Path of Smart Servitization and Transformation in the Textile Industry: A Case Study of Various Regions in China
Abstract
:1. Introduction
2. Literature Review
2.1. Smart Servitization Transformation
2.1.1. Smart Manufacturing
2.1.2. Service-Based Manufacturing
2.2. Drivers of Industry Transformation
3. Research Design
3.1. Methodology
3.2. Variable Measurements
3.2.1. Result Variables
3.2.2. Condition Variables
3.3. Sample and Date Source
4. The Level of Smart Servitization of the Textile Industry in China by Region
5. Analysis of the Transformation Path of Smart Servitization in China’s Textile Industry
5.1. Necessary Condition Analysis
5.2. Conditional Configuration Analysis
- Configuration a1: Technological Innovation * Economic growth * Industrial Agglomeration * Import and Export volume * Foreign Direct Investment
- 2.
- Configuration a2: Technological Innovation * Industrial Agglomeration * Human Resources * Import and Export volume * Foreign Direct Investment
- 3.
- Configuration a3: Technological Innovation* ~Economic Stability * Industrial Agglomeration * ~Human Resources * ~Import and Export volume
- 4.
- Configuration a4: Technological Innovation *~Economic Stability * ~Industrial Agglomeration * ~Human Resources* Import and Export volume
- 5.
- Configuration a5: ~Technological Innovation * ~Economic growth * Economic Stability * ~Industrial Agglomeration* Import and Export volume * ~Foreign Direct Investment
- 6.
- Configuration a6: ~Technological Innovation * Economic growth * Economic Stability * Industrial Agglomeration * ~Import and Export volume * ~Foreign Direct Investment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truett, L.J.; Truett, D.B. A ray of hope? Another look at the Italian textile industry. Empir. Econ. 2014, 46, 525–542. [Google Scholar] [CrossRef]
- Truett, L.J.; Truett, D.B. Globalization challenges for the Mexican textile industry. Int. Rev. Econ. Financ. 2010, 19, 733–741. [Google Scholar] [CrossRef]
- Fromhold-Eisebith, M.; Marschall, P.; Peters, R.; Thomes, P. Torn between digitized future and context dependent past–how implementing ‘Industry 4.0’ production technologies could transform the German textile industry. Technol. Forecast. Soc. Chang. 2021, 166, 120620. [Google Scholar] [CrossRef]
- Li, L. China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technol. Forecast. Soc. Chang. 2018, 135, 66–74. [Google Scholar] [CrossRef]
- Arnold, J.M.; Javorcik, B.; Lipscomb, M.; Mattoo, A. Services reform and manufacturing performance: Evidence from India. Econ. J. 2016, 126, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Thangavelu, S.M.; Wang, W.; Oum, S. Servicification in global value chains: Comparative analysis of selected Asian countries with OECD. World Econ. 2018, 41, 3045–3070. [Google Scholar] [CrossRef] [Green Version]
- Allmendinger, G.; Lombreglia, R. Four strategies for the age of smart services. Harv. Bus. Rev. 2005, 83, 131. [Google Scholar] [PubMed]
- Alt, R.; Demirkan, H.; Ehmke, J.F.; Moen, A.; Winter, A. Smart services: The move to customer orientation. Electron. Mark. 2019, 29, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bustinza-Sánchez, O.F.; Parry, G.; Vendrell-Herrero, F.; Myrthianos, V. Link channels or how to enhance upstream-downstream relations in servitized contexts. Dyna 2015, 90, 588–589. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.G.; Mendes, G.H.S.; Ayala, N.F.; Ghezzi, A. Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technol. Forecast. Soc. Chang. 2019, 141, 341–351. [Google Scholar] [CrossRef]
- Kamalaldin, A.; Linde, L.; Sjödin, D.; Parida, V. Transforming provider-customer relationships in digital servitization: A relational view on digitalization. Ind. Mark. Manag. 2020, 89, 306–325. [Google Scholar] [CrossRef]
- Tian, J.M.; Coreynen, W.; Matthyssens, P.; Shen, L. Platform-based servitization and business model adaptation by established manufacturers. Technovation 2021. [Google Scholar] [CrossRef]
- Beverungen, D.; Matzner, M.; Janiesch, C. Information systems for smart services. Inf. Syst. E-Bus. Manag. 2017, 15, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, S.; Olivotti, D.; Lebek, B.; Breitner, M.H. Focusing the customer through smart services: A literature review. Electron. Mark. 2019, 29, 55–78. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.S.; Lee, J.Y.; Choi, S.; Kim, H.; Park, J.H.; Son, J.Y.; Kim, B.H.; Noh, S. Do smart manufacturing: Past research, present findings, and future directions. Int. J. Precis. Eng. Manuf.-Green Technol. 2016, 3, 111–128. [Google Scholar] [CrossRef]
- Machado, C.G.; Winroth, M.P.; Ribeiro da Silva, E.H.D. Sustainable manufacturing in Industry 4.0: An emerging research agenda. Int. J. Prod. Res. 2020, 58, 1462–1484. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Li, G.; Hou, Y.; Wu, A. Fourth Industrial Revolution: Technological drivers, impacts and coping methods. Chin. Geogr. Sci. 2017, 27, 626–637. [Google Scholar] [CrossRef] [Green Version]
- Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial internet of things (IIoT): An analysis framework. Comput. Ind. 2017, 101, 1–12. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing smart factory of industrie 4.0: An outlook. Int. J. Distrib. Sens. Netw. 2016, 12, 3159805. [Google Scholar] [CrossRef] [Green Version]
- Prahalad, C.K. The blinders of dominant logic. Long Range Plan. 2004, 37, 171–179. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. Evolving to a new dominant logic for marketing. J. Mark. 2004, 68, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vargo, S.L.; Lusch, R.F. Service-dominant logic: Continuing the evolution. J. Acad. Mark. Sci. 2008, 36, 1–10. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. From repeat patronage to value co-creation in service ecosystems: A transcending conceptualization of relationship. J. Bus. Mark. Manag. 2010, 4, 169–179. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. It’s all B2B...and beyond: Toward a systems perspective of the market. Ind. Mark. Manag. 2011, 40, 181–187. [Google Scholar] [CrossRef]
- Baines, T.S.; Lightfoot, H.W.; Benedettini, O.; Kay, J.M. The servitization of manufacturing: A review of literature and reflection on future challenges. J. Manuf. Technol. Manag. 2009, 20, 547–567. [Google Scholar] [CrossRef] [Green Version]
- Rada, S.V.J. Servitization of business: Adding value by adding services. Eur. Manag. J. 1988, 6, 314–324. [Google Scholar] [CrossRef]
- Nambisan, S. Information technology and product/service innovation: A brief assessment and some suggestions for future research. J. Assoc. Inf. Syst. 2013, 14, 215–226. [Google Scholar] [CrossRef]
- Luz Martín-Peña, M.; Díaz-Garrido, E.; Sánchez-López, J.M. The digitalization and servitization of manufacturing: A review on digital business models. Strateg. Chang. 2018, 27, 91–99. [Google Scholar] [CrossRef]
- Porter, M.E.; Heppelmann, J.E. How smart, connected products are transforming companies. Harv. Bus. Rev. 2015, 93, 96–112. [Google Scholar]
- Raddats, C.; Kowalkowski, C.; Benedettini, O.; Burton, J.; Gebauer, H. Servitization: A contemporary thematic review of four major research streams. Ind. Mark. Manag. 2019, 83, 207–223. [Google Scholar] [CrossRef]
- Stief, P.; Dantan, J.Y.; Etienne, A.; Siadat, A. A new methodology to analyze the functional and physical architecture of existing products for an assembly oriented product family identification. Procedia CIRP 2018, 70, 47–52. [Google Scholar] [CrossRef]
- Mijiyawa, A.G. Drivers of structural transformation: The case of the manufacturing sector in Africa. World Dev. 2017, 99, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Sun, Y.; Wang, T.; Wan, H.; Fan, S. Exploring regional advanced manufacturing and its driving factors: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area. Int. J. Environ. Res. Public Health 2021, 18, 5800. [Google Scholar] [CrossRef] [PubMed]
- Kaňovská, L.; Tomášková, E. Drivers for smart servitization in manufacturing companies. AGRIS On-Line Pap. Econ. Inform. 2018, 10, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.Y.; Chu, M.T.; Chen, S.S.; Tsai, C.H. Identifying comprehensive key criteria of sustainable development for traditional manufacturing in Taiwan. Sustainability 2018, 10, 3275. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Choi, Y. Environmental performance evaluation of the Korean manufacturing industry based on sequential DEA. Sustainability 2019, 11, 874. [Google Scholar] [CrossRef] [Green Version]
- Grant, D.; Yeo, B. A global perspective on tech investment, financing, and ICT on manufacturing and service industry performance. Int. J. Inf. Manag. 2018, 43, 130–145. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Iranmanesh, M. Digital transformation success under Industry 4.0: A strategic guideline for manufacturing SMEs. J. Manuf. Technol. Manag. 2021, 32. [Google Scholar] [CrossRef]
- Cantore, N.; Clara, M.; Lavopa, A.; Soare, C. Manufacturing as an engine of growth: Which is the best fuel? Struct. Chang. Econ. Dyn. 2017, 42, 56–66. [Google Scholar] [CrossRef]
- Charles, K.K.; Hurst, E.; Schwartz, M. The transformation of manufacturing and the decline in US employment comment. NBER Macroecon. Annu. 2019, 33, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Lin, B. Impact of industrial agglomeration on energy efficiency in China’s paper industry. J. Clean. Prod. 2018, 184, 1072–1080. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, W.L.; Wen, J.; Wang, J.S. TFP growth in Chinese cities: The role of factor-intensity and industrial agglomeration. Econ. Model. 2020, 91, 534–549. [Google Scholar] [CrossRef]
- Romer, P. Endogenous technological growth. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, S.; Lai, Y.W. Immigrant labor and industrial upgrading in Malaysia. Asian Pacific Migr. J. 2014, 23, 273–297. [Google Scholar] [CrossRef]
- Lei, S.; Qin, C.; Ali, M.; Freeman, S.; Zheng, S.-J. The impact of authentic leadership on individual and team creativity: A multilevel perspective. Leadersh. Org. Dev. J. 2021, 42, 644–662. [Google Scholar] [CrossRef]
- Doronin, D.; Shen, L.; Ali, M. Parallel mediating effect of knowledge sharing quality on team innovativeness. Technol. Anal. Strateg. Manag. 2020, 32, 1449–1461. [Google Scholar] [CrossRef]
- Bigsten, A.; Collier, P.; Dercon, S.; Fafchamps, M.; Gauthier, B.; Gunning, J.W.; Oduro, A.; Oostendorp, R.; Pattillo, C.; Söderbom, M.; et al. Do African manufacturing firms learn from exporting? J. Dev. Stud. 2004, 40, 115–141. [Google Scholar] [CrossRef] [Green Version]
- Fafchamps, M.; El Hamine, S.; Zeufack, A. Learning to export: Evidence from Moroccan manufacturing. J. Afr. Econ. 2008, 17, 305–355. [Google Scholar] [CrossRef]
- Buturac, G.; Mikulić, D.; Palić, P. Sources of export growth and development of manufacturing industry: Empirical evidence from Croatia. Econ. Res. Istraz. 2019, 32, 101–127. [Google Scholar] [CrossRef]
- Thomann, E.; Maggetti, M. Designing research with qualitative comparative analysis (QCA): Approaches, challenges, and tools. Sociol. Methods Res. 2020, 49, 356–386. [Google Scholar] [CrossRef]
- Fiss, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Fai, F.; Von Tunzelmann, N. Industry-specific competencies and converging technological systems: Evidence from patents. Struct. Change Econ. Dyn. 2001, 12, 141–170. [Google Scholar] [CrossRef]
- Van Wyk, L.; Saayman, M.; Rossouw, R.; Saayman, A. Regional economic impacts of events: A comparison of methods. S. Afr. J. Econ. Manag. Sci. 2015, 18, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Lee, S.-G.; Trimi, S. Industrial linkage and spillover effects of the logistics service industry: An input–output analysis. Serv. Bus. 2021, 15, 231–252. [Google Scholar] [CrossRef]
- Yang, L. Research on the Measurement and Characteristics of Manufacturing Service Level in the Yangtze River Economic Belt. Contemp. Financ. Econ. 2019, 6. [Google Scholar] [CrossRef]
- Tohmo, T. The economic impact of tourism in Central Finland: A regional input–output study. Tour. Rev. 2018, 73, 521–547. [Google Scholar] [CrossRef]
- Zuhdi, U. The dynamics of indonesian creative industry sectors: An analysis using input–output approach. J. Knowl. Econ. 2015, 6, 1177–1190. [Google Scholar] [CrossRef]
- Park, S.H. Intersectoral relationships between manufacturing and services: New evidence from selected pacific basin countries. ASEAN Econ. Bull. 1994, 10, 245–263. [Google Scholar] [CrossRef]
- Liu, B.; WANG, N. Input servitization of manufacturing and dual margins of firms’ export—An empirical study based on the data of chinese micro-enterprise. China Ind. Econ. 2016, 9, 59–74. [Google Scholar] [CrossRef]
- Shen, L.; Sun, C.; Ali, M. Role of Servitization, Digitalization, and Innovation Performance in Manufacturing Enterprises. Sustainability 2021, 13, 9878. [Google Scholar] [CrossRef]
- Coll-Martínez, E.; Moreno-Monroy, A.I.; Arauzo-Carod, J.M. Agglomeration of creative industries: An intra-metropolitan analysis for barcelona. Pap. Reg. Sci. 2019, 98, 409–431. [Google Scholar] [CrossRef]
- State Statistical Bureau of China. China Regional Input-Output Table; China Statistical Press: Beijing, China, 2002. [Google Scholar]
- State Statistical Bureau of China. China Regional Input-Output Table; China Statistical Press: Beijing, China, 2007. [Google Scholar]
- State Statistical Bureau of China. China Regional Input-Output Table; China Statistical Press: Beijing, China, 2012. [Google Scholar]
- State Statistical Bureau of China. China Regional Input-Output Table; China Statistical Press: Beijing, China, 2017. [Google Scholar]
- Ministry of Science and Technology; National Bureau of Statistics. China Statistical Yearbook on Science and Technology; China Statistical Press: Beijing, China, 2002–2017. [Google Scholar]
- State Statistical Bureau of China. China Statistical Yearbook; China Statistical Press: Beijing, China, 2002–2017. [Google Scholar]
- State Statistical Bureau of China. China Labour Statistical Yearbook; China Statistical Press: Beijing, China, 2002–2017. [Google Scholar]
- Douglas, E.J.; Shepherd, D.A.; Prentice, C. Using fuzzy-set qualitative comparative analysis for a finer-grained understanding of entrepreneurship. J. Bus. Ventur. 2020, 35, 105970. [Google Scholar] [CrossRef]
Variable | Symbol | Description | Data Sources | |
---|---|---|---|---|
Outcome variable | The level of smart servitization of the textile industry | Reflected by the input–output situation of the textile industry through intelligent industries and services, shorten to G, as detailed in Equation (3) | 2002–2017 China Regional Input–Output Tables [63,64,65,66] | |
Conditional variable | Technology Dimension | Technological Innovation | Data on R&D expenditures for each province in China are mainly selected to represent | China statistical yearbook on science and technology [67] |
Economic Dimension | Economic Growth | Annual GDP per province | China Statistical Yearbook [68] | |
Economic Stability | Employment rate per province per year | China Statistical Yearbook [68] | ||
Resource Dimension | Industrial Agglomeration | Average number of enterprises in various industries in Shanghai | China Statistical Yearbook [68] | |
Human Agglomeration | Average number of people per industry in Shanghai | China Labor Statistical Yearbook [69] | ||
Open Strategy Dimension | Foreign Direct Investment | Foreign direct investment data by Chinese provinces | China Statistical Yearbook [68] | |
Import and Export volume | Import and export data by province in China | China Statistical Yearbook [68] |
Variables | Outcome = G | Outcome = LowG | ||
---|---|---|---|---|
Consistency | Consistency | Consistency | Consistency | |
Technological Innovation | 0.749828 | 0.722517 | 0.444013 | 0.454305 |
Economic Growth | 0.595189 | 0.561973 | 0.638835 | 0.640493 |
Economic Stability | 0.784880 | 0.583546 | 0.801942 | 0.633112 |
Industrial Agglomeration | 0.786254 | 0.802244 | 0.416829 | 0.451613 |
Human Resources | 0.616495 | 0.612287 | 0.542395 | 0.572014 |
Import and Export volume | 0.740893 | 0.766169 | 0.488673 | 0.536603 |
Foreign Direct Investment | 0.703780 | 0.723164 | 0.476375 | 0.519774 |
~Technological Innovation | 0.433677 | 0.423490 | 0.728803 | 0.755705 |
~Economic Growth | 0.619244 | 0.617546 | 0.563107 | 0.596299 |
~Economic Stability | 0.506529 | 0.706616 | 0.472492 | 0.699904 |
~Industrial Agglomeration | 0.462543 | 0.427573 | 0.717476 | 0.702414 |
~Human Resources | 0.569071 | 0.539414 | 0.632362 | 0.636482 |
~Import and Export volume | 0.551890 | 0.504080 | 0.787055 | 0.763340 |
~Foreign Direct Investment | 0.532646 | 0.489268 | 0.746278 | 0.727904 |
Dimension | Conditional Variables | Outcome = G G = f(TI, EG, ES, IG, HC, IE, FDI) | |||||
---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | a6 | ||
Technology Dimension | Technological Innovation (TI) | ● | ● | ● | ● | ○ | ○ |
Economic Dimension | Economic Growth (EG) | ● | ○ | ● | |||
Economic Stability (ES) | ○ | ○ | ● | ● | |||
Resource Dimension | Industrial Agglomeration (IG) | ● | ● | ● | ○ | ○ | ● |
Human Resources (HR) | ● | ○ | ○ | ||||
Open Strategy Dimension | Import and Export volume (IE) | ● | ● | ○ | ● | ● | ○ |
Foreign Direct Investment (FDI) | ● | ● | ○ | ○ | |||
Consistency | 0.9434 | 0.9122 | 0.9409 | 0.8972 | 0.9120 | 0.8971 | |
Raw coverage | 0.4131 | 0.4069 | 0.1863 | 0.1560 | 0.1567 | 0.1677 | |
Unique Coverage | 0.0680 | 0.1099 | 0.0131 | 0.0096 | 0.0426 | 0.0199 | |
Solution Consistency | 0.8701 | ||||||
Solution Coverage | 0.6907 |
Dimension | Conditional Variables | Outcome = LowG LowG = f(TI, EG, ES, IG, HC, IE, FDI) | |||
---|---|---|---|---|---|
b1 | b2 | b3 | b4 | ||
Technology Dimension | Technological Innovation (TI) | ○ | ○ | ○ | ● |
Economic Dimension | Economic Growth (EG) | ● | ● | ● | |
Economic Stability (ES) | ● | ○ | ○ | ||
Resource Dimension | Industrial Agglomeration (IG) | ○ | ○ | ● | ○ |
Human Resources (HR) | ○ | ○ | ● | ○ | |
Open Strategy Dimension | Import and Export volume (IE) | ○ | ○ | ○ | |
Foreign Direct Investment (FDI) | ○ | ○ | ○ | ||
Consistency | 0.9449 | 0.9345 | 0.9742 | 0.9069 | |
Raw coverage | 0.3443 | 0.4524 | 0.3663 | 0.1262 | |
Unique Coverage | 0.0317 | 0.1398 | 0.0091 | 0.0058 | |
Solution Consistency | 0.9214 | ||||
Solution Coverage | 0.6298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Sun, C.; Ali, M. Path of Smart Servitization and Transformation in the Textile Industry: A Case Study of Various Regions in China. Sustainability 2021, 13, 11680. https://doi.org/10.3390/su132111680
Shen L, Sun C, Ali M. Path of Smart Servitization and Transformation in the Textile Industry: A Case Study of Various Regions in China. Sustainability. 2021; 13(21):11680. https://doi.org/10.3390/su132111680
Chicago/Turabian StyleShen, Lei, Cong Sun, and Muhammad Ali. 2021. "Path of Smart Servitization and Transformation in the Textile Industry: A Case Study of Various Regions in China" Sustainability 13, no. 21: 11680. https://doi.org/10.3390/su132111680
APA StyleShen, L., Sun, C., & Ali, M. (2021). Path of Smart Servitization and Transformation in the Textile Industry: A Case Study of Various Regions in China. Sustainability, 13(21), 11680. https://doi.org/10.3390/su132111680