Synthesis, Characterization and Application of Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles for Removal of Benzene, Toluene and p-Xylene from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterizations of Adsorbent
2.3. Batch Adsorption Experiments and Concentration of Adsorbate
3. Results
3.1. Characterization of Zinc Oxide Impregnated CNTs
3.2. Adsorption Experiments
3.2.1. Effect of Contact Time
3.2.2. Effect of Adsorbent Dosage
3.2.3. Kinetics Models Fitting
3.2.4. Isotherm Models Fitting
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbas, A.; Abussaud, B.A.; Ihsanullah, I.; Al-Baghli, N.A.H.; Khraisheh, M.; Atieh, M.A. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes. J. Nanomater. 2016, 2016, 5654129. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; Abussaud, B.A.; Ihsanullah, I.; Al-Baghli, N.A.H.; Redhwi, H.H. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study. Bioinorg. Chem. Appl. 2017, 2017, 2853925. [Google Scholar] [CrossRef]
- WHO. Benzene in Drinking-Water, WHO. 2016. Available online: https://www.who.int/water_sanitation_health/publications/benzene/en/ (accessed on 17 July 2019).
- ATSDR—Toxicological Profile: Benzene, (n.d.). Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=40&tid=14 (accessed on 17 July 2019).
- Bandura, L.; Kołodyńska, D.; Franus, W. Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process. Saf. Environ. Prot. 2017, 109, 214–223. [Google Scholar] [CrossRef]
- Anjum, H.; Johari, K.; Gnanasundaram, N.; Appusamy, A.; Thanabalan, M. Impact of surface modification on adsorptive removal of BTX onto activated carbon. J. Mol. Liq. 2019, 280, 238–251. [Google Scholar] [CrossRef]
- Tournus, F.; Charlier, J.-C. Ab initiostudy of benzene adsorption on carbon nanotubes. Phys. Rev. B 2005, 71, 165421. [Google Scholar] [CrossRef]
- Su, F.; Lu, C.; Hu, S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 353, 83–91. [Google Scholar] [CrossRef]
- Diao, R.; Zhang, H.; Zhao, D.; Li, S. Adsorption and structure of benzene, toluene, and p-xylene in carbon slit pores: A Monte Carlo simulation study. Chem. Eng. Sci. 2018, 197, 120–134. [Google Scholar] [CrossRef]
- Abussaud, B.A.; Ulkem, N.; Berk, D.; Kubes, G.J. Wet Air Oxidation of Benzene. Ind. Eng. Chem. Res. 2008, 47, 4325–4331. [Google Scholar] [CrossRef] [Green Version]
- Bahmani, M.; Bitarafhaghighi, V.; Badr, K.; Keshavarz, P.; Mowla, D. The photocatalytic degradation and kinetic analysis of BTEX components in polluted wastewater by UV/H2O2-based advanced oxidation. Desalination Water Treat. 2013, 52, 3054–3062. [Google Scholar] [CrossRef]
- Xiong, W.; Mathies, C.; Bradshaw, K.; Carlson, T.; Tang, K.; Wang, Y. Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Res. 2012, 46, 4721–4731. [Google Scholar] [CrossRef]
- Shim, H.; Ma, W.; Lin, A.; Chan, K. Bio-removal of mixture of benzene, toluene, ethylbenzene, and xylenes/total petroleum hydrocarbons/trichloroethylene from contaminated water. J. Environ. Sci. 2009, 21, 758–763. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Chen, X.; Zheng, J.; Wang, G.; Liang, G. Insights into the adsorption of simple benzene derivatives on carbon nanotubes. RSC Adv. 2014, 4, 58036–58046. [Google Scholar] [CrossRef]
- Gauden, P.; Terzyk, A.; Rychlicki, G.; Kowalczyk, P.; Lota, K.; Raymundo-Pinero, E.; Frackowiak, E.; Beguin, F. Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chem. Phys. Lett. 2006, 421, 409–414. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Al Amer, A.M.; Laoui, T.; Abbas, A.; Al-Aqeeli, N.; Patel, F.; Khraisheh, M.; Atieh, M.A.; Hilal, N. Fabrication and antifouling behaviour of a carbon nanotube membrane. Mater. Des. 2016, 89, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Ihsanullah; Laoui, T.; Al-Amer, A.M.; Khalil, A.B.; Abbas, A.; Khraisheh, M.; Atieh, M.A. Novel anti-microbial membrane for desalination pretreatment: A silver nanoparticle-doped carbon nanotube membrane. Desalination 2015, 376, 82–93. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Asmaly, H.A.; Saleh, T.; Laoui, T.; Gupta, V.K.; Atieh, M.A. Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: Comprehensive study from synthesis to surface properties. J. Mol. Liq. 2015, 206, 176–182. [Google Scholar] [CrossRef]
- Zarin, S.; Aslam, Z.; Zahir, A.; Kamal, M.S.; Rana, A.G.; Ahmad, W.; Ahmed, S. Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal. J. Iran. Chem. Soc. 2018, 15, 2689–2701. [Google Scholar] [CrossRef]
- Aslam, Z.; Qaiser, M.; Ali, R.; Abbas, A.; Ihsanullah, I.; Zarin, S. Al2O3/MnO2/CNTs nanocomposite: Synthesis, characterization and phenol adsorption. Full-Nanotub. Carbon Nanostructures 2019, 27, 591–600. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Patel, F.; Al-Baghli, N.; Abussaud, B.; Tawabini, B.S.; Laoui, T. A Comparative Study of Raw and Metal Oxide Impregnated Carbon Nanotubes for the Adsorption of Hexavalent Chromium from Aqueous Solution. Bioinorg. Chem. Appl. 2017, 2017, 1624243. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Saleh, T.A. Syntheses of Carbon Nanotube-Metal Oxides Composites, Adsorption and Photo-degradation; Bianco, D.S., Ed.; InTech: London, UK, 2011; pp. 295–312. Available online: https://www.intechopen.com/chapters/16834 (accessed on 17 July 2019).
- Saravanan, R.; Thirumal, E.; Gupta, V.; Narayanan, V.; Stephen, A. The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 2012, 177, 394–401. [Google Scholar] [CrossRef]
- Anjum, H.; Johari, K.; Appusamy, A.; Gnanasundaram, N.; Thanabalan, M. Surface modification and characterization of carbonaceous adsorbents for the efficient removal of oil pollutants. J. Hazard. Mater. 2019, 379, 120673. [Google Scholar] [CrossRef] [PubMed]
Parameters | Values |
---|---|
BET surface area (m2/g) | 195.2 |
Total pore volume (cm3/g) | 0.9 |
Total pore area (m2/g) | 192.6 |
BJH average pore width (Ao) | 188.2 |
Model | Parameters | Benzene | Toluene | p-Xylene |
---|---|---|---|---|
Experimental | qe,experimental (mg/g) | 1.27 | 76.04 | 82.91 |
Pseudo-first-order | k1(min−1) × 10−3 | 3.80 | 15.90 | 36.50 |
qe,calculated (mg/g) | 2.17 | 68.42 | 76.91 | |
R2 (%) | 99.70 | 98.90 | 99.70 | |
Pseudo-second-order | k2 (g mg−1 min−1) × 10−4 | 6.50 | 2.60 | 9.60 |
qe,calculated (mg/g) | 3.62 | 79.88 | 81.42 | |
R2 (%) | 99.70 | 99.40 | 99.80 | |
Intraparticle diffusion model | kid (g mg−1 min−0.5) | 0.11 | 2.45 | 0.99 |
C (mg/g) | 4.06 | 27.73 | 60.70 | |
R2 (%) | 99.70 | 99.80 | 99.90 |
Model | Parameters | Benzene | Toluene | p-Xylene |
---|---|---|---|---|
Freundlich | KF (mg/g)/(mg/L)n | 0.58 | 0.23 | 12.86 |
n | 0.81 | 0.73 | 1.82 | |
R2 (%) | 99.10 | 99.50 | 98.40 | |
Sips | qm (mg/g) | 70.56 | 104.74 | 125.22 |
KS (L/mg) | 0.00025 | 0.00038 | 0.04157 | |
n | 0.39 | 0.51 | 0.88 | |
R2 (%) | 99.90 | 99.70 | 98.80 | |
Dubinin-Radushkevish (D-R) | qm (mg/g) | 47.10 | 50.11 | 102.76 |
B (mole2/kJ2) | 34.19 | 394.86 | 511.04 | |
Ea (kJ/mole) | 0.12 | 0.035 | 0.031 | |
R2 (%) | 96.70 | 97.80 | 97.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abussaud, B.A. Synthesis, Characterization and Application of Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles for Removal of Benzene, Toluene and p-Xylene from Aqueous Solution. Sustainability 2021, 13, 11716. https://doi.org/10.3390/su132111716
Abussaud BA. Synthesis, Characterization and Application of Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles for Removal of Benzene, Toluene and p-Xylene from Aqueous Solution. Sustainability. 2021; 13(21):11716. https://doi.org/10.3390/su132111716
Chicago/Turabian StyleAbussaud, Basim Ahmed. 2021. "Synthesis, Characterization and Application of Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles for Removal of Benzene, Toluene and p-Xylene from Aqueous Solution" Sustainability 13, no. 21: 11716. https://doi.org/10.3390/su132111716
APA StyleAbussaud, B. A. (2021). Synthesis, Characterization and Application of Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles for Removal of Benzene, Toluene and p-Xylene from Aqueous Solution. Sustainability, 13(21), 11716. https://doi.org/10.3390/su132111716