Evolution of the Global Scientific Research on the Environmental Impact of Food Production from 1970 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis of Scientific Literature
- A simple data collection to show quantitative and qualitative bibliometric analysis in tables and graphs reporting the most publishing countries, affiliations, authors, journals, and founding sponsors, as well as the citation number-per-paper index (CPPI).
- Abstract textual analysis to highlight the most studied food and beverage items and used standard methods by resorting to a custom-made Python 3 script. This operation analyzed all the words present in the Abstracts extracted from the database, and gave rise to a txt file to obtain the frequency (occurrence) of the words listed in both categories C2 and C1, as well as other terms related to the main environmental impact categories, production phases, and packaging materials used (Table S5) to give a broader overview of the subject studied.
- Map analysis by using the bibliometric mapping and clustering approach. Thus, world publication maps were plotted using color intensities proportional to the number of publications by means of the VOSviewer v. 1.6.5.0 software (freely available at www.vosviewer.com, accessed on 18 October 2021). This software was specifically developed for creating, visualizing, and exploring scientific bibliometric maps [22,23]. In such a visual map, strongly or weakly related terms are contiguous or distant from each other, respectively. Only terms occurring at least 50 times were extracted from the publications retrieved. The next step was to identify clusters of related terms by means of a software applying the clustering technique [19]. The assignment of terms to the same cluster depended on their co-occurrences in the title and abstract of the publications retrieved, terms often co-occurring were strongly related to each other, and were automatically assigned to the same cluster. On the contrary, terms with a low co-occurrence, or no-occurrences at all, were assigned to different clusters. A cluster made up of terms characterized by the same color represented a research theme in which one or more research topics were identified. A thesaurus file was also used to ensure consistency for different term spelling, or synonyms. For instance, the expression wheat productivity or wheat production was termed wheat yield, while terms considered not relevant to the search (i.e., names of cities or countries) were omitted.
2.2. Time Horizon
3. Results and Discussion
3.1. Bibliometric Analysis
3.1.1. Publication Trends from 1970 to 2020
3.1.2. Affiliations
3.1.3. Authors
3.1.4. Journals
3.1.5. Founding Sponsors
3.2. Textual Analysis
3.2.1. The Most Cited Food-Related Terms
3.2.2. The Most Cited Environmental Impact Categories and Standard Methods
3.3. Map Analysis
3.4. Firstly Indexed and Mostly Cited Papers
4. Discussion of Results
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Sixth Assessment Report (AR6): Climate Change 2022. 2017. Available online: https://www.ipcc.ch/site/assets/uploads/2018/11/AR6_WGII_outlines_P46.pdf (accessed on 2 October 2021).
- Miedzinski, M.; Allinson, R.; Arnold, E.; Harper, J.; Doranova, A.; Giljum, S.; Griniece, E.; Kubeczko, K.; Mahieu, B.; Markandya, A. Assessing Environmental Impacts of Research and Innovation Policy, Study for the European Commission; Directorate-General for Research and Innovation: Brussels, Belguim, 2013. [Google Scholar] [CrossRef]
- EEA (European Environment Agency). The European Environment—State and Outlook 2010. Available online: https://www.eea.europa.eu/soer/2010/europe/land-use/download (accessed on 3 October 2021).
- Rogissart, L.; Foucherot, C.; Bellassen, V. Estimating Greenhouse Gas Emissions from Food Consumption: Methods and Results; I4CE (Institute for Climate Economics): Paris, France, 2019; Available online: https://www.i4ce.org/wp-core/wp-content/uploads/2019/03/0318-I4CE2984-EmissionsGES-et-conso-alimentaire-Note-20p-VA_V2.pdf (accessed on 1 October 2021).
- Cowell, S.J.; Clift, R. A methodology for assessing soil quantity and quality in life cycle assessment. J. Clean. Prod. 2000, 8, 321–331. [Google Scholar] [CrossRef]
- BIER. Research on the Carbon Footprint of Beer. Beverage Industry Environmental Roundtable. 2012. Available online: https://www.bieroundtable.com/publication/beer/ (accessed on 30 September 2021).
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A. Modeling the agri-food industry with life cycle assessment. In Life Cycle Assessment Handbook; Curran, M.A., Ed.; Wiley: Hoboken, NY, USA, 2012; pp. 159–184. [Google Scholar]
- Di Matteo, G.; Nardi, P.; Grego, S.; Guidi, C. Bibliometric analysis of climate change vulnerability assessment research. Environ. Syst. Decis. 2018, 38, 508–516. [Google Scholar] [CrossRef]
- Haunschild, R.; Bornmann, L.; Marx, W. Climate change research in view of bibliometrics. PLoS ONE 2016, 11, e0160393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Pan, S.Y.; Ke, R.Y.; Wang, K.; Wei, Y.M. An overview of climate change vulnerability: A bibliometric analysis based on Web of Science database. Nat. Hazards 2014, 74, 1649–1666. [Google Scholar] [CrossRef]
- Verma, S.; Singh, K. Food security in India: A bibliometrics study. Lib. Herald. 2019, 57, 379–392. [Google Scholar] [CrossRef]
- Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on food security in the context of climate change from 1980 to 2019. Agric. Food Secur. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, M.; Yue, S.; Zheng, T.; Gao, Z.; Ma, X.; Wang, Q. Global trends and future prospects of food waste research: A bibliometric analysis. Environ. Sci. Pollut. Res. 2018, 25, 24600–24610. [Google Scholar] [CrossRef]
- Huang, L.; Chen, K.; Zhou, M. Climate change and carbon sink: A bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 8740–8758. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Li, G. A scientometric review of the research on the impacts of climate change on water quality during 1998–2018. Environ. Sci. Pollut. Res. 2020, 27, 14322–14341. [Google Scholar] [CrossRef]
- Durieux, V.; Gevenois, P.A. Bibliometric indicators: Quality measurements of scientific publication. Radiology 2010, 255, 342–351. [Google Scholar] [CrossRef]
- Noyons, C.M. Science maps within a science policy context. In Handbook of Quantitative Science and Technology Research; Springer: Dordrecht, The Netherlands, 2004; pp. 237–255. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. ISSI Newsl. 2011, 7, 50–54. [Google Scholar]
- Pallottino, F.; Cimini, A.; Costa, C.; Antonucci, F.; Menesatti, P.; Moresi, M. Bibliometric analysis and mapping of publications on brewing science from 1940 to 2018. J. Inst. Brew. 2020, 126, 394–405. [Google Scholar]
- De Robbio, A. Analisi citazionale e indicatori bibliometrici nel modello Open Access. Boll. Aib 2007, 257–288. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltman, L.; Van Eck, N.J.; Noyons, E.C. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, B.; Olsson, P. Environmental audits and life cycle assessment. In Auditing in the Food Industry; Dillon, M., Griffith, C., Eds.; Woodhead Publishing: Cambridge, UK, 2001; Chapter 10; pp. 174–194. [Google Scholar]
- Nemecek, T.; Jungbluth, N.; Canals, L.M.; Schenck, R. Environmental impacts of food consumption and nutrition: Where are we and what is next? Int. J. Life Cycle Assess. 2016, 21, 607–620. [Google Scholar] [CrossRef] [Green Version]
- Burck, J.; Hagen, U.; Höhne, N.; Nascimento, L.; Bals, C. Climate Change Performance Index. Results 2020; Germanwatch: Berlin, Germany, 2019; Available online: https://www.germanwatch.org/en/17281 (accessed on 3 April 2021).
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.G.J.; Vignati, E. Fossil CO2 Emissions of All World Countries—2020 Report; EUR 30358 EN; Publications Office of the European Union: Luxembourg, 2020; Available online: https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2020 (accessed on 3 October 2021).
- Moresi, M.; Cibelli, M.; Cimini, A. Standard methods effectively useful to mitigate the environmental impact of food industry. In Environmental Impact of Agro-Food Industry and Food Consumption; Galanakis, C., Ed.; Academic Press: San Diego, CA, USA, 2021; Chapter 1; pp. 1–30. [Google Scholar]
- FAO. Water for Sustainable Food and Agriculture A Report Produced for the G20 Presidency of Germany. 2017. Available online: http://www.fao.org/3/i7959e/i7959e.pdf (accessed on 3 October 2021).
- BMUB/UBA/TUB. BMUB/UBA/TUB Position Paper on EU Product and Organisation Environmental Footprint Proposal as Part of the Communication Building the Single Market for Green Products (COM/2013/0196 Final). 2014. Available online: https://webgate.ec.europa.eu/fpfis/wikis/display/EUENVFP/Steering+Committee+workspace?preview=%2F63542841%2F66782536%2FPosition+paper+on+PEF_TUB_BMUB_UBA.pdf (accessed on 3 October 2021).
- Galatola, M.; Pant, R. Product environmental footprint—Breakthrough or breakdown for policy implementation of life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 1356–1360. [Google Scholar] [CrossRef]
- Sala, S.; Cerutti, A.K.; Pant, R. Development of a Weighting Approach for the Environmental Footprint; Publications Office of the European Union: Luxembourg, 2018; Available online: https://ec.europa.eu/environment/eussd/smgp/documents/2018_JRC_Weighting_EF.pdf (accessed on 3 October 2021).
- Cimini, A.; Moresi, M. Are the present standard methods effectively useful to mitigate the environmental impact of the 99% EU food and drink enterprises? Trends Food Sci. Technol. 2018, 77, 42–53. [Google Scholar] [CrossRef]
- Espinoza-Orias, N.; Stichnothe, H.; Azapagic, A. The carbon footprint of bread. Int. J. Life Cycle Assess. 2011, 16, 351–365. [Google Scholar] [CrossRef]
- Cimini, A.; Moresi, M. Effect of brewery size on the main process parameters and cradle-to-grave carbon footprint of lager beer. J. Ind. Ecol. 2017, 22, 1139–1155. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Q.; Su, B. A review of carbon labeling: Standards, implementation, and impact. Renew. Sustain. Energy Rev. 2016, 53, 68–79. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; De Mastro, G. Optimization of the environmental performance of rainfed durum wheat by adjusting the management practices. J. Clean. Prod. 2015, 87, 105–118. [Google Scholar] [CrossRef]
- Failla, S.; Ingrao, C.; Arcidiacono, C. Energy consumption of rainfed durum wheat cultivation in a Mediterranean area using three different soil management systems. Energy 2020, 195, 116960. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Hamel, C.; Cutforth, H.; Wang, H. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron. Sustain. Dev. 2011, 31, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Chiriacò, M.V.; Grossi, G.; Castaldi, S.; Valentini, R. The contribution to climate change of the organic versus conventional wheat farming: A case study on the carbon footprint of wholemeal bread production in Italy. J. Clean. Prod. 2017, 153, 309–319. [Google Scholar] [CrossRef]
- Cibelli, M.; Cimini, A.; Moresi, M. Environmental profile of organic dry pasta. Chem. Eng. Trans. 2021, 87, 397–402. [Google Scholar] [CrossRef]
- FAO. Building Climate Resilience for Food Security and Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: http://www.fao.org/3/I9553EN/i9553en.pdf (accessed on 3 October 2021).
- WRI (World Resources Institute). Creating a Sustainable Food Future. A Menu of Solutions to Sustainably Feed More than 9 Billion People by 2050; World Resources Report 2013–14: Interim Findings; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Moresi, M. Assessment of the life cycle greenhouse gas emissions in the food industry. Agro Food Ind. Hi-Tech 2014, 25, 53–62. [Google Scholar]
- Cimini, A.; Cibelli, M.; Messia, M.C.; Marconi, E.; Moresi, M. Cooking quality of commercial spaghetti: Effect of the water-to-dried pasta ratio. Eur. Food Res. Technol. 2018, 245, 1037–1045. [Google Scholar] [CrossRef]
- Cimini, A.; Cibelli, M.; Messia, M.C.; Moresi, M. Commercial short-cut extruded pasta: Cooking quality and carbon footprint vs. water-to-pasta ratio. Food Bioprod Process 2019, 116, 150–159. [Google Scholar] [CrossRef]
- Cimini, A.; Cibelli, M.; Moresi, M. 2019b. Reducing the cooking water-to-dried pasta ratio and environmental impact of pasta cooking. J. Sci. Food Agric. 2019, 99, 1258–1266. [Google Scholar] [CrossRef]
- Cimini, A.; Cibelli, M.; Moresi, M. Development and assessment of a home eco-sustainable pasta cooker. Food Bioprod. Process. 2020, 122, 291–302. [Google Scholar] [CrossRef]
- Cimini, A.; Cibelli, M.; Taddei, A.R.; Moresi, M. Effect of cooking temperature on cooked pasta quality and sustainability. J. Sci. Food Agric. 2021, 101, 4946–4958. [Google Scholar] [CrossRef] [PubMed]
- Cibelli, M.; Cimini, A.; Cerchiara, G.; Moresi, M. Carbon Footprint of different methods of coffee preparation. Sustain. Prod. Consum. 2021, 27, 1614–1625. [Google Scholar] [CrossRef]
- EU Parliament News. Food Waste: The Problem in the EU in Numbers. 2017. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20170505STO73528/food-waste-the-problem-in-the-eu-in-numbers-infographic (accessed on 3 October 2021).
- United Nations Environment Programme. Food Waste Index Report 2021. Nairobi. 2021. Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021 (accessed on 3 October 2021).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Official Journal of the European Union. L 312/3-30. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN (accessed on 3 October 2021).
2020–1970 | 2020–2016 | 2015–1970 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Country | No. Docs | Relative [%] | Cumulative [%] | Country | No. Docs | Relative [%] | Cumulative [%] | Country | No. Docs | Relative [%] | Cumulative [%] |
1 | USA | 547 | 9.7 | 9.7 | China | 287 | 9.3 | 9.3 | USA | 273 | 10.7 | 10.7 |
2 | China | 465 | 8.2 | 17.9 | Italy | 283 | 9.1 | 18.4 | Italy | 181 | 7.1 | 17.8 |
3 | Italy | 464 | 8.2 | 26.1 | USA | 274 | 8.8 | 27.2 | China | 178 | 7.0 | 24.8 |
4 | UK | 328 | 5.8 | 31.9 | UK | 169 | 5.5 | 32.7 | UK | 159 | 6.2 | 31.0 |
5 | Spain | 283 | 5.0 | 36.9 | Spain | 154 | 5.0 | 37.7 | Spain | 129 | 5.1 | 36.1 |
6 | Germany | 194 | 3.4 | 40.4 | Germany | 106 | 3.4 | 41.1 | France | 97 | 3.8 | 39.9 |
7 | France | 189 | 3.3 | 43.7 | Brazil | 97 | 3.1 | 44.2 | Sweden | 96 | 3.8 | 43.6 |
8 | Australia | 173 | 3.1 | 46.8 | India | 97 | 3.1 | 47.4 | Netherlands | 95 | 3.7 | 47.3 |
9 | Netherlands | 170 | 3.0 | 49.8 | France | 92 | 3.0 | 50.3 | Australia | 94 | 3.7 | 51.0 |
10 | Sweden | 161 | 2.9 | 52.6 | Iran | 80 | 2.6 | 52.9 | Germany | 88 | 3.4 | 54.5 |
11 | India | 160 | 2.8 | 55.5 | Australia | 79 | 2.6 | 55.5 | Canada | 79 | 3.1 | 57.6 |
12 | Brazil | 157 | 2.8 | 58.3 | Netherlands | 75 | 2.4 | 57.9 | Denmark | 74 | 2.9 | 60.5 |
13 | Denmark | 141 | 2.5 | 60.8 | Malaysia | 71 | 2.3 | 60.2 | India | 63 | 2.5 | 62.9 |
14 | Iran | 140 | 2.5 | 63.2 | Thailand | 68 | 2.2 | 62.4 | Brazil | 60 | 2.4 | 65.3 |
15 | Canada | 138 | 2.4 | 65.7 | Denmark | 67 | 2.2 | 64.5 | Iran | 60 | 2.4 | 67.6 |
16 | Malaysia | 114 | 2.0 | 67.7 | Sweden | 65 | 2.1 | 66.6 | Belgium | 47 | 1.8 | 69.5 |
17 | Thailand | 107 | 1.9 | 69.6 | Indonesia | 63 | 2.0 | 68.7 | Japan | 47 | 1.8 | 71.3 |
18 | Belgium | 86 | 1.5 | 71.1 | Canada | 59 | 1.9 | 70.6 | Malaysia | 43 | 1.7 | 73.0 |
19 | Switzerland | 86 | 1.5 | 72.6 | Switzerland | 49 | 1.6 | 72.1 | Thailand | 39 | 1.5 | 74.5 |
20 | Japan | 85 | 1.5 | 74.1 | Turkey | 45 | 1.5 | 73.6 | Switzerland | 37 | 1.4 | 76.0 |
Time Period | Country | No. Doc.s | No. Citations | CPPI |
---|---|---|---|---|
1972–2020 | WORLD | 4186 | 84917 | 20.3 |
1973–2020 | USA | 548 | 13604 | 24.8 |
2002–2020 | China | 465 | 6782 | 14.6 |
1970–2020 | Italy | 464 | 9749 | 21.0 |
1985–2020 | UK | 328 | 9699 | 29.6 |
1994–2020 | Spain | 283 | 6673 | 23.6 |
2020–1970 | 2020–2016 | 2015–1970 | ||||
---|---|---|---|---|---|---|
No. | Affiliation | No. Docs | Affiliation | No. Docs | Affiliation | No. Docs |
1 | Wageningen Univ. & Res. | 79 | Chinese Academy of Sciences | 50 | Wageningen Univ. & Res. | 51 |
2 | Chinese Academy of Sciences | 78 | China Agricultural Univ. | 41 | Swedish Ins.e for Food and Biotech. | 41 |
3 | China Agricultural Univ. | 70 | Univ. degli Studi di Milano | 32 | Aarhus Universitet | 35 |
4 | Aarhus Universitet | 55 | M. of Agric. of the People’s Rep. China | 32 | China Agricultural Univ. | 29 |
5 | Univer. de Santiago de Compostela | 47 | The Univ. of Manchester | 31 | Chinese Academy of Sciences | 28 |
6 | Univ. of Tehran | 45 | Danmarks Tekniske Universitet | 29 | Agriculture et Agroalimentaire Canada | 25 |
7 | Univ. degli Studi di Milano | 45 | Wageningen Univ. & Res. | 28 | Univ. de Santiago de Compostela | 25 |
8 | Centre INRAE Bretagne-Normandie | 44 | Ministry of Education China | 26 | Centre INRAE Bretagne-Normandie | 24 |
9 | Swedish Ins.e for Food and Biotecg. | 41 | Univer. of Chinese Acad. of Sciences | 25 | Sveriges lantbruksuniversitet | 24 |
10 | The Univ. of Manchester | 41 | Northwest A&F Univ. | 25 | Univ. of Tehran | 23 |
11 | Sveriges lantbruksuniversitet | 38 | Univ. of Tehran | 22 | Nanjing Agricultural Univ. | 19 |
12 | Ministry of Education China | 37 | Univer. de Santiago de Compostela | 22 | Agrocampus Ouest | 18 |
13 | Agriculture et Agroalimentaire Canada | 37 | Chinese Acad. of Agricultural Sciences | 21 | Ins. de Recerca I Technologia Agroal. | 18 |
14 | Univ. of Chinese Acad. of Sciences | 37 | Centre INRAE Bretagne-Normandie | 20 | Universiteit Gent | 18 |
15 | Danmarks Tekniske Universitet | 36 | Aarhus Universitet | 20 | Univ. of California. Davis | 16 |
16 | M. of Agricul. of the People’s Rep. China | 36 | Univ. degli Studi di Bari | 19 | CIRAD Centre de Rech. de Montpellier | 16 |
17 | Agrocampus Ouest | 35 | CIRAD Centre de Rech. de Montpellier | 19 | Chalmers Univ. of Technology | 15 |
18 | CIRAD Centre de Rech. de Montpellier | 35 | INRAE | 19 | Malaysian Palm Oil Board | 14 |
19 | Northwest A&F Univ. | 33 | Univ. degli Studi della Tuscia, Viterbo | 18 | Teagasc-Irish Agric. and Food Dev. Aut. | 14 |
20 | Univ. of California, Davis | 32 | Pontificia Univ. Catolica del Peru | 18 | Natural Resources Ins.e Finland Luke | 14 |
2020–1970 | 2020–2016 | 2015–1970 | |||||||
---|---|---|---|---|---|---|---|---|---|
No. | Name | No. Docs | Country | Name | No. Docs | Country | Name | No. Docs | Country |
1 | Azapagic A. | 31 | UK | Azapagic A. | 25 | UK | Sonesson U. | 14 | Sweden |
2 | Moreira M.T. | 27 | Spain | Bacenetti J. | 17 | Italy | Feijoo G. | 13 | Spain |
3 | Vázquez-Rowe I. | 25 | Peru | Moreira M.T. | 15 | Spain | Rafiee S. | 13 | Iran |
4 | Feijoo G. | 24 | Spain | Vázquez-Rowe I. | 13 | Peru | Hermansen J.E. | 12 | Denmark |
5 | Bacenetti J. | 22 | Italy | Gheewala S.H. | 12 | Thailand | Moreira M.T. | 12 | Spain |
6 | Rafiee S. | 22 | Iran | Holden N.M. | 12 | Ireland | Vázquez-Rowe I. | 12 | Peru |
7 | Gheewala S.H. | 21 | Thailand | Vignali G. | 12 | Italy | Antón A. | 10 | Spain |
8 | Sonesson U. | 21 | Sweden | Feijoo G. | 11 | Spain | Cederberg C. | 10 | Sweden |
9 | Knudsen M.T. | 19 | Denmark | González-García S. | 10 | Spain | Hospido A. | 10 | Spain |
10 | Holden N.M. | 18 | Ireland | Ingrao C. | 10 | Italy | Subramaniam V. | 10 | Malaysia |
11 | González-García S. | 17 | Spain | Knudsen M.T. | 10 | Denmark | Van Der Werf H.M.G. | 10 | France |
12 | Ingrao C. | 16 | Italy | Cimini A. | 9 | Italy | Dewulf J. | 9 | Belgium |
13 | Vignali G. | 16 | Italy | De Marco I. | 9 | Italy | Flysjö A. | 9 | Denmark |
14 | Basset-Mens C. | 15 | France | Jeswani H.K. | 9 | UK | Gheewala S.H. | 9 | Thailand |
15 | Subramaniam V. | 15 | Malaysia | Moresi M. | 9 | Italy | Knudsen M.T. | 9 | Denmark |
16 | Thoma G. | 15 | USA | Rafiee S. | 9 | Iran | May C.Y. | 9 | Malaysia |
17 | Bava L. | 14 | Italy | Bava L. | 8 | Italy | Andersson K. | 8 | Sweden |
18 | Nemecek T. | 14 | Switzerland | Birkved M. | 8 | Denmark | Basset-Mens C. | 8 | France |
19 | Zucali M. | 14 | Italy | Iannone R. | 8 | Italy | Berlin J. | 8 | Sweden |
20 | Hermansen J.E. | 13 | Denmark | Rosentrater K.A. | 8 | USA | Corson M.S. | 8 | France |
No. | Journal | No. Docs | Q | SJR | H-Index |
---|---|---|---|---|---|
1 | Journal of Cleaner Production | 499 | Q1 | 1.81 | 173 |
2 | International Journal of Life Cycle Assessment | 179 | Q1 | 1.60 | 98 |
3 | Science of the Total Environment | 116 | Q1 | 1.66 | 224 |
4 | Sustainability Switzerland | 106 | Q2 | 0.58 | 68 |
5 | Acta Horticulturae | 67 | Q4 | 0.18 | 54 |
6 | Resources Conservation and Recycling | 50 | Q1 | 2.22 | 119 |
7 | Journal of Environmental Management | 46 | Q1 | 1.31 | 161 |
8 | Agricultural Systems | 42 | Q1 | 1.51 | 101 |
9 | Agriculture Ecosystems and Environment | 34 | Q1 | 1.72 | 163 |
10 | Energy | 34 | Q1 | 2.17 | 173 |
11 | Iop Conference Series Earth and Environmental Science | 33 | |||
12 | Journal of Food Engineering | 32 | |||
13 | Environmental Science and Pollution Res. | 30 | |||
14 | Ecological Indicators | 29 | |||
15 | Journal of Dairy Science | 28 | |||
16 | Water Switzerland | 26 | |||
17 | Bioresource Technology | 25 | |||
18 | Environmental Science and Technology | 25 | |||
19 | Energies | 23 | |||
20 | Animal | 21 |
No. | Journal | No. Doc.s | No. Cit.s | CPPI | 10%-CPPI | 10%-CG |
---|---|---|---|---|---|---|
1 | Journal of Cleaner Production | 499 | 16158 | 32.4 | 123.6 | 37.5 |
2 | International Journal of Life Cycle Assessment | 179 | 6412 | 35.8 | 140.1 | 37.1 |
3 | Science of the Total Environment | 116 | 2730 | 23.5 | 91.4 | 36.8 |
4 | Sustainability Switzerland | 106 | 824 | 7.8 | 29.7 | 36.0 |
5 | Acta Horticulturae | 67 | 279 | 4.2 | 23.8 | 51.3 |
No. | Sponsor | No. Docs |
---|---|---|
1 | European Commission | 162 |
2 | National Natural Science Foundation of China | 138 |
3 | Ministry of Science and Technology of the People’s Republic of China | 74 |
4 | UK Res. and Innovation | 68 |
5 | European Regional Development Fund | 50 |
6 | Engineering and Physical Sciences Res. Council | 40 |
7 | National Key Res. and Development Program of China | 40 |
8 | Seventh Framework Programme | 38 |
9 | National Science Foundation | 37 |
10 | Ministry of Education of the People’s Republic of China | 33 |
11 | Conselho Nacional de Desenvolvimento Científico e Tecnológico | 30 |
12 | Horizon 2020 Framework Programme | 30 |
13 | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | 27 |
14 | National Basic Res. Program of China (973 Program) | 26 |
15 | Ministerio de Economía y Competitividad | 25 |
16 | Ministério da Ciência, Tecnologia, Inovações | 25 |
17 | Fundamental Res. Funds for the Central Universities | 24 |
18 | Government of Canada | 24 |
19 | U.S. Department of Agriculture | 24 |
20 | Ministry of Agriculture of the People’s Republic of China | 23 |
World | USA | China | Italy | UK | Spain | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Terms | Doc.s | % | Terms | Doc.s | % | Terms | Doc.s | % | Terms | Doc.s | % | Terms | Doc.s | % | Terms | Doc.s | % |
milk | 1383 | 9.6 | dairy | 228 | 13.0 | rice | 497 | 28.6 | milk | 208 | 13.5 | dairy | 96 | 8.2 | milk | 96 | 11.5 |
rice | 1320 | 9.1 | milk | 205 | 11.7 | wheat | 219 | 12.6 | dairy | 120 | 7.8 | rice | 80 | 6.8 | dairy | 75 | 9.0 |
dairy | 1125 | 7.8 | rice | 152 | 8.7 | maize | 188 | 10.8 | wine | 115 | 7.5 | milk | 79 | 6.8 | fish | 70 | 8.4 |
wheat | 867 | 6.0 | fish | 105 | 6.0 | vegetable | 88 | 5.1 | food waste | 69 | 4.5 | meat | 78 | 6.7 | wine | 48 | 5.7 |
fish | 599 | 4.1 | cattle | 77 | 4.4 | food waste | 84 | 4.8 | wheat | 67 | 4.3 | food waste | 73 | 6.2 | meat | 39 | 4.7 |
meat | 593 | 4.1 | meat | 69 | 3.9 | cotton | 81 | 4.7 | olive oil | 53 | 3.4 | fish | 55 | 4.7 | rice | 35 | 4.2 |
maize | 491 | 3.4 | wheat | 64 | 3.7 | fish | 55 | 3.2 | rice | 51 | 3.3 | sugar | 46 | 3.9 | maize | 29 | 3.5 |
food waste | 479 | 3.3 | maize | 62 | 3.5 | milk | 45 | 2.6 | pasta | 51 | 3.3 | wheat | 43 | 3.7 | cheese | 27 | 3.2 |
sugar | 465 | 3.2 | food waste | 52 | 3.0 | dairy | 35 | 2.0 | cheese | 43 | 2.8 | meal | 30 | 2.6 | wheat | 23 | 2.7 |
palm oil | 410 | 2.8 | cotton | 42 | 2.4 | rubber | 27 | 1.6 | meat | 43 | 2.8 | maize | 29 | 2.5 | rapeseed | 21 | 2.5 |
cotton | 323 | 2.2 | meal | 39 | 2.2 | meat | 27 | 1.6 | maize | 41 | 2.7 | sheep | 26 | 2.2 | legumes | 21 | 2.5 |
vegetable | 277 | 1.9 | wine | 38 | 2.2 | tea | 26 | 1.5 | fruits | 39 | 2.5 | wool | 25 | 2.1 | olive oil | 18 | 2.2 |
wine | 273 | 1.9 | rubber | 36 | 2.1 | beer | 24 | 1.4 | vegetable | 37 | 2.4 | legumes | 25 | 2.1 | food waste | 18 | 2.2 |
cattle | 270 | 1.9 | vegetable | 32 | 1.8 | sugar | 23 | 1.3 | beer | 32 | 2.1 | wine | 24 | 2.1 | vegetable | 17 | 2.0 |
oil palm | 266 | 1.8 | palm oil | 31 | 1.8 | cassava | 21 | 1.2 | fish | 26 | 1.7 | rapeseed | 23 | 2.0 | cotton | 16 | 1.9 |
coffee | 257 | 1.8 | sugar | 28 | 1.6 | wool | 21 | 1.2 | fat | 26 | 1.7 | vegetable | 19 | 1.6 | seafood | 16 | 1.9 |
rubber | 250 | 1.7 | rye | 26 | 1.5 | legumes | 20 | 1.2 | cattle | 22 | 1.4 | tea | 18 | 1.5 | tomatoes | 15 | 1.8 |
meal | 219 | 1.5 | legumes | 25 | 1.4 | sorghum | 18 | 1.0 | bread | 22 | 1.4 | palm oil | 18 | 1.5 | cattle | 13 | 1.6 |
cheese | 200 | 1.4 | lettuce | 24 | 1.4 | seafood | 18 | 1.0 | sorghum | 21 | 1.4 | rapeseed oil | 18 | 1.5 | wool | 11 | 1.3 |
seed | 180 | 1.2 | tea | 24 | 1.4 | barley | 16 | 0.9 | barley | 20 | 1.3 | bread | 18 | 1.5 | sugar | 11 | 1.3 |
rapeseed | 164 | 1.1 | coffee | 23 | 1.3 | fruits | 16 | 0.9 | whey | 19 | 1.2 | chocolate | 17 | 1.5 | bread | 10 | 1.2 |
tea | 164 | 1.1 | seafood | 22 | 1.3 | tobacco | 15 | 0.9 | meal | 18 | 1.2 | cotton | 15 | 1.3 | barley | 9 | 1.1 |
bread | 149 | 1.0 | cheese | 21 | 1.2 | soybeans | 13 | 0.7 | tea | 16 | 1.0 | butter | 15 | 1.3 | yoghurt | 9 | 1.1 |
No. | 1970–2020 | Occurrence | 1970–2015 | Occurrence | 2016–2020 | Occurrence |
---|---|---|---|---|---|---|
1 | LCA | 2128 | LCA | 1183 | LCA | 945 |
2 | Life Cycle Assessment | 1372 | Life Cycle Assessment | 660 | Life Cycle Assessment | 712 |
3 | Carbon Footprint | 978 | Carbon Footprint | 474 | Carbon Footprint | 504 |
4 | Water Footprint | 804 | Water Footprint | 340 | Water Footprint | 464 |
5 | Ecological Footprint | 148 | Ecological Footprint | 102 | CED | 52 |
6 | CED | 84 | Ecoindicator | 37 | Ecological Footprint | 46 |
7 | Eco-indicator | 42 | CED | 32 | EPD | 8 |
8 | Impact 2002 | 17 | PAS 2050 | 13 | PEF | 8 |
9 | PAS 2050 | 14 | Impact 2002 | 11 | Impact 2002 | 6 |
10 | EPD | 13 | EPD | 5 | TRACI | 5 |
11 | PEF | 11 | TRACI | 5 | Eco-indicator | 5 |
12 | TRACI | 10 | PEF | 3 | PAS 2050 | 1 |
13 | EPS 2000 | 1 | AWCC | 0 | EPS 2000 | 1 |
14 | AWCC | 0 | CML 2002 | 0 | AWCC | 0 |
15 | CML 2002 | 0 | EDIP 2003 | 0 | CML 2002 | 0 |
16 | EDIP 2003 | 0 | EPS 2000 | 0 | EDIP 2003 | 0 |
17 | Eco Scarcity | 0 | Eco Scarcity | 0 | Eco Scarcity | 0 |
Total | 5622 | 2865 | 2757 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimini, A. Evolution of the Global Scientific Research on the Environmental Impact of Food Production from 1970 to 2020. Sustainability 2021, 13, 11633. https://doi.org/10.3390/su132111633
Cimini A. Evolution of the Global Scientific Research on the Environmental Impact of Food Production from 1970 to 2020. Sustainability. 2021; 13(21):11633. https://doi.org/10.3390/su132111633
Chicago/Turabian StyleCimini, Alessio. 2021. "Evolution of the Global Scientific Research on the Environmental Impact of Food Production from 1970 to 2020" Sustainability 13, no. 21: 11633. https://doi.org/10.3390/su132111633
APA StyleCimini, A. (2021). Evolution of the Global Scientific Research on the Environmental Impact of Food Production from 1970 to 2020. Sustainability, 13(21), 11633. https://doi.org/10.3390/su132111633