Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation
Abstract
:1. Introduction
2. Conceptual Background
2.1. Environmental Sustainability
- Emissions harmful to the climate considers all GHG emissions (climate change effects mitigation).
- Other emissions and processes harmful to the environment addresses all other impacts on the environment, such as non-GHG emissions, resource depletion, and destruction of habitats.
- Energy and exergy considers all aspects regarding the cumulative energy or exergy demand and the energy efficiency.
2.2. Economic Sustainability
- Macroeconomic development considers all economic aspects on a global and societal level. Macro-development is, for example, assessing the question of long-term efficiency and economic self-reliance of HSCs.
- Microeconomic development considers all aspects of detailed economic assessment based on single-use cases either on an individual level (e.g., specific case studies) or in general (e.g., LCC).
- Long-term competitiveness addresses the long-term feasibility of technologies in comparison to others.
- Innovation capability considers the evaluation of the corporate-level impact on innovation systems and competitiveness. This dimension also addresses aspects that form the basis for potential innovations and improvements in HSCs and related fields.
2.3. Social Sustainability
- Health and safety considers all aspects of human physical integrity. Emissions are only considered in this category if their impact on human health is apparent from the indicator (e.g., human toxicity potential) and a focus of the respective paper.
- Social security addresses all aspects of individual economic security and prosperity.
- Culture and community considers all aspects of culture and social interaction.
- Prospects, well-being, and individual development address aspects such as discrimination, exploitation, transparency and recognition, education, training, and personal advancement.
3. Review Methodology
4. Results
4.1. Descriptive Analysis and Synthesis
4.2. Thematic Analysis and Synthesis
5. Discussion
5.1. Supply Chain Stages
5.2. Sustainability Dimensions
5.3. Combined Discussion
5.4. Comparative Analysis
- Sustainability evaluation of electric vehicles (I);
- Sustainability evaluation in the energy sector (II);
- Sustainability evaluation regarding circular and sharing economy concepts (III).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crabtree, G.W.; Dresselhaus, M.S. The Hydrogen Fuel Alternative. Mrs Bull. 2008, 33, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Burton, N.A.; Padilla, R.V.; Rose, A.; Habibullah, H. Increasing the efficiency of hydrogen production from so-lar powered water electrolysis. Renew. Sustain. Energy Rev. 2021, 135, 110255. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, D.; Li, X.; Yang, Q.; Xu, Q.; Ni, B.-J.; Wang, Q.; Liu, X. Towards hydrogen production from waste activated sludge: Principles, challenges and perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110283. [Google Scholar] [CrossRef]
- Shamsi, H.; Tran, M.-K.; Akbarpour, S.; Maroufmashat, A.; Fowler, M. Macro-Level optimization of hydrogen infrastructure and supply chain for zero-emission vehicles on a canadian corridor. J. Clean. Prod. 2020, 289. [Google Scholar] [CrossRef]
- Almutairi, K.; Mostafaeipour, A.; Jahanshahi, E.; Jooyandeh, E.; Himri, Y.; Jahangiri, M.; Issakhov, A.; Chow-dhury, S.; Hosseini Dehshiri, S.; Techato, K. Ranking Locations for Hydrogen Production Using Hybrid Wind-Solar: A Case Study. Sustainability 2021, 13, 4524. [Google Scholar] [CrossRef]
- Bae, S.; Lee, E.; Han, J. Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas. Sustainability 2020, 12, 4114. [Google Scholar] [CrossRef]
- Crabtree, G.W.; Dresselhaus, M.S.; Buchanan, M.V. The hydrogen economy. Phys. Today 2004, 57, 39–44. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Özcan, H. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J. Clean. Prod. 2019, 220, 593–609. [Google Scholar] [CrossRef]
- Wulf, C.; Linßen, J.; Zapp, P. Review of Power-to-Gas Projects in Europe. Energy Procedia 2018, 155, 367–378. [Google Scholar] [CrossRef]
- Dagdougui, H. Models, methods and approaches for the planning and design of the future hydrogen supply chain. Int. J. Hydrog. Energy 2012, 37, 5318–5327. [Google Scholar] [CrossRef]
- Felder, R.; Meier, A. Well-To-Wheel Analysis of Solar Hydrogen Production and Utilization for Passenger Car Transportation. J. of Solar Energy Engineering 2008, 130, 011017. [Google Scholar] [CrossRef]
- Patterson, T.; Esteves, S.; Carr, S.; Zhang, F.; Reed, J.; Maddy, J.; Guwy, A. Life cycle assessment of the electro-lytic production and utilization of low carbon hydrogen vehicle fuel. Int. J. Hydrog. Energy 2014, 39, 7190–7201. [Google Scholar] [CrossRef]
- Acar, C.; Dinçer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Ren, J.; Ren, X. Sustainability prioritization of sludge-to-energy technologies based on an improved DS/AHP method. In Waste-to-Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 317–343. ISBN 9780128163948. [Google Scholar]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transi-tion—A Technological and Geopolitical Perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Preuster, P.; Alekseev, A.; Wasserscheid, P. Hydrogen Storage Technologies for Future Energy Systems. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445–471. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. Sustainable hydrogen production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Olindo, R.; Schmitt, N.; Vogtländer, J. Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity. Sustainability 2021, 13, 5250. [Google Scholar] [CrossRef]
- Bossel, U. Does a Hydrogen Economy Make Sense? Proc. IEEE 2006, 94, 1826–1837. [Google Scholar] [CrossRef]
- Von Carlowitz, H.C. Sylvicultura Oeconomica; Johann Friedrich Braun: Leipzig, Germany, 1713. [Google Scholar]
- Elkington, J. Partnerships fromcannibals with forks: The triple bottom line of 21st-century business. Env. Qual. Manag. 1998, 8, 37–51. [Google Scholar] [CrossRef]
- Bogacki, J.; Letmathe, P. Representatives of future generations as promoters of sustainability in corporate decision processes. Bus. Strat Env 2020, 30, 237–251. [Google Scholar] [CrossRef]
- Levy, D.; Reinecke, J.; Manning, S. The Political Dynamics of Sustainable Coffee: Contested Value Regimes and the Transformation of Sustainability. J. Manag. Stud. 2016, 53, 364–401. [Google Scholar] [CrossRef]
- Heiskanen, E. Managers’ interpretations of LCA: Enlightenment and responsibility or confusion and denial? Bus. Strat. Env. 2000, 9, 239–254. [Google Scholar] [CrossRef]
- Melville, N.P. Information systems innovation for environmental sustainability. Mis Q. 2010, 34, 1–21. [Google Scholar] [CrossRef]
- Barbosa, M.; Castañeda-Ayarza, J.A.; Lombardo Ferreira, D.H. Sustainable Strategic Management (GES): Sus-tainability in small business. J. Clean. Prod. 2020, 258, 120880. [Google Scholar] [CrossRef]
- Merino, F.; Prats, M.A. Sustainable beach management and promotion of the local tourist industry: Can blue flags be a good driver of this balance? Ocean. Coast. Manag. 2020, 198, 105359. [Google Scholar] [CrossRef]
- Sehnem, S.; Piekas, A.; Dal Magro, C.B.; Fabris, J.; Leite, A. Public policies, management strategies, and the sus-tainable and competitive management model in handicrafts. J. Clean. Prod. 2020, 266, 121695. [Google Scholar] [CrossRef]
- Iribarren, D.; Valente, A.; Dufour, J. IEA Hydrogen Task 36: Life Cycle Sustainability Assessment off Hydrogen Energy Systems. 2018. Available online: https://www.researchgate.net/publication/331928657_IEA_Hydrogen_Task_36_-_Life_Cycle_Sustainability_Assessment_of_Hydrogen_Energy_Systems_-_Final_Report (accessed on 11 October 2021).
- Ren, J.; Manzardo, A.; Toniolo, S.; Scipioni, A. Sustainability of hydrogen supply chain. Part II: Prioritizing and classifying the sustainability of hydrogen supply chains based on the combination of extension theory and AHP. Int. J. Hydrog. Energy 2013, 38, 13845–13855. [Google Scholar] [CrossRef]
- Xu, D.; Li, W.; Ren, X.; Shen, W.; Dong, L. Technology selection for sustainable hydrogen production: A multi-criteria assessment framework under uncertainties based on the combined weights and interval best-worst projection method. Int. J. Hydrog. Energy 2020, 45, 34396–34411. [Google Scholar] [CrossRef]
- Gnanapragasam, N.V.; Reddy, B.V.; Rosen, M.A. A Methodology for Assessing the Sustainability of Hydrogen Production from Solid Fuels. Sustainability 2010, 2, 1472–1491. [Google Scholar] [CrossRef] [Green Version]
- Maggio, G.; Nicita, A.; Squadrito, G. How the hydrogen production from RES could change energy and fuel markets: A review of recent literature. Int. J. Hydrog. Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Camargo, M.; Commenge, J.-M.; Falk, L.; Gil, I.D. Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review. Int. J. Hydrog. Energy 2019, 44, 9486–9504. [Google Scholar] [CrossRef]
- Wulf, C.; Zapp, P.; Schreiber, A.; Kuckshinrichs, W. Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production. Sustainability 2021, 13, 7009. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis—a review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Melideo, D.; Ortiz Cebolla, R.; Weidner, E. Life Cycle Assessment of Hydrogen and Fuel Cell Technologies: Inventory of Work Performed by Projects Funded under FCH JU; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-13185-4. [Google Scholar]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.; Ulgiati, S. Life cycle assessment and water footprint of hydrogen production methods: From conventional to emerging technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Lozanovski, A.; Schuller, O.; Faltenbacher, M. Guidance Document for Performing LCA on Hydrogen Production Systems. FC-HyGuide, 2011. Available online: http://hytechcycling.eu/wp-content/uploads/HY-Guidance-Document.pdf (accessed on 11 October 2021).
- Thomas, D.J.; Griffin, P.M. Coordinated supply chain management. Eur. J. Oper. Res. 1996, 94, 1–15. [Google Scholar] [CrossRef]
- Almansoori, A.; Betancourt-Torcat, A. Design of optimization model for a hydrogen supply chain under emis-sion constraints —A case study of Germany. Energy 2016, 111, 414–429. [Google Scholar] [CrossRef]
- Markert, F.; Marangon, A.; Carcassi, M.; Duijm, N.J. Risk and sustainability analysis of complex hydrogen in-frastructures. Int. J. Hydrog. Energy 2017, 42, 7698–7706. [Google Scholar] [CrossRef] [Green Version]
- Ochoa Bique, A.; Maia, L.K.; La Mantia, F.; Manca, D.; Zondervan, E. Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains. Comput. Chem. Eng. 2019, 129, 106493. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 11 October 2021).
- Dinçer, I. Environmental and sustainability aspects of hydrogen and fuel cell systems. Int. J. Energy Res. 2007, 31, 29–55. [Google Scholar] [CrossRef]
- van Schoubroeck, S.; van Dael, M.; van Passel, S.; Malina, R. A review of sustainability indicators for biobased chemicals. Renew. Sustain. Energy Rev. 2018, 94, 115–126. [Google Scholar] [CrossRef]
- Cohen, M. A Systematic Review of Urban Sustainability Assessment Literature. Sustainability 2017, 9, 2048. [Google Scholar] [CrossRef] [Green Version]
- Balkema, A.J.; Preisig, H.A.; Otterpohl, R.; Lambert, F.J. Indicators for the sustainability assessment of wastewater treatment systems. Urban. Water 2002, 4, 153–161. [Google Scholar] [CrossRef]
- Bappy, M.M.; Ali, S.M.; Kabir, G.; Paul, S.K. Supply chain sustainability assessment with Dempster-Shafer evi-dence theory: Implications in cleaner production. J. Clean. Prod. 2019, 237, 117771. [Google Scholar] [CrossRef]
- Rashidi, K.; Noorizadeh, A.; Kannan, D.; Cullinane, K. Applying the triple bottom line in sustainable supplier selection: A meta-review of the state-of-the-art. J. Clean. Prod. 2020, 269, 122001. [Google Scholar] [CrossRef]
- Biswas, I.; Raj, A.; Srivastava, S.K. Supply chain channel coordination with triple bottom line approach. Transportation Research Part E. Logist. Transp. Rev. 2018, 115, 213–226. [Google Scholar] [CrossRef]
- Ahmed, W.; Sarkar, B. Management of next-generation energy using a triple bottom line approach under a supply chain framework. Resour. Conserv. Recycl. 2019, 150, 104431. [Google Scholar] [CrossRef]
- Khan, I.S.; Ahmad, M.O.; Majava, J. Industry 4.0 and sustainable development: A systematic mapping of triple bottom line, Circular Economy and Sustainable Business Models perspectives. J. Clean. Prod. 2021, 297, 126655. [Google Scholar] [CrossRef]
- Birkel, H.; Müller, J.M. Potentials of industry 4.0 for supply chain management within the triple bottom line of sustainability—A systematic literature review. J. Clean. Prod. 2021, 289, 125612. [Google Scholar] [CrossRef]
- Antunes, C.H.; Henriques, C.O. Multi-Objective Optimization and Multi-Criteria Analysis Models and Meth-ods for Problems in the Energy Sector. In Multiple Criteria Decision Analysis; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 1067–1165. ISBN 978-1-4939-3093-7. [Google Scholar]
- Zhu, L.; Hu, L.; Yüksel, S.; Dinçer, H.; Karakuş, H.; Ubay, G.G. Analysis of strategic directions in sustainable hydrogen investment decisions. Sustainability 2020, 12, 4581. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Brandenburg, M.; Govindan, K.; Sarkis, J.; Seuring, S. Quantitative models for sustainable supply chain man-agement: Developments and directions. Eur. J. Oper. Res. 2014, 233, 299–312. [Google Scholar] [CrossRef]
- Gmelin, H.; Seuring, S. Determinants of a sustainable new product development. J. Clean. Prod. 2014, 69, 1–9. [Google Scholar] [CrossRef]
- Sauer, P.C.; Seuring, S. Sustainable supply chain management for minerals. J. Clean. Prod. 2017, 151, 235–249. [Google Scholar] [CrossRef]
- Sauer, P.C.; Seuring, S. Extending the reach of multi-tier sustainable supply chain management—Insights from mineral supply chains. Int. J. Prod. Econ. 2019, 217, 31–43. [Google Scholar] [CrossRef]
- Neutzling, D.M.; Land, A.; Seuring, S.; Nascimento, L.F.M.d. Linking sustainability-oriented innovation to sup-ply chain relationship integration. J. Clean. Prod. 2018, 172, 3448–3458. [Google Scholar] [CrossRef]
- Rebs, T.; Brandenburg, M.; Seuring, S. System dynamics modeling for sustainable supply chain management: A literature review and systems thinking approach. J. Clean. Prod. 2019, 208, 1265–1280. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U.; Wang, C. Comparison of GHG emissions and farmers’ profit of large-scale and individual farming in rice production across four regions of Thailand. J. Clean. Prod. 2021, 278, 123945. [Google Scholar] [CrossRef]
- Chamas, Z.; Abou Najm, M.; Al-Hindi, M.; Yassine, A.; Khattar, R. Sustainable resource optimization under water-energy-food-carbon nexus. J. Clean. Prod. 2021, 278, 123894. [Google Scholar] [CrossRef]
- Liobikienė, G.; Minelgaitė, A. Energy and resource-saving behaviours in European Union countries: The Campbell paradigm and goal framing theory approaches. Sci. Total Environ. 2021, 750, 141745. [Google Scholar] [CrossRef]
- Pentreath, R.; Woodhead, D. A system for protecting the environment from ionising radiation: Selecting refer-ence fauna and flora, and the possible dose models and environmental geometries that could be applied to them. Sci. Total Environ. 2001, 277, 33–43. [Google Scholar] [CrossRef]
- Raha, U.K.; Kumar, B.R.; Sarkar, S.K. Policy Framework for Mitigating Land-based Marine Plastic Pollution in the Gangetic Delta Region of Bay of Bengal- A review. J. Clean. Prod. 2021, 278, 123409. [Google Scholar] [CrossRef]
- Cheng, C.; Zhu, R.; Costa, A.M.; Thompson, R.G. Optimisation of waste clean-up after large-scale disasters. Waste Manag. 2020, 119, 1–10. [Google Scholar] [CrossRef]
- Woodard, R. Waste Management in Small and Medium Enterprises (SMEs): Compliance with Duty of Care and implications for the Circular Economy. J. Clean. Prod. 2021, 278, 123770. [Google Scholar] [CrossRef]
- Klöpffer, W.; Grahl, B. Life Cycle Assessment (LCA): A Guide to Best Practice; Wiley-VCHVerlag GmbH & Co. KGaA: Weinheim, Germany, 2014; ISBN 978-3-527-32986-1. [Google Scholar]
- Yakovleva, N.; Sarkis, J.; Sloan, T. Sustainable benchmarking of supply chains: The case of the food industry. Int. J. Prod. Res. 2012, 50, 1297–1317. [Google Scholar] [CrossRef] [Green Version]
- Lovrić, M.; Li, T.; Vervest, P. Sustainable revenue management: A smart card enabled agent-based modeling approach. Decis. Support. Syst. 2013, 54, 1587–1601. [Google Scholar] [CrossRef]
- Krozer, Y. Economics of Sustainable Technologies: Private and Public Costs and Benefits. In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 11–21. ISBN 9780128047927. [Google Scholar]
- Shi, X.; Cai, L.; Song, H. Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach. Sustainability 2019, 11, 6381. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Doroodian, M.; Kamarulzaman, Y.; Muhamad, N. Designing and Validating a Model for Measuring. Sustainability of Overall Innovation Capability of Small and Medium-Sized Enterprises. Sustainability 2015, 7, 537–562. [Google Scholar] [CrossRef] [Green Version]
- Binder, M.; Witt, U. A critical note on the role of the capability approach for sustainability economics. J. Socio-Econ. 2012, 41, 721–725. [Google Scholar] [CrossRef]
- Birkin, F.; Polesie, T. The relevance of epistemic analysis to sustainability economics and the capability approach. Ecol. Econ. 2013, 89, 144–152. [Google Scholar] [CrossRef]
- Gilbert, R.; Stevenson, D.; Girardet, H.; Stren, R. Making Cities Work: The Role of Local Authorities in the Urban Environment; Routledge: London, UK, 2013; ISBN 9781315066431. [Google Scholar]
- Cuthill, M. Strengthening the ‘social’ in sustainable development: Developing a conceptual framework for social sustainability in a rapid urban growth region in Australia. Sust. Dev. 2010, 18, 362–373. [Google Scholar] [CrossRef]
- Boström, M. A missing pillar? Challenges in theorizing and practicing social sustainability: Introduction to the special issue. Sustain. Sci. Pract. Policy 2012, 8, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Magee, L.; Scerri, A.; James, P.; Thom, J.A.; Padgham, L.; Hickmott, S.; Deng, H.; Cahill, F. Reframing social sustainability reporting: Towards an engaged approach. Env. Dev. Sustain. 2013, 15, 225–243. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Guidelines for Social Life Cycle Assessment of Products and Organizations. 2020. Available online: https://www.researchgate.net/publication/348622046_Guidelines_for_Social_Life_Cycle_Assessment_of_Products_and_Organizations_2020 (accessed on 11 October 2021).
- Rousseau, D.M.; Manning, J.; Denyer, D. Evidence in Management and Organizational Science: Assembling the Field’s Full Weight of Scientific Knowledge through Syntheses. Acad. Manag. Ann. 2008, 2, 475–515. [Google Scholar] [CrossRef]
- Kitchenham, B.A.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering. 2007. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.471&rep=rep1&type=pdf (accessed on 11 October 2021).
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Buchanan, D.A., Bryman, A., Eds.; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Fauzi, R.T.; Lavoie, P.; Sorelli, L.; Heidari, M.D.; Amor, B. Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment. Sustainability 2019, 11, 636. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Li, W. Research on the coupling coordination degree of “upstream-midstream-downstream” of Chi-na’s wind power industry chain. J. Clean. Prod. 2021, 283, 124633. [Google Scholar] [CrossRef]
- Hadi, S.; Baskaran, S. Examining sustainable business performance determinants in Malaysia upstream petro-leum industry. J. Clean. Prod. 2021, 294, 126231. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.J. Who should lead carbon emissions reductions? Upstream vs. downstream firms. Int. J. Prod. Econ. 2020, 230, 107790. [Google Scholar] [CrossRef]
- Mani, V.; Gunasekaran, A. Upstream complex power relationships and firm’s reputation in global value chains. Int. J. Prod. Econ. 2021, 237, 108142. [Google Scholar] [CrossRef]
- Desai, J.N.; Pandian, S.; Vij, R.K. Big data analytics in upstream oil and gas industries for sustainable explora-tion and development: A review. Environ. Technol. Innov. 2021, 21, 101186. [Google Scholar] [CrossRef]
- Ahmadi, P.; Kjeang, E. Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces. Int. J. Hydrog. Energy 2015, 40, 12905–12917. [Google Scholar] [CrossRef]
- Khzouz, M.; Gkanas, E.; Shao, J.; Sher, F.; Beherskyi, D.; El-Kharouf, A.; Al Qubeissi, M. Life cycle costing analy-sis: Tools and applications for determining hydrogen production cost for fuel cell vehicle technology. Energies 2020, 13, 3783. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S. Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification. Int. J. Hydrog. Energy 2021, 46, 9630–9643. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ramadan, M.; Naher, S.; Pullen, K.; Ali Abdelkareem, M.; Olabi, A.-G. A review of geothermal energy-driven hydrogen production systems. Therm. Sci. Eng. Prog. 2021, 22, 100854. [Google Scholar] [CrossRef]
- Oruc, O.; Dincer, I. Analysis and assessment of a new solar assisted sodium hydroxide thermochemical hydro-gen production cycle. Energy Convers. Manag. 2021, 237, 114139. [Google Scholar] [CrossRef]
- Singh, N.K.; Singh, R. A sequential approach to uncapping of theoretical hydrogen production in a sulfate-reducing bacteria-based bio-electrochemical system. Int. J. Hydrog. Energy 2021, 46, 20397–20412. [Google Scholar] [CrossRef]
- Zeng, Z.; Jing, D.; Guo, L. Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam. Energy 2021, 228, 120578. [Google Scholar] [CrossRef]
- Simons, J.H. Hydrogen Fluoride Catalysis. Advances in Catalysis 1950, 2, 197–232. [Google Scholar] [CrossRef]
- Eizenberg, E.; Jabareen, Y. Social Sustainability: A New Conceptual Framework. Sustainability 2017, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Missimer, M.; Robèrt, K.-H.; Broman, G.; Sverdrup, H. Exploring the possibility of a systematic and generic approach to social sustainability. J. Clean. Prod. 2010, 18, 1107–1112. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, H.; Dinçer, I.; Hepbasli, A. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study. Appl. Therm. Eng. 2013, 61, 784–798. [Google Scholar] [CrossRef]
- Byun, M.; Lee, B.; Lee, H.; Jung, S.; Ji, H.; Lim, H. Techno-economic and environmental assessment of methanol steam reforming for H2 production at various scales. Int. J. Hydrog. Energy 2020, 45, 24146–24158. [Google Scholar] [CrossRef]
- Kumar, R.R.; Alok, K. Adoption of electric vehicle: A literature review and prospects for sustainability. J. Clean. Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- Parker, N.; Breetz, H.L.; Salon, D.; Conway, M.W.; Williams, J.; Patterson, M. Who saves money buying electric vehicles? Heterogeneity in total cost of ownership. Transportation Research Part D: Transport. Environ. 2021, 96, 102893. [Google Scholar] [CrossRef]
- Austmann, L.M.; Vigne, S.A. Does environmental awareness fuel the electric vehicle market? A Twitter key-word analysis. Energy Econ. 2021, 101, 105337. [Google Scholar] [CrossRef]
- Bekel, K.; Pauliuk, S. Prospective cost and environmental impact assessment of battery and fuel cell electric vehicles in Germany. Int. J. Life Cycle Assess. 2019, 24, 2220–2237. [Google Scholar] [CrossRef]
- Logan, K.G.; Nelson, J.D.; Hastings, A. Electric and hydrogen buses: Shifting from conventionally fuelled cars in the UK. Transportation Research Part D: Transp. Environ. 2020, 85, 102350. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, B.; Jiao, K. Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China. Energy 2020, 198, 117365. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Zhao, J.-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Apostolou, D.; Enevoldsen, P. The past, present and potential of hydrogen as a multifunctional storage application for wind power. Renew. Sustain. Energy Rev. 2019, 112, 917–929. [Google Scholar] [CrossRef]
- Bareiß, K.; La Rua, C. de La Rua; Möckl, M.; Hamacher, T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Appl. Energy 2019, 237, 862–872. [Google Scholar] [CrossRef]
- Fang, R. Life cycle cost assessment of wind power–hydrogen coupled integrated energy system. Int. J. Hydrog. Energy 2019, 44, 29399–29408. [Google Scholar] [CrossRef]
- Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew. Sustain. Energy Rev. 2019, 101, 279–294. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Shah, S.A.A.; Zameer, H.; Solangi, Y.A.; Walasai, G.D.; Siyal, Z.A. Economic viability and environmental efficiency analysis of hydrogen production processes for the decarbonization of energy systems. Processes 2019, 7, 494. [Google Scholar] [CrossRef] [Green Version]
- Bahrami Ziabari, N.; Ghandehariun, S. Economic assessment of solar-based hydrogen for methanol production. Energy Equip. Syst. 2020, 8, 263–273. [Google Scholar]
- Sarja, M.; Onkila, T.; Mäkelä, M. A systematic literature review of the transition to the circular economy in business organizations: Obstacles, catalysts and ambivalences. J. Clean. Prod. 2021, 286, 125492. [Google Scholar] [CrossRef]
- Çimen, Ö. Construction and built environment in circular economy: A comprehensive literature review. J. Clean. Prod. 2021, 305, 127180. [Google Scholar] [CrossRef]
- Bressanelli, G.; Pigosso, D.C.; Saccani, N.; Perona, M. Enablers, levers and benefits of Circular Economy in the Electrical and Electronic Equipment supply chain: A literature review. J. Clean. Prod. 2021, 298, 126819. [Google Scholar] [CrossRef]
- Baleta, J.; Mikulčić, H.; Klemeš, J.J.; Urbaniec, K.; Duić, N. Integration of energy, water and environmental systems for a sustainable development. J. Clean. Prod. 2019, 215, 1424–1436. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Waste-to-energy nexus for circular economy and environ-mental protection: Recent trends in hydrogen energy. Sci. Total Env. 2020, 713, 136633. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, K.; Kumar, S.; Lee, B.-D.; Kim, S.-H. Waste based hydrogen production for circular bioeconomy: Current status and future directions. Bioresour. Technol. 2020, 302, 122920. [Google Scholar] [CrossRef] [PubMed]
- Alanne, K.; Cao, S. Zero-energy hydrogen economy (ZEH 2 E) for buildings and communities including personal mobility. Renew. Sustain. Energy Rev. 2017, 71, 697–711. [Google Scholar] [CrossRef]
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Hydrogen | Thematic focus on hydrogen supply chain (including hydrogen production, distribution, and consumption). | No inclusion of papers with sole focus on technical engineering. |
Sustainability | Assessment of (at least) one sustainability dimension (environmental, economic, social). Explicit mentioning of sustainability is not required. | No inclusion of papers without consideration of both hydrogen and at least one sustainability dimension. |
Publication type | Publications in journals and conference proceedings | No inclusion of non-journal or non-conference publications |
Journal | Number of Publications |
---|---|
International Journal of Hydrogen Energy | 107 |
Journal of Cleaner Production | 27 |
Energy | 15 |
Applied Energy | 13 |
Renewable and Sustainable Energy Reviews | 11 |
Energies | 10 |
Energy Procedia | 8 |
Sustainability | 6 |
Bioresource Technology | 5 |
Energy Policy | 5 |
Others | 81 |
Sustainability Dimension | Number of Publications | Median Year of Publication | Average Year of Publication |
---|---|---|---|
Environmental | 233 | 2016 | 2014.8 |
Economic | 147 | 2018 | 2016.2 |
Social | 52 | 2017 | 2015.4 |
Stages of Hydrogen Supply Chains | |||||
---|---|---|---|---|---|
Production | Distribution | Use | Full | ||
Environmental | Emissions harmful to the climate | 125 | 13 | 10 | 77 |
Processes harmful to the environment (not climate-related) | 103 | 9 | 5 | 40 | |
Energy, exergy | 73 | 3 | 5 | 32 | |
Economic | Macroeconomics | 7 | 0 | 3 | 18 |
Microeconomics | 74 | 15 | 4 | 37 | |
Long-term competitiveness | 28 | 5 | 1 | 26 | |
Innovation capability | 4 | 0 | 2 | 4 | |
Social | Health and safety | 23 | 5 | 1 | 20 |
Social security | 9 | 2 | 1 | 5 | |
Prospects, well-being, and individual development | 7 | 0 | 0 | 3 | |
Culture and community | 1 | 0 | 0 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fredershausen, S.; Lechte, H.; Willnat, M.; Witt, T.; Harnischmacher, C.; Lembcke, T.-B.; Klumpp, M.; Kolbe, L. Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation. Sustainability 2021, 13, 11652. https://doi.org/10.3390/su132111652
Fredershausen S, Lechte H, Willnat M, Witt T, Harnischmacher C, Lembcke T-B, Klumpp M, Kolbe L. Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation. Sustainability. 2021; 13(21):11652. https://doi.org/10.3390/su132111652
Chicago/Turabian StyleFredershausen, Sebastian, Henrik Lechte, Mathias Willnat, Tobias Witt, Christine Harnischmacher, Tim-Benjamin Lembcke, Matthias Klumpp, and Lutz Kolbe. 2021. "Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation" Sustainability 13, no. 21: 11652. https://doi.org/10.3390/su132111652
APA StyleFredershausen, S., Lechte, H., Willnat, M., Witt, T., Harnischmacher, C., Lembcke, T. -B., Klumpp, M., & Kolbe, L. (2021). Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation. Sustainability, 13(21), 11652. https://doi.org/10.3390/su132111652