Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield
Abstract
:1. Introduction
2. Micronutrient and Soil Fertility
3. Micronutrient Deficiency in Soybean
4. Micronutrients Management
5. Soybean Micronutrients Uptake and Yield Response
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Crops. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 May 2021).
- USDA. Agriculture in the Midwest. 2017. Available online: https://www.climatehubs.usda.gov/hubs/midwest/topic/agriculture-midwest (accessed on 5 May 2021).
- Akparobi, S.O. Evaluation of six cultivars of soybean under the soil of rainforest agro-ecological zones of Nigeria. Middle East J. Sci. Res. 2009, 4, 6–9. [Google Scholar]
- USDA. Oil Crops Sector at a Glance. 2021. Available online: https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/oil-crops-sector-at-a-glance/ (accessed on 5 May 2021).
- Malakouti, M.J. The effect of micronutrients in ensuring efficient use of macronutrients. Turk. J. Agric. For. 2008, 32, 215–220. [Google Scholar]
- Mallarino, A.P.; Kaiser, D.E.; Ruiz, D.A.; Laboski, C.A.M.; Camberato, J.J.; Vyn., T.J. Micronutrients for Soybean Production in the North Central Region; CROP-3135; Iowa State University: Ames, IA, USA, 2017. [Google Scholar]
- Cakmak, I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 2002, 247, 3–24. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; ISBN 978-0-12-473542-2. [Google Scholar]
- Malakouti, M.J. Zinc is a neglected element in the life cycle of plants: A review. Middle East. Rus. J. Plant Sci. Biotechnol. 2007, 1, 1–12. [Google Scholar]
- Monreal, C.M.; DeRosa, M.; Mallubhotla, S.C.; Bindraban, P.S.; Dimkpa, C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 2016, 52, 423–437. [Google Scholar] [CrossRef]
- Oliver, M.A.; Gregory, P. Soil, food security and human health: A review. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- Mascarenhas, H.A.A.; Esteves, J.A.D.F.; Wutke, E.B.; Gallo, P.B. Micronutrients in soybeans in the state of São Paulo. Nucleus 2014, 11, 131–149. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Below, F. Nutrient Uptake, Partitioning, and Remobilization in Modern Soybean Varieties. Agron. J. 2015, 107, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Bruns, H.A. Soybean Micronutrient Content in Irrigated Plants Grown in the Midsouth. Commun. Soil Sci. Plant Anal. 2017, 28, 103. [Google Scholar] [CrossRef]
- Maharjan, B.; Shaver, T.M.; Wortmann, C.S.; Shapiro, C.A.; Ferguson, R.B.; Krienke, B.T.; Swewart, Z.P. Micronutrient Management in Nebraska, Nebraska Extension; University of Nebraska—Lincoln: Lincoln, NE, USA, 2018. [Google Scholar]
- Fageria, N.K.; Filho, M.B.; Moreira, A.; Guimarães, C.M. Foliar Fertilization of Crop Plants. J. Plant Nutr. 2010, 32, 1044–1064. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Fertilizer Use; VFRC Report 2015/5; Virtual Fertilizer Research Center: Washington, DC, USA, 2015. [Google Scholar]
- Dimkpa, C.O.; Bindraban, P.S.; Fugice, J.; Agyin-Birikorang, S.; Singh, U.; Hellums, D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron. Sustain. Dev. 2017, 37, 5. [Google Scholar] [CrossRef] [Green Version]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- McBratney, A.; Field, D.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef] [Green Version]
- FAO. An International Technical Workshop. Investing in Sustainable Crop Intensification: The Case for Improving Soil Health; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.; van Es, H.M.; Thies, J.E.; Shayler, H.A.; McBride, M.B.; et al. Comprehensive Assessment of Soil Health—The Cornell Framework, Edition 3.2; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Hills, K.; Collins, H.; Yorgey, G.; McGuire, A.; Kruger, C. Safeguarding Potato Cropping Systems in the Pacific Northwest through Improved Soil Health; Center for Sustaining Agriculture and Natural Resources, Washington State University: Pullman, WA, USA, 2018. [Google Scholar]
- Jensen, E.S.; Ambus, P.; Bellostas, N.; Boisen, S.; Brisson, N.; Corre-Hellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; von Fragstein, P.; et al. Intercropping of cereals and grain leg-umes for increased production, weed control, im-proved product quality and prevention of N-losses in European organic farming systems. In Proceedings of the International Conferences: Joint Organic Congress—Theme 4: Crop Systems and Soils, Odense, Denmark, 30–31 May 2006. [Google Scholar]
- Lemke, R.L.; Zhong, Z.; Campbell, C.A.; Zentner, R.P. Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agron. J. 2007, 99, 1719–1725. [Google Scholar] [CrossRef]
- La Favre, J.S.; Focht, D.D. Conservation in soil of H2 liberated from N2 fixation by H up-nodules. Appl. Environ. Microb. 1983, 46, 304–311. [Google Scholar] [CrossRef] [Green Version]
- USDA. Legumes and Soil Quality; Technical Note No. 6; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 1998; p. 998. [Google Scholar]
- Rengel, Z.; Batten, G.; Crowley, D. Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crop. Res. 1999, 60, 27–40. [Google Scholar] [CrossRef]
- Schulin, R.; Khoshgoftarmanesh, A.; Afyuni, M.; Nowack, B.; Frossard, E. Effects of soil management on zinc uptake and its bioavailability in plants. In Development and Uses of Biofortified Agricultural Products; Banuelos, G., Lin, Z., Eds.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Rogers, E. The 4R’s of Nutrient Management. Michigan State University Extension. 2019. Available online: https://www.canr.msu.edu/news/the-4r-s-of-nutrient-management (accessed on 21 May 2021).
- Recous, S.; Robin, D.; Darwis, D.; Mary, B. Soil inorganic nitrogen availability: Effect on maize residue decomposition. Soil Biol. Biochem. 1995, 27, 1529–1538. [Google Scholar] [CrossRef]
- Hobbie, S.E. Contrasting Effects of Substrate and Fertilizer Nitrogen on the Early Stages of Litter Decomposition. Ecosystem 2005, 8, 644–656. [Google Scholar] [CrossRef]
- Ladha, J.K.; Kesava Reddy, C.; Padre, A.D.; van Kessel, C. Role of nitrogen fertilization in sustaining organic matter in culti-vated soils. J. Environ. Qual. 2011, 40, 1756–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiseller, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- de Santiago, A.; Quintero, J.M.; Delgado, A. Long-term effects of tillage on the availability of iron, copper, manganese, and zinc in a Spanish Vertisol. Soil Tillage Res. 2008, 98, 200–207. [Google Scholar] [CrossRef]
- Motschenbacher, J.M.; Brye, K.R.; Anders, M.M.; Gbur, E.E. Long-term rice rotation, tillage, and fertility effects on near-surface chemical properties in a silt-loam soil. Nutr. Cycl. Agroecosyst. 2014, 100, 77–94. [Google Scholar] [CrossRef]
- Moreira, S.G.; Prochnow, L.I.; Kiehl, J.D.C.; Pauletti, V.; Martin-Neto, L. Chemical forms in soil and availability of manganese and zinc to soybean in soil under different tillage systems. Soil Tillage Res. 2016, 163, 41–53. [Google Scholar] [CrossRef]
- Wei, X.; Hao, M.; Shao, M.; Gale, W.J. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil Tillage Res. 2006, 91, 120–130. [Google Scholar] [CrossRef]
- Zhong, W.; Cai, Z. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl. Soil Ecol. 2007, 36, 84–91. [Google Scholar] [CrossRef]
- Chang, E.-H.; Chung, R.-S.; Wang, F.-N. Effect of different types of organic fertilizers on the chemical properties and enzymatic activities of an Oxisol under intensive cultivation of vegetables for 4 years. Soil Sci. Plant Nutr. 2008, 54, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Surekha, K.; Latha, P.C.; Rao, K.V.; Kumar, R.M. Grain Yield, Yield Components, Soil Fertility, and Biological Activity under Organic and Conventional Rice Production Systems. Commun. Soil Sci. Plant Anal. 2010, 41, 2279–2292. [Google Scholar] [CrossRef]
- Weber, J.; Karczewska, A.; Drozd, J.; Licznar, M.; Jamroz, E.; Kocowicz, A. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem. 2007, 39, 1294–1302. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, H.P.; Yadav, D.S. Correcting nutrients for sustainable crop production. Indian J. Fert. 2007, 2, 37–44. [Google Scholar]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in ag-ricultural soils as influenced by organic matter build-up: A review. Environ. Sust. Indic. 2019, 1, 100007. [Google Scholar]
- Soni, M.L.; Swarup, A.; Singh, M. Effect of manganese and phosphorus application on yield and nutrition of wheat in reclaimed sodic soil. Curr. Agric. 2000, 24, 105–109. [Google Scholar]
- Singh, V.; Ram, N. Effect of 25 years of continuous fertilizer use on response to applied nutrients and uptake of micronutrients by rice-wheat-cowpea system. Cereal Res. Commun. 2005, 33, 589–594. [Google Scholar] [CrossRef]
- Kowaljow, E.; Mazzarino, M.J. Soil restoration in semiarid Patagonia: Chemical and biological response to different compost quality. Soil Biol. Biochem. 2007, 39, 1580–1588. [Google Scholar] [CrossRef]
- Pedra, F.; Polo, A.; Ribeiro, A.; Domingues, H. Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biol. Biochem. 2007, 39, 1375–1382. [Google Scholar] [CrossRef]
- Sebastia, J.; Labanowski, J.; Lamy, I. Changes in soil organic matter chemical properties after organic amendments. Chemosphere 2007, 68, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Welbaum, G.E.; Sturz, A.V.; Dong, Z.; Nowak, J. Managing Soil Microorganisms to Improve Productivity of Agro-Ecosystems. Crit. Rev. Plant Sci. 2004, 23, 175–193. [Google Scholar] [CrossRef]
- Lamps, S. Principles of integrated plant nutrition management system. In Proceedings of the Symposium Integrated Plant Nutrition Management, Islamabad, Pakistan, 8–10 November 1999. [Google Scholar]
- Truog, E. Soil Reaction Influence on Availability of Plant Nutrients. Soil Sci. Soc. Am. J. 1946, 11, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Butzen, S. Micronutrients for Crop Production. Pioneer Crop Insights 2020, 20, 1–4. [Google Scholar]
- Mundorf, T.; Wortmann, C.; Shapiro, C.; Paparozzi, E. Time of Day Effect on Foliar Nutrient Concentrations in Corn and Soybean. J. Plant Nutr. 2015, 38, 2312–2325. [Google Scholar] [CrossRef]
- Lohry, R. Micronutrients: Functions, sources and application methods. In Proceedings of the Indiana CCA Conference, Indianapolis, IN, USA, 18–19 December 2007. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides, 2nd ed.; Wiley-CH: Weinheim, Germany, 2003. [Google Scholar]
- Hansen, N.C.; Schmitt, M.A.; Anderson, J.E.; Strock, J. Iron Deficiency of Soybean in the Upper Midwest and Associated Soil Properties. Agron. J. 2003, 95, 1595–1601. [Google Scholar] [CrossRef]
- Sinclair, J.B. Soybeans. In Nutrient Deficiencies in Toxicities in Crop Plants, 3rd ed.; Bennett, W.F., Ed.; American Phytopathological Society: Saint Paul, MN, USA, 1996. [Google Scholar]
- Kaiser, D.E.; Fernandez, F.; Wilson, M. Fertilizing Soybean in Minnesota; University of Minnesota Extension: Saint Paul, MN, USA, 2020. [Google Scholar]
- Ritchey, E.; Lee, C.; Knott, C.; Grove, J. Plant and Soil Sciences. Soybean Nutrient Management in Kentucky; University of Kentucky College of Agriculture, Food and Environment Cooperative Extension Service: Lexington, KY, USA, 2014. [Google Scholar]
- Graham, M.J.; Nickell, C.D.; Hoeft, R.G. Effect of manganese deficiency on seed yield of soybean cultivars. J. Plant Nutr. 1994, 17, 1333–1340. [Google Scholar] [CrossRef]
- Boring, T.J.; Thelen, K.D. Soybean foliar manganese recommendations on chronically Mn deficient soils. In Proceedings of the 39th North Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, 18–19 November 2009. [Google Scholar]
- Mengel, D. Role of Micronutrients in Efficient Crop Production; Purdue University: West Lafayette, IN, USA, 1990. [Google Scholar]
- Culman, S.; Fulford, A.; Camberato, J.; Steinke, K. Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat and Alfalfa; Ohio State University: Columbus, OH, USA, 2020. [Google Scholar]
- Freitas, D.S.; Rodak, B.W.; dos Reis, A.R.; Reis, F.D.B.; De Carvalho, T.S.; Schulze, J.; Carneiro, M.A.C.; Guilherme, L.R.G. Hidden Nickel Deficiency? Nickel Fertilization via Soil Improves Nitrogen Metabolism and Grain Yield in Soybean Genotypes. Front. Plant Sci. 2018, 9, 614. [Google Scholar] [CrossRef] [Green Version]
- Dell, B.; Huang, L. Physiological response of plants to low boron. Plant Soil 1997, 193, 103–120. [Google Scholar] [CrossRef]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in Plant Biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Fleischer, A.; O’Neill, M.A.; Ehwald, R. The pore size of non-graminaceaous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 1999, 121, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers, 4th ed.; Macmillan Publishing Co.: New York, NY, USA, 1985. [Google Scholar]
- Hanson, E.J. Movement of Boron Out of Tree Fruit Leaves. HortScience 1991, 26, 271–273. [Google Scholar] [CrossRef]
- Brown, P.H.; Hu, H. Does boron play only a structural role in the growing tissues of higher plants? Plant Soil 1997, 196, 211–215. [Google Scholar] [CrossRef]
- Sutradhar, A.K.; Kaiser, D.E.; Rosen, C.J. Boron for Minnesota soils. University of Minnesota Extension Publications. 2016. Available online: https://extension.umn.edu/micro-and-secondary-macronutrients/boron-minnesota-soils (accessed on 12 June 2021).
- Martens, D.C.; Westermann, D.T. Fertilizer Applications for Correcting Micronutrient Deficiencies. In SSSA Book Series; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 2018; pp. 549–592. [Google Scholar]
- Sutradhar, A.K.; Kaiser, D.E.; Behnken, L.M. Soybean Response to Broadcast Application of Boron, Chlorine, Manganese, and Zinc. Agron. J. 2017, 109, 1048–1059. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.L.; Norvell, W.A.; Philpot, W.D.; Peverly, J.H. Spectral Detection of Micronutrient Deficiency in ‘Bragg’ Soybean. Agron. J. 2000, 92, 261–268. [Google Scholar] [CrossRef]
- Westfall, D.G.; Bauder, T.A. Zinc and Iron Deficiencies; Colorado State University Extension: Fort Collins, CO, USA.
- Grunes, D.L.; Boawn, L.C.; Carlson, C.W.; Viets, R.G. Land Leveling May Cause Zinc Deficiency. In Micronutrients in Agriculture; Mortvedt, J.J., Ed.; The Soil Science Society of America Book Series No. 4; The Soil Science Society of America: Madison, WI, USA, 1961. [Google Scholar]
- Carter, O.G.; Rose, I.A.; Reading, P.F. Variation in Susceptibility to Manganese Toxicity in 30 Soybean Genotypes. Crop. Sci. 1975, 15, 730–732. [Google Scholar] [CrossRef]
- Parker, M.B.; Harris, H.B.; Morris, H.D.; Perkins, H.F. Manganese Toxicity of Soybeans as Related to Soil and Fertility Treatments. Agron. J. 1969, 61, 515–518. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [Green Version]
- Mortvedt, J.J. Bioavailability of micronutrients. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000; p. 2148. [Google Scholar]
- Ritchie, S.W.; Hanway, J.J.; Thompson, H.E.; Benson, G.O. How a Soybean Plant Develops; Special Report 53; Revised Edition Service: Ames, IA, USA, 1994. [Google Scholar]
- Karimian, N.; Cox, F.R. Molybdenum Availability as Predicted from Selected Soil Chemical Properties. Agron. J. 1979, 71, 63–65. [Google Scholar] [CrossRef]
- Goldberg, S.; Shouse, P.J.; Lesch, S.M.; Grieve, C.M.; Poss, J.A.; Forster, H.S.; Suarez, D.L. Soil boron extractions as indicators of boron content of field-grown crops. Soil Sci. 2002, 167, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Wurzburger, N.; Bellenger, J.P.; Kraepiel, A.M.L.; Hedin, L.O. Molybdenum and Phosphorus Interact to Constrain Asymbiotic Nitrogen Fixation in Tropical Forests. PLoS ONE 2012, 7, e33710. [Google Scholar] [CrossRef]
- Jean, M.-E.; Phalyvong, K.; Forest-Drolet, J.; Bellenger, J.-P. Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: Influence of vegetative cover and seasonal variability. Soil Biol. Biochem. 2013, 67, 140–146. [Google Scholar] [CrossRef]
- Yang, J.; Blanchar, R.W. Differentiating Chloride Susceptibility in Soybean Cultivars. Agron. J. 1993, 85, 880–885. [Google Scholar] [CrossRef]
- Rupe, J.C.; Widick, J.D.; Sabbe, W.E.; Robbins, R.T.; Becton, C.B. Effect of Chloride and Soybean Cultivar on Yield and the Development of Sudden Death Syndrome, Soybean Cyst Nematode, and Southern Blight. Plant Dis. 2000, 84, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.B.; Gascho, G.J.; Gaines, T.P. Chloride Toxicity of Soybeans Grown on Atlantic Coast Flatwoods Soils. Agron. J. 1983, 75, 439–443. [Google Scholar] [CrossRef]
- Chen, C.; Huang, D.; Liu, J. Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects. CLEAN Soil, Air, Water 2009, 37, 304–313. [Google Scholar] [CrossRef]
- Muhammad, B.H.; Shafaqat, A.; Aqeel, A.; Saadia, H.; Muhammad, A.F.; Basharat, A.; Saima, A.B.; Hussain, M.B.; Ali, S.; Azam, A.; et al. Morphological, physiological and biochemical responses of plants to nickel stress: A review. Afr. J. Agric. Res. 2013, 8, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, A.R.; Barcelos, J.P.D.Q.; Osório, C.R.W.D.S.; Santos, E.F.; Lisboa, L.A.M.; Santini, J.M.K.; dos Santos, M.J.D.; Junior, E.F.; Campos, M.; de Figueiredo, P.A.M.; et al. A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environ. Exp. Bot. 2017, 144, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.H.; Welch, R.M.; Cary, E.E. Nickel: A Micronutrient Essential for Higher Plants. Plant Physiol. 1987, 85, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Dixon, N.E.; Gazzola, C.; Blakeley, R.L.; Zerner, B. Jack bean urease (EC 3.5.1.5). Metalloenzyme. Simple biological role for nickel. J. Am. Chem. Soc. 1975, 97, 4131–4133. [Google Scholar] [CrossRef]
- Polacco, J.C.; Mazzafera, P.; Tezotto, T. Opinion—Nickel and urease in plants: Still many knowledge gaps. Plant Sci. 2013, 199-200, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Witte, C.-P. Urea metabolism in plants. Plant Sci. 2011, 180, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Minor, H.C.; Wiebold, W. Wheat-Soybean Double-Crop Management in Missouri; University of Missouri Extension: Columbia, MO, USA, 1998. [Google Scholar]
- Neumann, P.M. Late-season foliar fertilization with macronutrients—Is there a theoretical basis for increased seed yields? J. Plant Nutr. 1982, 5, 1209–1215. [Google Scholar] [CrossRef]
- Rashid, A.; Rafique, E.; Ryan, J. Establishment and Management of Boron Deficiency in Field Crops in Pakistan. In Boron in Plant and Animal Nutrition; Springer: Boston, MA, USA, 2002; pp. 339–348. [Google Scholar]
- Zekri, M.; Obreza, T.A. Micronutrient Deficiencies in Citrus: Iron, Zinc, and Manganese; University of Florida: Gainesville, FL, USA, 2003. [Google Scholar]
- Boaretto, A.; Boaretto, R.; Muraoka, T.; Filho, V.N.; Tiritan, C.S.; Filho, F.M. Foliar micronutrient application effects on citrus fruit yield, soil and leaf zn concentrations and 65zn mobilization within the plant. Acta Hortic. 2002, 594, 203–209. [Google Scholar] [CrossRef]
- Ghasemian, V.; Ghalavand, A.; Soroosh zadeh, A.; Pirzad, A. The effect of iron, zinc and manganese on quality and quantity of soybean seed. J. Phytol. 2010, 2, 73–79. [Google Scholar]
- Fernández, V.; Eichert, T. Uptake of Hydrophilic Solutes through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Joy, E.; Stein, A.; Young, S.D.; Ander, E.L.; Watts, M.; Broadley, M.R. Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 2015, 389, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Randall, G.W.; Schulte, E.E.; Corey, R.B. Effect of Soil and Foliar-applied Manganese on the Micronutrient Content and Yield of Soybeans. Agron. J. 1975, 67, 502–507. [Google Scholar] [CrossRef]
- Enderson, J.T.; Mallarino, A.P.; Haq, M.U. Soybean Yield Response to Foliar-Applied Micronutrients and Relationships among Soil and Tissue Tests. Agron. J. 2015, 107, 2143–2161. [Google Scholar] [CrossRef]
- Widmar, A.; Ruiz Diaz, D.A. Evaluation of Macro- and Micronutrients for Double-Crop Soybean after Wheat. Kansas Fertilizer Research; Kansas State University Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 2012. [Google Scholar]
- Stewart, Z.P.; Paparozzi, E.T.; Wortmann, C.S.; Jha, P.K.; Shapiro, C.A. Foliar Micronutrient Application for High-Yield Maize. Agronomy 2020, 10, 1946. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Bindraban, P.S. Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 2016, 36, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Chauhan, A.; Ladon, T. Site specific nutrient management: A review. J. Pharmacogn. Phytochem. 2020, 9, 233–236. [Google Scholar]
- Eze, P.N.; Udeigwe, T.K.; Stietiya, M.H. Distribution and potential source evaluation of heavy metals in prominent soils of Accra Plains, Ghana. Geoderma 2010, 156, 357–362. [Google Scholar] [CrossRef]
- Foroughifar, H.; Jafarzadeh, A.A.; Torabi, H.; Pakpour, A.; Miransari, M. Using Geostatistics and Geographic Information System Techniques to Characterize Spatial Variability of Soil Properties, Including Micronutrients. Commun. Soil Sci. Plant Anal. 2013, 44, 1273–1281. [Google Scholar] [CrossRef]
- Vasu, D.; Sahu, N.; Tiwary, P.; Chandran, P. Modelling the spatial variability of soil micronutrients for site specific nutrient management in a semi-arid tropical environment. Model. Earth Syst. Environ. 2021, 7, 1797–1812. [Google Scholar] [CrossRef]
- Liu, X.M.; Xu, J.M.; Zhang, M.K.; Huang, J.H.; Shi, J.C.; Yu, X.F. Application of geostatistics and GIS technique to characterize spatial variabilities of bioavailable micronutrients in paddy soils. Environ. Geol. 2004, 46, 189–194. [Google Scholar] [CrossRef]
- Eze, P.N.; Kumahor, S.K. Gaussian process simulation of soil Zn micronutrient spatial heterogeneity and uncertainty – A performance appraisal of three semivariogram models. Sci. Afr. 2019, 5, e00110. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.-P.; Liu, Y.-X.; Huang, H.-Q.; Fang, Q.-F. Spatial Variability of Micronutrients in Rice Grain and Paddy Soil. Pedosphere 2009, 19, 748–755. [Google Scholar] [CrossRef]
- Udeigwe, T.K.; Eichmann, M.; Eze, P.N.; Ogendi, G.M.; Morris, M.N.; Riley, M.R. Copper micronutrient fixation kinetics and interactions with soil constituents in semi-arid alkaline soils. Soil Sci. Plant Nutr. 2016, 62, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xu, X.; Huang, B.; Sun, W.; Shao, X.; Shi, X.; Ruan, X. Using robust kriging and sequential Gaussian simulation to delineate the copper- and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environ. Geol. 2007, 52, 1423–1433. [Google Scholar] [CrossRef]
- Eze, P.N.; Kumahor, S.K.; Kebonye, N.M. Predictive mapping of soil copper for site-specific micronutrient management using GIS-based sequential Gaussian simulation. Model. Earth Syst. Environ. 2021, 1–11. [Google Scholar] [CrossRef]
- Eljebri, S.; Mounir, M.; Faroukh, A.T.; Zouahri, A.; Tellal, R. Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Model. Earth Syst. Environ. 2019, 5, 669–687. [Google Scholar] [CrossRef]
- Heidarian, A.R.; Kord, H.; Mostafavi, K.; Lak, A.P.; Mashhadi, F.A. Investigating Fe and Zn foliar application on yield and its components of soybean (Glycine max L) at different growth stages. J. Agric. Biotech. Sustain. Dev. 2011, 3, 189–197. [Google Scholar]
- Fox, T.C.; Guerinot, M.L. Molecular biology of cation transport in plants. Annu. Rev. Plant Biol. 1998, 49, 669–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekhtiari, S.; Kobraee, S.; Shamsi, K. Soybean yield under water deficit conditions. J. Biodivers. Environ. Sci. 2013, 3, 46–52. [Google Scholar]
- Heidarzade, A.; Esmaeili, M.; Bahmanyar, M.; Abbasi, R. Response of soybean (Glycine max) to molybdenum and iron spray under well-watered and water deficit conditions. J. Exp. Biol. Agric. Sci. 2016, 4, 37–46. [Google Scholar]
- Ross, J.R.; Slaton, N.A.; Brye, K.R.; DeLong, R.E. Boron Fertilization Influences on Soybean Yield and Leaf and Seed Boron Concentrations. Agron. J. 2006, 98, 198–205. [Google Scholar] [CrossRef]
- Touchton, J.T.; Boswell, F.C.; Marchant, W.H. Boron for soybeans grown in Georgia. Commun. Soil Sci. Plant Anal. 1980, 11, 369–378. [Google Scholar] [CrossRef]
- Schon, M.K.; Blevins, D.G. Foliar Boron Applications Increase the Final Number of Branches and Pods on Branches of Field-Grown Soybeans. Plant Physiol. 1990, 92, 602–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oplinger, E.S.; Hoeft, R.G.; Johnson, J.W.; Tracy, P.W. Boron fertilization of soybeans: A regional summary. In Foliar Fertilization of Soybeans and Cotton; Murphy, L.S., Ed.; PPI/FAR Technical Bullet 1993-1; Potash Phosphate Institute: Norcross, GA, USA, 1993. [Google Scholar]
- Touchton, J.T.; Boswell, F.C. Effects of B Application on Soybean Yield, Chemical Composition, and Related Characteristics. Agron. J. 1975, 67, 417–420. [Google Scholar] [CrossRef]
- Bellaloui, N. Effect of Water Stress and Foliar Boron Application on Seed Protein, Oil, Fatty Acids, and Nitrogen Metabolism in Soybean. Am. J. Plant Sci. 2011, 2, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Rose, I.; Felton, W.; Banks, L. Responses of four soybean varieties to foliar zinc fertilizer. Aust. J. Exp. Agric. 1981, 21, 236–240. [Google Scholar] [CrossRef]
- Gettier, S.W.; Martens, D.C.; Brumback, T.B. Timing of Foliar Manganese Application for Correction of Manganese Deficiency in Soybean. Agron. J. 1985, 77, 627–630. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Haq, M.U.; Wittry, D.; Bermudez, M. Variation in Soybean Response to Early Season Foliar Fertilization among and within Fields. Agron. J. 2001, 93, 1220–1226. [Google Scholar] [CrossRef]
- Martens, D.C.; Carter, M.T.; Jones, G.D. Response of Soybeans Following Six Annual Applications of Various Levels of Boron, Copper, and Zinc. Agron. J. 1974, 66, 82–84. [Google Scholar] [CrossRef]
- Orlowski, J.M.; Haverkamp, B.J.; Laurenz, R.G.; Marburger, D.A.; Wilson, E.W.; Casteel, S.N.; Conley, S.; Naeve, S.L.; Nafziger, E.D.; Roozeboom, K.L.; et al. High-Input Management Systems Effect on Soybean Seed Yield, Yield Components, and Economic Break-Even Probabilities. Crop. Sci. 2016, 56, 1988–2004. [Google Scholar] [CrossRef]
- Kutman, B.Y.; Kutman, U.B.; Cakmak, I. Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean. Plant Soil 2013, 363, 61–75. [Google Scholar] [CrossRef]
- Lavres, J.; Franco, G.C.; Câmara, G.M.D.S. Soybean Seed Treatment with Nickel Improves Biological Nitrogen Fixation and Urease Activity. Front. Environ. Sci. 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.M.; Rezende, C.F.A.; Leandro, W.; Ratke, R.F.; Flores, R.; Da Silva, Á.R.; Goiânia, G.-B. Effects of micronutrients application on soybean yield. Aust. J. Crop. Sci. 2016, 10, 1092–1097. [Google Scholar] [CrossRef]
- Vyas, M.D.; Jain, A.K.; Tiwari, R.J. Long-term effect of micronutrients and FYM on yield of and nutrient uptake by soybean on a typic chromustert. J. Indian Soc. Soil Sci. 2003, 51, 45–47. [Google Scholar]
- Dwivedi, G.K.; Dwivedi, M.; Pal, S.S. Modes of application of micronutrients in acid soil in soybean-wheat crop sequence. J. Indian Soc. Soil Sci. 1990, 38, 458–463. [Google Scholar]
- Shivakumar, B.G.; Ahlawat, I.P.S. Integrated nutrient management in soybean (Glycine max)—Wheat (Triticum aestivum) cropping system. Indian J. Agron. 2008, 53, 273–278. [Google Scholar]
- Kobraee, S.; Shamsi, K.; Rasekhi, B. Effect of micronutrients application on yield and yield components of soybean. Ann. Biol. Res. 2011, 2, 476–482. [Google Scholar]
- Gheshlaghi, M.Z.; Pasari, B.; Shams, K.; Rokhzadi, A.; Mohammadi, K. The effect of micronutrient foliar application on yield, seed quality and some biochemical traits of soybean cultivars under drought stress. J. Plant Nutr. 2019, 42, 2715–2730. [Google Scholar] [CrossRef]
- Kobraei, S.; Etminan, A.; Mohammadi, R.; Kobraee, S. Effect of drought stress on yield and yield components of soybean. Ann. Biol. Res. 2011, 2, 504–509. [Google Scholar]
- Zahoor, F.; Ahmed, M.; Malik, M.A.; Mubeen, K.; Siddiqui, M.H.; Rasheed, M.; Ansar, R.; Mehmood, K. Soybean (Glycine max L.) response to micro-nutrients. Turkish J. Filed Crops 2013, 18, 134–138. [Google Scholar]
- Hegazi, A.; Mohamed, M.A.; Sayed, A.G.S.; Elsherif, M.H.; Gad, N. Reducing N doses by enhancing nodule formation in groundnut plants via Co and Mo. Australian J. Basic Appl. Sci. 2011, 5, 2568–2577. [Google Scholar]
- Eisa, S.A.I.; Mohamed, T.B.; Mohamedin, A.M.A. Amendment of soil fertility and augmentation of the quantity and quality of soybean crop by using phosphorus and micronutrients. Int. J. Acad. Res. 2011, 3, 1–9. [Google Scholar]
- Abd E-Hady, B.A. Effect of zinc application on growth and nutrient uptake of barley plant irrigated with saline water. J. Appl. Sci. Res. 2007, 3, 431–436. [Google Scholar]
- Kolesar, V.; Sharipova, G.; Safina, D.; Safin, R. Use of foliar fertilizers on soybeans in the Republic of Tatarstan. BIO Web Conf. 2020, 17, 00069. [Google Scholar] [CrossRef] [Green Version]
- Novytska, N.; Gadzovskiy, G.; Mazurenko, B.; Kalenska, S.; Svistunova, I.; Martynov, O. Effect of seed inoculation and foliar fertilizing on structure of soybean yield and yield structure in Western Polissya of Ukraine. Agron. Res. 2020, 18, 2512–2519. [Google Scholar] [CrossRef]
Element | Range of Concentrations (ppm) | Adequate Concentration (ppm) |
---|---|---|
Iron (Fe) | 20–600 | 100 |
Boron (B) | 0.20–800 | 20 |
Manganese (Mn) | 10–600 | 50 |
Zinc (Zn) | 10–250 | 20 |
Copper (Cu) | 2–50 | 6 |
Molybdenum (Mo) | 0.10–10 | 0.10 |
Chlorine (Cl) | 10–80,000 | 100 |
Nickel (Ni) | 0.05–5 | 0.05 |
Micronutrient | Soil Characteristics Favoring Deficiency in Soybean | References |
---|---|---|
Iron (Fe) | Soils with high pH (>7.4), soluble salts, and/or calcium carbonate levels, and low SOM. | Butzen [53], Kaiser et al. [59] |
Boron (B) | Alkaline or strongly acidic soils in high rainfall areas or under drought conditions (low rainfall). | Lohry [55] |
Manganese (Mn) | Medium and fine-textured soils with high pH (>6.5), low SOM, and poor drainage. | Butzen [53], Ritchey [60], Graham et al. [61], Boring and Thelen [62] |
Zinc (Zn) | Sandy soils with a near-neutral pH (6.5), high P levels, low SOM, and cool wet soil conditions. | Bruns [14], Mengel [63], Culman et al. [64] |
Copper (Cu) | Alkaline peat musk soil with pH between 7 and 8 and highly leached sandy soils. | Sinclair [58] |
Molybdenum (Mo) | Highly acidic soils (pH < 5.8) that are strongly weathered and leached. | Butzen [53], Ritchey [60], Culman et al. [64] |
Chlorine (Cl) | Occasionally on sandy soils in dry areas. | Sinclair [58] |
Nickel (Ni) | Soils poor in extractable Ni. | Freitas [65] |
Micronutrient | Nutrient Uptake (kg·ha−1) by 4000 kg·ha−1 Soybean |
---|---|
Iron (Fe) | 1.91 |
Manganese (Mn) | 0.67 |
Zinc (Zn) | 0.22 |
Boron (B) | 0.11 |
Copper (Cu) | 0.11 |
Molybdenum (Mo) | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, S.; Bhandari, A.; Ghimire, R.; Xue, Q.; Kidwaro, F.; Ghatrehsamani, S.; Maharjan, B.; Goodwin, M. Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. Sustainability 2021, 13, 11766. https://doi.org/10.3390/su132111766
Thapa S, Bhandari A, Ghimire R, Xue Q, Kidwaro F, Ghatrehsamani S, Maharjan B, Goodwin M. Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. Sustainability. 2021; 13(21):11766. https://doi.org/10.3390/su132111766
Chicago/Turabian StyleThapa, Sushil, Ammar Bhandari, Rajan Ghimire, Qingwu Xue, Fanson Kidwaro, Shirin Ghatrehsamani, Bijesh Maharjan, and Mark Goodwin. 2021. "Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield" Sustainability 13, no. 21: 11766. https://doi.org/10.3390/su132111766
APA StyleThapa, S., Bhandari, A., Ghimire, R., Xue, Q., Kidwaro, F., Ghatrehsamani, S., Maharjan, B., & Goodwin, M. (2021). Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. Sustainability, 13(21), 11766. https://doi.org/10.3390/su132111766