.66 | c | 24.16 | b | 15.78 | bc | 31.43 | abc | 47.33 | a | 931 | ab |
SD | 8.30 | 4.59 | 3.71 | 5.33 | 6.15 | 461 | |||||||
Mean | 4 | 60.61 | c | 23.08 | b | 14.99 | cd | 31.50 | abc | 48.19 | a | 948 | ab |
SD | 6.11 | 3.52 | 2.94 | 4.90 | 5.78 | 427 | |||||||
Mean | 5 | 70.53 | d | 16.86 | c | 11.64 | cde | 35.42 | bcd | 48.61 | a | 1283 | ab |
SD | 6.88 | 4.18 | 3.00 | 4.99 | 4.83 | 754 | |||||||
Mean | 6 | 72.33 | d | 15.61 | c | 11.20 | cde | 35.51 | bcd | 48.89 | a | 1360 | ab |
SD | 6.38 | 3.91 | 2.95 | 4.87 | 4.18 | 767 | |||||||
Mean | 7 | 76.05 | d | 13.24 | c | 10.13 | de | 38.94 | cd | 47.12 | a | 1659 | b |
SD | 7.29 | 4.33 | 3.47 | 5.33 | 3.90 | 917 | |||||||
Mean | 8 | 76.73 | d | 13.23 | c | 9.72 | e | 39.93 | d | 46.51 | a | 1735 | b |
SD | 6.99 | 4.14 | 3.16 | 5.68 | 4.46 | 871 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likus-Cieślik, J.; Pietrzykowski, M. The Influence of Sedimentation Ponds of the Former Soda “Solvay” Plant in Krakow on the Chemistry of the Wilga River. Sustainability 2021, 13, 993. https://doi.org/10.3390/su13020993
Likus-Cieślik J, Pietrzykowski M. The Influence of Sedimentation Ponds of the Former Soda “Solvay” Plant in Krakow on the Chemistry of the Wilga River. Sustainability. 2021; 13(2):993. https://doi.org/10.3390/su13020993
Chicago/Turabian StyleLikus-Cieślik, Justyna, and Marcin Pietrzykowski. 2021. "The Influence of Sedimentation Ponds of the Former Soda “Solvay” Plant in Krakow on the Chemistry of the Wilga River" Sustainability 13, no. 2: 993. https://doi.org/10.3390/su13020993
APA StyleLikus-Cieślik, J., & Pietrzykowski, M. (2021). The Influence of Sedimentation Ponds of the Former Soda “Solvay” Plant in Krakow on the Chemistry of the Wilga River. Sustainability, 13(2), 993. https://doi.org/10.3390/su13020993