Interoperable Permissioned-Blockchain with Sustainable Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smart Contract
2.2. Consensus
2.3. Hyperledger Fabric v2.0
2.3.1. Nodes
2.3.2. Transaction Flow
2.3.3. Ethereum
3. Proposed Methodology
4. Result and Analysis
- Hyperledger fabric has been designed to interact with Ethereum smart contract.
- Interaction is achieved through EVM Chaincode and fabric vm.
- Ethereum vm chaincode wraps the Hyperledger Fabric in a GO chaincode, together named Fabreum.
- The Ethereum chaincode acts as the smart contract runtime and stores the deployed contract on the ledger.
- Combining both Fabric and Ethereum will act as twins so that features can be incorporated.
- Obtained 100 percent success rate in 500 transactions with better latency and throughput.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System, Cryptography Mailing List. 2009. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 14 August 2018).
- Swathi, P.; Modi, C.; Patel, D. Preventing Sybil Attack in Blockchain using Distributed Behavior Monitoring of Miners. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Vernadat, F.B. Interoperable enterprise systems: Architectures and methods. IFAC Proc. Vol. 2006, 39, 13–20. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Esposito, E.; Oropallo, E. Surfing blockchain wave, or drowning? Shaping the future of distributed ledgers and decentralized technologies. Technol. Forecast. Soc. Chang. 2021, 165, 120463. [Google Scholar] [CrossRef]
- Karpenko, L.; Akhlamov, A.; Onyshko, S.; Chunytska, I.; Starodub, D. Blockchain as an Innovative Technology in the Strategic Management of Companies. Acad. Strateg. Manag. J. 2019, 18, 1–6. [Google Scholar]
- Jolma, A.; Rizzoli, A.-E. A Review of Interoperability Techniques for Models, Data, and Knowledge in Environmental Software. 2003. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.553.1526&rep=rep1&type=pdf (accessed on 21 October 2018).
- Mockapetris, P.; Dunlap, K.J. Development of the domain name system. In Proceedings of the Symposium Proceedings on Communications Architectures and Protocols, SIGCOMM, Stanford, CA, USA, 16–18 August 1988; Association for Computing Machinery: New York, NY, USA, 1988; pp. 123–133. [Google Scholar] [CrossRef] [Green Version]
- Besancon, L.; Ferreira da Silva, C.; Ghodous, P. Towards Blockchain Interoperability: Improving Video Games Data Exchange. 2019, pp. 81–85. Available online: https://ieeexplore.ieee.org/document/8751347 (accessed on 5 June 2020).
- Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform, White Paper. 2015. Available online: https://people.cs.georgetown.edu/~clay/classes/fall2017/835/papers/Etherium.pdf (accessed on 28 December 2019).
- Centobelli, P.; Cerchione, R.; Vecchio, P.D.; Oropallo, E.; Secundo, G. Blockchain Technology for Bridging Trust, Traceability and Transparency in Circular Supply Chain, Information and Management. 2021. Available online: https://www.sciencedirect.com/science/article/pii/S0378720621000823 (accessed on 27 August 2021).
- Szabo, N. Smart Contracts: Building Blocks for Digital Markets. 2018. Available online: https://www.researchgate.net/publication/340376424_Smart_Contracts_Building_Blocks_for_Digital_Transformation (accessed on 18 January 2020).
- Ongaro, D.; Ousterhout, J. In search of an understandable consensus algorithm. In Proceedings of the USENIX Annual Technical Conference, Philadelphia, PA, USA, 19–20 June 2014. [Google Scholar]
- Sousa, J.; Bessani, A.; Vukolic, M. A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg, 25–28 June 2018; pp. 51–58. [Google Scholar]
- IBM Corporation. Hyperledger-Fabricdocs Documentation. Technical Report. 2019. Available online: https://hyperledger-fabric.readthedocs.io/_/downloads/en/release-1.4/pdf/ (accessed on 19 September 2020).
- Androulaki, E. Barger, Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. 2018. Available online: https://arxiv.org/pdf/1801.10228.pdf (accessed on 20 November 2020).
- Krsti, M.; Krsti, L. Hyperledger frameworks with a special focus on hyperledger fabric. Vojnoteh. Glas. 2020, 68, 639–663. [Google Scholar] [CrossRef]
- Sompolinsky, Y.; Zohar, A. Secure High-Rate Transaction Processing in Bitcoin. 2015. Available online: https://link.springer.com/chapter/10.1007/978-3-662-47854-7_32 (accessed on 2 March 2019).
- Belchior, R.; Vasconcelos, A.; Guerreiro, S.; Correia, M. A Survey on Blockchain Interoperability: Past, Present, and Future Trends. 2020. Available online: https://arxiv.org/pdf/2005.14282.pdf (accessed on 20 July 2021).
- Kan, L.; Wei, Y.; Muhammad, A.H.; Siyuan, W.; Linchao, G.; Kai, H. A multiple blockchains architecture on inter-blockchain communication. In Proceedings of the 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 139–145. [Google Scholar]
- Zhu, Q.; Loke, S.W.; Trujillo-Rasua, R.; Jiang, F.; Xiang, Y. Applications of distributed ledger technologies to the internet of things: A survey. ACM Comput. Surv. 2019, 52. [Google Scholar] [CrossRef] [Green Version]
- Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.-L. Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17, Chicago, IL, USA, 14–19 May 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1085–1100. [Google Scholar] [CrossRef]
- Vo, D.K.H.T.; Wang, Z. Internet of blockchains: Techniques and challenges ahead. In Proceedings of the IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1574–1581. [Google Scholar]
- Zheng, Z.; Xie, S.; Dai, H.-N.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends. In Proceedings of the IEEE International Conference on Services Economics (SE), Honolulu, HI, USA, 25–30 June 2017. [Google Scholar] [CrossRef]
- Hardjono, T.; Lipton, A.; Pentland, A. Toward an interoperability architecture for blockchain autonomous systems. IEEE Trans. Eng. Manag. 2020, 67, 1298–1309. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, H.; Zheng, Z. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455. [Google Scholar] [CrossRef]
- Abebe, E.; Behl, D.; Govindarajan, C.; Hu, Y.; Karunamoorthy, D.; Novotny, P.; Pandit, V.; Ramakrishna, V.; Vecchiola, C. Enabling enterprise blockchain interoperability with trusted data transfer (industry track). In Proceedings of the 20th International Middleware Conference, Davis, CA, USA, 9–13 December 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 29–35. [Google Scholar]
- Barber, S.; Boyen, X.; Shi, E.; Uzun, E. Bitter to Better—How to MakeBitcoin a Better Currency. In International Conference on Financial Cryptography and Data Security; Technical Report; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Qasse, I.A.; Talib, M.; Nasir, Q. Inter blockchain communication: Asurvey. In Proceedings of the ArabWIC 2019, Rabat, Morocco, 7–9 March 2019. [Google Scholar]
- Siris, V.A.; Nik, P.; Voulgaris, S.; Fotiou, N.; Lagutin, D.; Polyzos, G.C. Interledger approaches. IEEE Access 2019, 7, 89948–89966. [Google Scholar] [CrossRef]
- Kannengiesser, N.; Pster, M.; Greulich, M.; Lins, S.; Sunyaev, A. Bridges between Islands: Cross-Chain Technology for Distributed Ledger Technology. 2020. Available online: https://www.researchgate.net/publication/335867834_Bridges_Between_Islands_Cross-Chain_Technology_for_Distributed_Ledger_Technology (accessed on 7 August 2021).
- Johnson, S.; Robinson, P.; Brainard, J. Sidechains and Interoperability. 2019. Available online: https://arxiv.org/pdf/1903.04077.pdf (accessed on 20 August 2021).
- Koens, T.; Poll, E. Assessing interoperability solutions for distributed ledgers. Pervasive Mob. Comput. 2019, 59, 101079. [Google Scholar] [CrossRef]
Src | Destn | Succ | Fail | Send Rate | Max Latency | Min Latency | Throughput |
---|---|---|---|---|---|---|---|
Fabric | Ethereum | 500 | 0 | 25.2 tps | 18.39 s | 0.78 s | 13.2 tps |
Fabric | Ethereum | 500 | 0 | 25.3 tps | 18.56 s | 0.78 s | 13.4 tps |
Ethereum | Fabric | 500 | 0 | 25.9 tps | 18.43 s | 0.79 s | 13.2 tps |
Fabric | Ethereum | 500 | 0 | 25.4 tps | 18.24 s | 0.78 s | 13.2 tps |
Ethereum | Fabric | 500 | 0 | 25.6 tps | 18.37 s | 0.77 s | 13.2 tps |
Ethereum | Fabric | 500 | 0 | 25.7 tps | 18.46 s | 0.78 s | 13.5 tps |
Fabric | Ethereum | 500 | 0 | 25.4 tps | 18.95 s | 0.79 s | 13.1 tps |
Ethereum | Ethereum | 500 | 0 | 25.6 tps | 18.21 s | 0.78 s | 13.3 tps |
Ethereum | Ethereum | 500 | 0 | 25.8 tps | 18.32 s | 0.79 s | 13.1 tps |
Fabric | Fabric | 500 | 0 | 25.4 tps | 18.54 s | 0.77 s | 13.4 tps |
Ethereum | Fabric | 500 | 0 | 25.7 tps | 18.47 s | 0.78 s | 13.3 tps |
Fabric | Fabric | 500 | 0 | 25.7 tps | 18.56 s | 0.78 s | 13.2 tps |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punathumkandi, S.; Sundaram, V.M.; Panneer, P. Interoperable Permissioned-Blockchain with Sustainable Performance. Sustainability 2021, 13, 11132. https://doi.org/10.3390/su132011132
Punathumkandi S, Sundaram VM, Panneer P. Interoperable Permissioned-Blockchain with Sustainable Performance. Sustainability. 2021; 13(20):11132. https://doi.org/10.3390/su132011132
Chicago/Turabian StylePunathumkandi, Swathi, Venkatesan Meenakshi Sundaram, and Prabhavathy Panneer. 2021. "Interoperable Permissioned-Blockchain with Sustainable Performance" Sustainability 13, no. 20: 11132. https://doi.org/10.3390/su132011132
APA StylePunathumkandi, S., Sundaram, V. M., & Panneer, P. (2021). Interoperable Permissioned-Blockchain with Sustainable Performance. Sustainability, 13(20), 11132. https://doi.org/10.3390/su132011132