Numerical Analysis of the Structural Resistance and Stability of Masonry Walls with an AAC Thermal Break Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of the Experimental Tests and Corresponding Model Configurations
2.1.1. Experiments on Wallets by Deyazada et al.
2.1.2. Buckling Experiments by Sandoval et al.
2.2. Material Models
3. Numerical Simulations
3.1. Calibration and Validation of the Wallets’ Strength Using the Experiments by Deyazada et al.
3.2. Validation of the Walls’ Strength and Stability Using the Experiments of Sandoval et al.
4. Parametric Study
4.1. Parameters
- Axial load eccentricity and slenderness
- Geometrical imperfection, slenderness, and boundary conditions
- Masonry stiffness
- Homogeneous vs. composite specimens
4.2. Results and Discussion
- Slenderness and eccentricity
- Boundary conditions
- Masonry stiffness
- Failure mechanism
- Composite vs. homogeneous specimens
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Limbachiya, M.C.; Roberts, J.J. Autoclaved Aerated Concrete: Innovation and Development; Taylor & Francis: Abingdon-on-Thames, UK, 2005. [Google Scholar]
- Laukaitis, A.; Fiks, B. Acoustical properties of aerated autoclaved concrete. Appl. Acoust. 2006, 67, 284–296. [Google Scholar] [CrossRef]
- Ferretti, D.; Michelini, E.; Rosati, G. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling. Cem. Concr. Res. 2015, 67, 156–167. [Google Scholar] [CrossRef]
- Trunk, B.; Schober, G.; Helbling, A.K.; Wittmann, F.H. Fracture mechanics parameters of autoclaved aerated concrete. Cem. Concr. Res. 1999, 29, 855–859. [Google Scholar] [CrossRef]
- WTCB. Thermische Isolatie van Bestaande Muren; WTCB: Bruxelles, Belgium, 2016. [Google Scholar]
- Xella. Ytong Gehydrofobeerde Kimblok; Xella: Burcht, Belgium, 2016. [Google Scholar]
- Mordant, C.; Denoël, V.; Degée, H. Rocking behaviour of simple unreinforced load-bearing masonry walls including soundproofing rubber layers. In Proceedings of the 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods (COMPDYN 2015), Crete, Greece, 25–27 May 2015. [Google Scholar]
- Mordant, C.; Dietz, M.S.; Taylor, C.A.; Plumier, A.; Degée, H. Seismic Behavior of Thin-Bed Layered Unreinforced Clay Masonry Shear Walls Including Soundproofing Elements. In Seismic Evaluation and Rehabilitation of Structures; Springer: New York, NY, USA, 2014; pp. 77–93. [Google Scholar]
- Deyazada, M.; Vandoren, B.; Degée, H. Experimental and numerical investigations on the influence of thermal elements on structural stability of masonry walls. In Proceedings of the 16th International Masonry Conference, Padova, Italy, 26–29 June 2016. [Google Scholar]
- Martens, D. Thermal Break with Cellular Glass Units in Load-Bearing Masonry Walls. In Proceedings of the 9th International Masonry Conference, Guimarães, Portugal, 7–9 July 2014. [Google Scholar]
- Deyazada, M.; Vandoren, B.; Degée, H. Experimental investigations on the resistance of masonry walls with AAC thermal break layer. Constr. Build. Mater. 2019, 224, 474–492. [Google Scholar] [CrossRef]
- Cavaleri, L.; Failla, A.; la Mendola, L.; Papia, M. Experimental and analytical response of masonry elements under eccentric vertical loads. Eng. Struct. 2005, 27, 1175–1184. [Google Scholar] [CrossRef]
- Tensing, D. Experimental study on axial compressive strength and elastic modulus of the clay and fly ash brick masonry. J. Civ. Eng. Constr. Technol. 2013, 4, 134–141. [Google Scholar]
- Colville, J. Stability of unreinforced masonry under compressive load. TMS J. 2001, 19, 49–56. [Google Scholar]
- Brencich, A.; Corradi, C.; Gambarotta, L. Eccentrically loaded brickwork: Theoretical and experimental results. Eng. Struct. 2008, 30, 3629–3643. [Google Scholar] [CrossRef]
- Fortes, E.S.; Parsekian, G.A.; Cammacho, J.S.; Fonseca, F.S. Compressive strength of masonry constructed with high strength concrete blocks. Rev. IBRACON Estrut. Mater. 2017, 10, 1273–1319. [Google Scholar] [CrossRef] [Green Version]
- Theodossopoulos, D.; Sinha, B. A review of analytical methods in the current design processes and assessment of performance of masonry structures. Constr. Build. Mater. 2013, 41, 990–1001. [Google Scholar] [CrossRef]
- Sandoval, C.; Roca, P.; Bernat, E.; Gil, L. Testing and numerical modelling of buckling failure of masonry walls. Constr. Build. Mater. 2011, 25, 4394–4402. [Google Scholar] [CrossRef]
- Sandoval, C.; Roca, P. Study of the influence of different parameters on the buckling behaviour of masonry walls. Constr. Build. Mater. 2012, 35, 888–899. [Google Scholar] [CrossRef]
- Hasan, S.S.; Hendry, A.W. Effects of Slenderness and Eccentricity on the Compressive Strength of Walls. In Proceedings of the 4th International Brick Masonry Conference, Brugge, Belgium, 26–28 April 1976. [Google Scholar]
- Chapman, J.C.; Slatford, J. The elastic buckling of brittle columns. ICE Proc. 1957, 6, 107–125. [Google Scholar]
- Yokel, F.Y. Stability and load capacity of members with no tensile strength. J. Struct. Div. 1971, 97, 1913–1926. [Google Scholar] [CrossRef]
- Frisch-Fay, R. Buckling of masonry pier under its own weight. Int. J. Solids Struct. 1980, 16, 445–450. [Google Scholar] [CrossRef]
- Royen, N. Knickfestigkeit exzentrisch beanspruchter Säulen aus Baustoff, der nur gegen Druck widerstandsfähig ist. Bauingenieur 1937, 18, 444. (In German) [Google Scholar]
- Angervo, K. Über die Knickung und Tragfähigkeit Eines Exzentrisch Gedrückten Pfeilers ohne Zugfestigkeit; The State Institute for Technical Research, Finland: Helsinki, Finland, 1954. (In German) [Google Scholar]
- Romano, F.; Ganduscio, S.; Zingone, G. Cracked nonlinear masonry stability under vertical and lateral loads. J. Struct. Eng. 1993, 119, 69–87. [Google Scholar] [CrossRef]
- Mendola, L.L. Influence of nonlinear constitutive law on masonry pier stability. J. Struct. Eng. 1997, 123, 1303–1311. [Google Scholar] [CrossRef]
- Al-Chaar, G.L.; Mehrabi, A. Constitutive Models for Nonlinear Finite Element Analysis of Masonry Prisms and Infill Walls; U.S. Army Corps of Engineers: Washington, DC, USA, 2008. [Google Scholar]
- Lourenço, P.B.; Palácio, K.; Prieto, F. Implementation of a Constitutive Model for Masonry Shells as a Stand-Alone Subroutine; Universidade do Minho: Barga, Portugal, 2002. [Google Scholar]
- Ganduscio, S.; Romano, F. FEM and analytical solutions for buckling of nonlinear masonry members. J. Struct. Eng. 1997, 123, 104–111. [Google Scholar] [CrossRef]
- Lourenço, P.B. Anisotropic softening model for masonry plates and shells. J. Struct. Eng. 2000, 126, 1008–1016. [Google Scholar] [CrossRef]
- Lu, M.; Schultz, A.E.; Stolarski, H.K. Analysis of the influence of tensile strength on the stability of eccentrically compressed slender unreinforced masonry walls under lateral loads. J. Struct. Eng. 2004, 130, 921–933. [Google Scholar] [CrossRef]
- Macorini, L.; Izzuddin, B.A. A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int. J. Numer. Methods Eng. 2011, 85, 1584–1608. [Google Scholar] [CrossRef] [Green Version]
- Augenti, N.; Parisi, F. Constitutive models for tuff masonry under uniaxial compression. J. Mater. Civ. Eng. 2010, 22, 1102–1111. [Google Scholar] [CrossRef]
- DIANA FEA. DIANA Finite Element Analysis; DIANA FEA: Delft, The Netherlands, 2005. [Google Scholar]
- Lourenço, P.B. Computational Strategies for Masonry Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1996. [Google Scholar]
- Vecchio, F.J.; Collins, M.P. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J. 1986, 83, 219–231. [Google Scholar]
- Feenstra, P.H. Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete; Delft University Press: Delft, The Netherlands, 1993. [Google Scholar]
- Lourenço, P.B. A User/Programmer Guide for the Micro-Modeling of Masonry Structures; Delft University of Technology: Delft, The Netherlands, 1996. [Google Scholar]
- De Borst, R.; Crisfield, M.; Remmers, J.; Verhoosel, C. Non-Linear Finite Element Analysis of Solids and Structures, 2nd ed.; John Wiley & Sons Ltd: Chichester, West Sussex, UK, 2012. [Google Scholar]
- Van Zijl, G.P.A.G. Computational Modelling of Masonry Creep and Shrinkage. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2000. [Google Scholar]
- Lourenço, P.B.; Rots, J. Continuum Model for Masonry: Parameter Estimation and Validation; TNO: The Hague, The Netherlands, 1998. [Google Scholar]
- Lucideon. Technical Report and Design Guidance for the use of Porotherm Blocks in the UK; Report; Lucideon: Stoke-on-Trent, UK, 2015. [Google Scholar]
- Ferreira, T.M.; Costa, A.A.; Arêde, A.; Gomes, A.; Costa, A. Experimental characterization of the out-of-plane performance of regular stone masonry walls, including test setups and axial load influence. Bull. Earthq. Eng. 2015, 13, 2667–2692. [Google Scholar] [CrossRef] [Green Version]
- CEN - European Committee for Standardization. NBN EN 1996-1-1. Eurocode 6—Design of Masonry Structures—Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures; CEN - European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- CEN - European Committee for Standardization. NBN EN 1996-1-1+A1 ANB. Eurocode 6—Design of Masonry Structures—Part 1-1: General Rules for Reinforced and Unreinforced masonry Structures—National Annex; CEN - European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Mohamad, G.; Lourenço, P.B.; Roman, H.R. Mechanics of hollow concrete block masonry prisms under compression: Review and prospects. Cem. Concr. Compos. 2007, 29, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Vaculik, J. Unreinforced Masonry Walls Subjected to Out-of-Plane Seismic Actions. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2012. [Google Scholar]
- Popehn, J.R.B.; Schultz, A.E.; Lu, M.; Stolarski, H.K.; Ojard, N.J. Influence of transverse loading on the stability of slender unreinforced masonry walls. Eng. Struct. 2008, 30, 2830–2839. [Google Scholar] [CrossRef]
- West, H.W.H.; Hodgkinson, H.R.; Beech, D.G.; Davenport, S.T.E. The Performance of Walls Built of Wirecut Bricks with and without Perforations; British Ceramic Research Association: Stoke-on-Trent, UK, 1970. [Google Scholar]
- FOD Economie. STS 22: Metselwerk voor Laagbouw; FOD Economie: Brussels, Belgium, 2019. [Google Scholar]
- Weiqing, G.E.; Yang, J. The Study of the Present Situation of Foam Glass and Development Trend in China J. J. Tangshan Coll. 2008, 2, 026. [Google Scholar]
- Tomazevic, M. Earthquake-Resistant Design of Masonry Buildings. World Scientific: Singapore, 1999; Volume 1. [Google Scholar]
- Parisi, F.; Augenti, N. Assessment of unreinforced masonry cross sections under eccentric compression accounting for strain softening. Constr. Build. Mater. 2013, 41, 654–664. [Google Scholar] [CrossRef]
Model Objective | Scale | Material Model | Constraints | Loading Conditions |
---|---|---|---|---|
Stage 1: Calibration of constitutive behavior and verification of the ability of the model to capture the experimental behavior (Section 3.1) | Medium-scale walls | Unit: total strain crack model; Interface: combined shear-tension-compression | Fixed at the bottom; partially fixed at the top | Centric compression |
Stage 2: Verification of the ability of the model to capture the reduction in strength due to eccentricity using the experiments (Section 3.1) | Medium-scale walls | Unit: total strain crack model; Interface: combined shear-tension-compression | Fixed at the bottom; partially fixed at the top | Compression with eccentricity |
Stage 3: Validation of the numerical model using Sandoval’s experiments [18] (Section 3.2) | Medium to large-scale walls | Unit: total strain crack model; Interface: combined shear-tension-compression | Pinned at both ends | Compression with eccentricity |
Stage 4: Parametric study (Section 4) | Medium to large-scale walls | Unit: total strain crack model; Interface: combined shear-tension-compression | Pinned or fixed or partially fixed at both ends | Compression with or without eccentricity |
Specimen | Symbol | eP−R |
---|---|---|
Homogeneous AAC wallets with thin mortar layer under centric compression | W-HATLM | 0 |
Composite AAC–clay wallets with thin mortar layer under centric compression | W-CCTLM | 0 |
Homogeneous AAC wallets with thin mortar layer under eccentricity e = t/6 | W-HATLM-et/6 | t/6 |
Homogeneous AAC wallets with thin mortar layer under eccentricity e = t/3 | W-HATLM-et/3 | t/3 |
Composite AAC–clay wallets with thin mortar layer under eccentricity e = t/6 | W-CCTLM-et/6 | t/6 |
Composite AAC–clay wallets with thin mortar layer under eccentricity e = t/3 | W-CCTLM-et/3 | t/3 |
Model No. | Eccentricity | Slenderness |
---|---|---|
1 | t/6 | 18.7 |
2 | t/6 | 25.6 |
3 | t/3 | 18.7 |
4 | t/3 | 25.6 |
Model | |||
---|---|---|---|
Num1 | 980 | 3.37 | 1.5 |
Num2 | 980 | 3.03 | 1.5 |
Num3 | 980 | 2.76 | 1.5 |
Num4 | 980 | 2.54 | 1.5 |
Num5 | 980 | 2.35 | 1.5 |
Num6 | 980 | 2.19 | 1.5 |
Num7 | 980 | 2.05 | 1.5 |
Num8 | 980 | 1.93 | 1.5 |
Num9 | 980 | 1.82 | 1.5 |
Num10 | 980 | 1.73 | 1.5 |
Num11 | 882 | 1.73 | 1.5 |
Num12 | 784 | 1.73 | 1.5 |
Num13 | 686 | 1.73 | 1.5 |
Num14 | 588 | 1.73 | 1.5 |
Num15 | 490 | 1.73 | 1.5 |
Num16 | 490 | 1.73 | 3.5 |
Num17 | 490 | 1.73 | 5 |
Model | |||
---|---|---|---|
Num1 | 490 | 2000 | 1.73 |
Num2 | 490 | 2000 | 1.87 |
Num3 | 490 | 2000 | 2.04 |
Num4 | 490 | 2000 | 2.21 |
Num5 | 490 | 2000 | 2.38 |
Num6 | 490 | 4000 | 2.38 |
Num7 | 490 | 6000 | 2.04 |
Num8 | 490 | 1000 | 2.04 |
Parameter | Symbol | AAC | Clay | Unit |
---|---|---|---|---|
Young’s modulus | 490 | 4000 | N/mm2 | |
Poisson’s ratio | 0.30 | 0.15 | - | |
Compressive strength of unit (layer) | 1.73 (2.38) * | 5 | MPa | |
Fracture energy in compression | 1.50 | 5 | Nmm/mm2 | |
Tensile strength | 0.37 | 0.5 | MPa | |
Fracture energy in tension | 0.005 | 0.02 | Nmm/mm2 |
Interface Parameter | Symbol | Value | Unit |
---|---|---|---|
Normal stiffness AAC+AAC | 1000 | N/mm3 | |
Shear stiffness AAC+AAC | 400 | N/mm3 | |
Normal stiffness AAC+clay | 5000 | N/mm3 | |
Shear stiffness AAC+clay | 1000 | N/mm3 | |
Compressive strength | 20 | MPa | |
Fracture energy in compression | 15 | Nmm/mm2 | |
Tensile strength | 0.37 | MPa | |
Fracture energy in tension | 0.019 | Nmm/mm2 |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Young’s modulus of units | 7500 | N/mm2 | |
Poisson’s ratio | 0.15 | - | |
Normal stiffness of the interface | 2380 | N/mm3 | |
Shear stiffness of the interface | 1035 | N/mm3 | |
Compressive strength masonry | 14.2 | MPa | |
Fracture energy in compression | 20.38 | Nmm/mm2 | |
Tensile strength | 0.55 | MPa | |
Fracture energy in tension | 0.008 | Nmm/mm2 |
No. | Model Name | Unit Combination | Slenderness Ratio/Wall Height (m) | B.C. | |
---|---|---|---|---|---|
1 | g-HA-e0-sl5 | AAC+AAC | 0 | 5/0.8 | Pinned-pinned |
2 | g-HA-et6-sl5 | t/6 | |||
3 | g-HA-et3-sl5 | t/3 | |||
4 | g-HC-e0-sl5 | Clay+clay | 0 | 5/0.8 | Pinned-pinned |
5 | g-HC-e0-sl15 | 15/2.2 | |||
6 | g-HC-e0-sl21 | 21/3.2 | |||
7 | g-HC-e0-sl26 | 26/4.0 | |||
8 | g-HC-et6-sl5 | Clay+clay | t/6 | 5/0.8 | Pinned-pinned |
9 | g-HC-et6-sl15 | 15/2.2 | |||
10 | g-HC-et6-sl21 | 21/3.2 | |||
11 | g-HC-et6-sl26 | 26/4.0 | |||
12 | g-HC-et3-sl5 | Clay+clay | t/3 | 5/0.8 | Pinned-pinned |
13 | g-HC-et3-sl15 | 15/2.2 | |||
14 | g-HC-et3-sl21 | 21/3.2 | |||
15 | g-HC-et3-sl26 | 26/4.0 | |||
16 | g-CC-e0-sl5 | AAC+clay | 0 | 5/0.8 | Pinned-pinned |
17 | g-CC-e0-sl15 | 15/2.2 | |||
18 | g-CC-e0-sl21 | 21/3.2 | |||
19 | g-CC-e0-SL26 | 26/3.2 | |||
20 | g-CC-et6-sl5 | AAC+clay | t/6 | 5/0.8 | Pinned-pinned |
21 | g-CC-et6-sl15 | 15/2.2 | |||
22 | g-CC-et6-sl21 | 21/3.2 | |||
23 | g-CC-et6-sl26 | 26/4.0 | |||
24 | g-CC-et3-sl5 | AAC+clay | t/3 | 5/0.8 | Pinned-pinned |
25 | g-CC-et3-sl15 | 15/2.2 | |||
26 | g-CC-et3-sl21 | 21/3.2 | |||
27 | g-CC-et3-sl26 | 26/4.0 | |||
28 | g-CC-eg0-sl21-pp | AAC+clay | 0 | 21/3.2 | Pinned-pinned |
29 | g-CC-eg0-sl26-pp | 26/4.0 | |||
30 | g-CC-eg0-sl21-pfpf | AAC+clay | 0 | 21/4.2 | Partial fixed-partial fixed |
31 | g-CC-eg0-sl21-pfpf | 26/5.4 | |||
32 | g-CC-eg0-sl21-ff | AAC+clay | 0 | 21/6.4 | Fixed-fixed |
33 | g-CC-eg0-sl21-ff | 26/8 |
No. | Model Name | Unit Combination | Slenderness Ratio/Wall Height (m) | B.C. | |
---|---|---|---|---|---|
34 | g-CC-e0-sl21 | AAC+clay | 0 | 21/3.2 | Pinned-pinned |
35 | g-CC-e0-sl26 | 26/4.0 | |||
36 | g-CC-et6-sl21 | AAC+clay | t/6 | 15/2.2 | Pinned-pinned |
37 | g-CC-et6-sl26 | 21/3.2 | |||
38 | g-CC-eg0-sl21 | AAC+clay | 0 | 21/3.2 | Pinned-pinned |
39 | g-CC-eg0-sl26 | 26/4.0 |
Specimen | Stress (MPa) | Failure Mode |
---|---|---|
g-CC-eg0-sl21-pp | 2.10 | Strength failure of AAC layer |
g-CC-eg0-sl21-pfpf | 2.19 | Strength failure of AAC layer |
g-CC-eg0-sl21-ff | 1.88 | Strength failure of AAC layer |
g-CC-eg0-sl26-pp | 1.49 | Stability failure of main clay masonry |
g-CC-eg0-sl26-pfpf | 1.61 | Strength failure of AAC layer |
g-CC-eg0-sl26-ff | 1.08 | Strength failure of AAC layer |
Specimen | Stress (Group 1) (MPa) | Failure Mode | Stress (Group 2) (MPa) | Failure Mode |
---|---|---|---|---|
g-CC-e0-sl21 | 1.98 | Material failure of AAC layer | 2.06 | Material failure of AAC layer |
g-CC-e0-sl26 | 1.53 | Stability failure of main clay masonry | 1.95 | Material failure of AAC layer |
g-CC-et6-sl21 | 1.12 | Stability failure of main clay masonry | 1.30 | Material failure of AAC layer |
g-CC-et6-sl26 | 0.82 | Stability failure of main clay masonry | 1.28 | Stability failure of main clay masonry |
g-CC-eg0-sl21-pp | 2.10 | Material failure of AAC layer | 2.23 | Material failure of AAC layer |
g-CC-eg0-sl26-pp | 1.49 | Stability failure of main clay masonry | 2.20 | Material failure of AAC layer |
Specimen | Failure Mode |
---|---|
g-CC-e0-sl5 | Material failure of AAC layer |
g-CC-et6-sl5 | Material failure of AAC layer |
g-CC-et3-sl5 | Material failure of AAC layer |
g-CC-e0-sl15 | Material failure of AAC layer |
g-CC-et6-sl15 | Material failure of AAC layer |
g-CC-et3-sl15 | Material failure of AAC layer |
g-CC-e0-sl21 | Material failure of AAC layer |
g-CC-et6-sl21 | Material failure of AAC layer |
g-CC-et3-sl21 | Stability failure of main clay masonry |
g-CC-e0-sl26 | Stability failure of main clay masonry |
g-CC-et6-sl26 | Stability failure of main clay masonry |
g-CC-et3-sl26 | Stability failure of main clay masonry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deyazada, M.; Degée, H.; Vandoren, B. Numerical Analysis of the Structural Resistance and Stability of Masonry Walls with an AAC Thermal Break Layer. Sustainability 2021, 13, 11647. https://doi.org/10.3390/su132111647
Deyazada M, Degée H, Vandoren B. Numerical Analysis of the Structural Resistance and Stability of Masonry Walls with an AAC Thermal Break Layer. Sustainability. 2021; 13(21):11647. https://doi.org/10.3390/su132111647
Chicago/Turabian StyleDeyazada, Mohammed, Hervé Degée, and Bram Vandoren. 2021. "Numerical Analysis of the Structural Resistance and Stability of Masonry Walls with an AAC Thermal Break Layer" Sustainability 13, no. 21: 11647. https://doi.org/10.3390/su132111647
APA StyleDeyazada, M., Degée, H., & Vandoren, B. (2021). Numerical Analysis of the Structural Resistance and Stability of Masonry Walls with an AAC Thermal Break Layer. Sustainability, 13(21), 11647. https://doi.org/10.3390/su132111647