Nautical Tourism in Marine Protected Areas (MPAs): Evaluating an Impact of Copper Emission from Antifouling Coating
Abstract
:1. Introduction
Study Site
2. Materials and Methods
2.1. Video Surveillance System for Real-Time Automatic Counting Off Vessel Passes
2.2. Assessment of Nautical Status Using Drone Spot Monitoring and Heat Maps
- (a)
- DJI Phantom 3 Advanced with 12-megapixel camera HD Vide (DJI, Shenzhen, China).
- (b)
- DJI Inspire 1 v2 + Zenmuse X5 with 16-megapixel camera 2HD Video (DJI, China).
2.3. Sampling, Sample Pre-Treatment and Measurement of Copper Content
2.4. Estimation of the Antifouling Emission
- -
- Leaching of Cu increases with increasing salinity and higher temperatures (19° vs. 4 °C) resulted in greater metal leaching under many conditions [37].
- -
- Emissions of 8.2 ± 2.7 µg/cm2/day were measured in recreational boats [38],
- -
- Antifouling paints with nano-additives showed a slow and steady release rate in the range of 20 to 25 µg/cm2/day [39].
- -
- The copper release rate along the salinity gradient varied from almost 0 in freshwater to 25 µg/cm2/day [40].
- -
- It was recommended that future environmental impact assessments of antifouling products [21] use site-specific release rates to estimate exposures to copper and other biocides.
3. Results and Discussion
3.1. Monitoring of Nautical Traffic and Copper Concentrations
3.2. Estimating Cu Emission from Stationary Vessels
3.3. Estimating the Cu Toxicity Risk
- Bioaccumulation;
- Reduction in food availability due to the negative effects of Cu on phytoplankton [46].
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COGEA. Study on the Establishment of a fraMework for Processing and Analysing Maritime Economic Data in Europe. Final Report for DG Maritime Affairs and Fisheries under Contract no EASME/EMFF/2014/1.3.1.13/SI2.718095. Accompanying Statistical Database. 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/9c132514-982d-11e7-b92d-01aa75ed71a1 (accessed on 20 September 2021). [CrossRef]
- Šulc, I.; Fuerst-Bjeliš, B. Changes of tourism trajectories in (post)covidian world: Croatian perspectives. Res. Glob. 2021, 3, 100052. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Crovella, T.; Paiano, A.; Alves, H. A Review of Research on Tourism Industry, Economic Crisis and Mitigation Process of the Loss: Analysis on Pre, During and Post Pandemic Situation. Sustainability 2021, 13, 10314. [Google Scholar] [CrossRef]
- Martínez Vázquez, R.M.; Milán García, J.; De Pablo Valenciano, J. Analysis and Trends of Global Research on Nautical, Maritime and Marine Tourism. J. Mar. Sci. Eng. 2021, 9, 93. [Google Scholar] [CrossRef]
- Ukić Boljat, H.; Grubišić, N.; Slišković, M. The Impact of Nautical Activities on the Environment—A Systematic Review of Research. Sustainability 2021, 13, 10552. [Google Scholar] [CrossRef]
- Venturini, S.; Massa, F.; Castellano, M.; Fanciulli, G.; Povero, P. Recreational boating in the Portofino Marine Protected Area (MPA), Italy: Characterization and analysis in the last decade (2006–2016) and some considerations on management. Mar. Policy 2021, 127, 103178. [Google Scholar] [CrossRef]
- Lloret, J.; Carreño, A.; Carić, H.; San, J.; Fleming, L.E. Environmental and human health impacts of cruise tourism: A review. Mar. Pollut. Bull. 2021, 173, 112979. [Google Scholar] [CrossRef]
- Carić, H.; Mackelworth, P. Cruise tourism environmental impacts—The perspective from the Adriatic Sea. Ocean Coast. Manag. 2014, 102, 350–363. [Google Scholar] [CrossRef]
- Carreno, A.; Lloret, J. Environmental impacts of increasing leisure boating activity in Mediterranean coastal waters. Ocean Coast. Manag. 2021, 209, 105693. [Google Scholar] [CrossRef]
- Wahl, M. Marine Epibiosis. I. Fouling and Antifouling: Some Basic Aspects. In Marine Ecology Progress Series; 1998; Volume 58, pp. 175–189. Available online: http://www.int-res.com/articles/meps/58/m058p175.pdf (accessed on 20 September 2021).
- Dobretsov, S.; Al-Shibli, H.; Maharachchikumbura, S.S.N.; Al-Sadi, A.M. The Presence of Marine Filamentous Fungi on a Copper-Based Antifouling Paint. Appl. Sci. 2021, 11, 8277. [Google Scholar] [CrossRef]
- Hedgepeth, J. Marine Fouling and Its Prevention; Woods Hole Oceanographic Institution: Annapolis, MA, USA, 1952; p. 580. [Google Scholar]
- Lindgren, J.; Wilewska-Bien, M.; Granhag, L.; Andersson, K.; Eriksson, K. Discharges to the sea. In Shipping and the Environment; Springer: Berlin/Heidelberg, Germany, 2016; pp. 125–168. [Google Scholar]
- Torres, G.F.; De-la-Torre, G.E. Environmental pollution with antifouling paint particles: Distribution, ecotoxicology, and sustainable alternatives. Mar. Pollut. Bull. 2021, 169, 112529. [Google Scholar] [CrossRef]
- Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011, 62, 453–465. [Google Scholar] [CrossRef]
- Erdelez, A.; Furdek Turk, M.; Štambuk, A.; Župan, I.; Peharda, M. Ecological quality status of the Adriatic coastal waters evaluated by the organotin pollution biomonitoring. Mar. Pollut. Bull. 2017, 123, 313–323. [Google Scholar] [CrossRef]
- Ytreberg, E.; Bighiu, M.A.; Lundgren, L.; Eklund, B. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats. Environ. Pollut. 2016, 213, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Amara, I.; Miled, W.; Slama, R.B.; Ladhari, N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 2018, 57, 115–130. [Google Scholar] [CrossRef]
- Leon, L.M.; Warnken, J. Copper and sewage inputs from recreational vessels at popular anchor sites in a semi-enclosed Bay (Qld, Australia): Estimates of potential annual loads. Mar. Pollut. Bull. 2008, 57, 838–845. [Google Scholar] [CrossRef]
- MACGlide. MACmar—MacGlide Foil. Available online: https://www.macglide.eu/ (accessed on 20 September 2021).
- Ytreberg, E.; Lagerstrom, M.; Nou, S.; Wiklund, A.E. Environmental risk assesment of using antifouling paints on pleasure crafts in European Union waters. J. Environ. Manag. 2021, 281, 111846. [Google Scholar] [CrossRef] [PubMed]
- Cukrov, N.; Frančišković-Bilinski, S.; Bogner, D. Metal contamination recorded in the sediment of the semi-closed Bakar Bay (Croatia). Environ. Geochem. Health 2014, 36, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, A.S.; Oranu, E.A.; Tao, M.; Keller, A.A. Release and detection of nanosized copper from a commercial antifouling paint. Water Res. 2016, 102, 374–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deaehne, D.; Fürle, C.; Thomsen, A.; Watermann, B.; Feibicke, M. Antifouling Biocides in German Marinas: Exposure Assessment and Calculation of National Consumption and Emission. Integr. Environ. Assess. Manag. 2017, 13, 892–905. [Google Scholar] [CrossRef]
- Di Cesare, A.; Pjevac, P.; Eckert, E.; Cukrov, N.; Šparica, M.M.; Corno, G.; Orlić, S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Environ. Pollut. 2020, 265, 114823. [Google Scholar] [CrossRef]
- Cindrić, A.M.; Garnier, C.; Oursel, B.; Pižeta, I.; Omanović, D. Evidencing the natural and anthropogenic processes controlling trace metals dynamic in a highly stratified estuary: The Krka River estuary (Adriatic, Croatia). Mar. Pollut. Bull. 2015, 94, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Cindrić, A.M.; Marcinek, S.; Garnier, C.; Salaun, P.; Cukrov, N.; Oursel, B.; Lenoble, V.; Omanović, D. Evaluation of diffusive gradients in thin films (DGT) technique for speciation of trace metals in estuarine waters—A multimethodological approach. Sci. Total Environ. 2020, 721, 137784. [Google Scholar] [CrossRef] [PubMed]
- Cukrov, N.; Frančišković-Bilinski, S.; Mikac, N.; Roje, V. Natural and anthropogenic influences recorded in sediments from the Krka river estuary (Eastern Adriatic coast), evaluated by statistical methods. Fresen. Environ. Bull. 2008, 17, 855–863. [Google Scholar]
- Cukrov, N.; Mlakar, M.; Cuculić, V.; Barišić, D. Origin and transport of U-238 and Ra-226 in riverine, estuarine and marine sediments of the Krka River, Croatia. J. Environ. Radioact. 2009, 100, 497–504. [Google Scholar] [CrossRef]
- Cukrov, N.; Tepić, N.; Omanović, D.; Lojen, S.; Bura-Nakić, E.; Vojvodić, V.; Pižeta, I. Qualitative interpretation of physico-chemical and isotopic parameters in the Krka River (Croatia) assessed by multivariate statistical analysis. Int. J. Environ. Anal. Chem. 2012, 92, 1187–1199. [Google Scholar] [CrossRef]
- Louis, Y.; Garnier, C.; Lenoble, V.; Mounier, S.; Cukrov, N.; Omanović, D.; Pižeta, I. Kinetic and equilibrium studies of copper-dissolved organic matter complexation in water column of the stratified Krka River estuary (Croatia). Mar. Chem. 2009, 114, 110–119. [Google Scholar] [CrossRef]
- Isensee, J.; Watermann, B.; Berger, H.-D. Emissions of antifouling-biocides into the north sea -an estimation. Dtsch. Hydrogr. Z. 1994, 46, 355–365. [Google Scholar] [CrossRef]
- Moser, C.S.; Wier, T.P.; Grant, J.F.; First, M.R.; Tamburri, M.N.; Ruiz, G.M.; Miller, A.W.; Drake, L.A. Quantifying the total wetted surface area of the world fleet: A first step in determining the potential extent of ships’ biofouling. Biol. Invasions 2016, 18, 265–277. [Google Scholar] [CrossRef]
- Rodriguez, M.J.; Fraguela, J.A.; Carral, L. Estimating Cupric Oxide Levels in Galician Sea Water (Nw Spain) from Antifouling Paint for Recreational Crafts. Thalassas 2015, 31, 51–56. [Google Scholar]
- Carić, H.; Klobučar, G.; Štambuk, A. Ecotoxicological risk assessment of antifouling emissions in a cruise ship port. J. Clean. Prod. 2016, 121, 159–168. [Google Scholar] [CrossRef]
- Warnken, J.; Dunn, R.J.K.; Teasdale, P.R. Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin film and sediment measurements. Mar. Pollut. Bull. 2004, 49, 833–843. [Google Scholar] [CrossRef]
- Singh, N.; Turner, A. Leaching of copper and zinc from spent antifouling paint particles. Environ. Pollut. 2009, 157, 371–376. [Google Scholar] [CrossRef]
- Valkirs, A.O.; Seligman, P.F.; Haslbeck, E.; Caso, J.S. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: Implications for loading estimation to marine water bodies. Mar. Pollut. Bull. 2003, 46, 763–779. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, W.; Hou, B. A research on release of copper ions and panels in shallow submergence of antifouling paints with nano-additives. Adv. Mater. Res. 2013, 791, 179–182. [Google Scholar]
- Lagerstrom, M.; Ytreberg, E.; Wiklund, A.K.E.; Granhag, L. Antifouling paints leach copper in excess—Study of metal release rates and efficacy along a salinity gradient. Water Res. 2020, 186, 116383. [Google Scholar] [CrossRef]
- Lagerstrom, M.; Yngsell, D.; Eklund, B.; Ytreberg, E. Identification of commercial and recreational vessels coated with banned organotin paint through screening of tin by portable XRF. J. Hazard. Mater. 2019, 362, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Earley, P.E.; Swope, B.L.; Barbeau, K.; Bundy, R.; McDonald, J.A.; Rivera-Duarte, I. Life cycle contributions of copper from vessel painting and maintenance activities. Biofouling 2014, 30, 51–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marguš, D.; Teskeredžić, E. Settlement of Mussels (Mytilus-Galloprovincialis Lamarck) on Rope Collectors in the Estuary of the River Krka, Yugoslavia. Aquaculture 1986, 55, 285–296. [Google Scholar] [CrossRef]
- Zitoun, R.; Clearwater, S.J.; Hassler, C.; Thompson, K.J.; Albert, A.; Sander, S.G. Copper toxicity to blue mussel embryos (Mytilus galloprovincialis): The effect of natural dissolved organic matter on copper toxicity in estuarine waters. Sci. Total Environ. 2019, 653, 300–314. [Google Scholar] [CrossRef]
- Duran, I.; Beiras, R. Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas. Sci. Total Environ. 2013, 463, 446–453. [Google Scholar] [CrossRef]
- Echeveste, P.; Croot, P.; von Dassow, P. Differences in the sensitivity to Cu and ligand production of coastal vs offshore strains of Emiliania huxleyi. Sci. Total Environ. 2018, 625, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, E.P.S.; de Figueiredo, L.; Pitombeira, M.F.; Martins, R.; Nilin, J. Acute and chronic effects of innovative antifouling nanostructured biocides on a tropical marine microcrustacean. Mar. Pollut. Bull. 2021, 164, 111970. [Google Scholar] [CrossRef] [PubMed]
- Watermann, B.; Eklund, B. Can the input of biocides and polymeric substances from antifouling paints into the sea be reduced by the use of non-toxic hard coatings? Mar. Pollut. Bull. 2019, 144, 146–151. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Pistone, A.; Scolaro, C.; Visco, A. Mechanical Properties of Protective Coatings against Marine Fouling: A Review. Polymers 2021, 13, 173. [Google Scholar] [CrossRef] [PubMed]
Number | Large | Medium | Small | TOTAL | |
---|---|---|---|---|---|
m2 | m2 | m2 | m2 | ||
Šibenik port | 267 | 2091 | 4378 | 644 | 7113 |
Šibenik Vernaža | 479 | 805 | 10,353 | 487 | 11,645 |
D-Marin | 183 | 17,763 | 1175 | 55 | 18,993 |
Skradin | 280 | 10,130 | 2474 | 613 | 13,217 |
Bilice | 120 | 1312 | 1456 | 811 | 3579 |
Bilice Vrulje | 94 | 517 | 811 | 387 | 1715 |
Rasline | 121 | 0 | 939 | 679 | 1618 |
Zaton | 224 | 454 | 3551 | 586 | 4591 |
Jadrija | 243 | 272 | 3938 | 621 | 4831 |
Moving boats | 887 | 17,452 | 19,112 | 3554 | 40,118 |
TOTAL | 2898 | 50,796 | 48,187 | 8437 | 107,420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carić, H.; Cukrov, N.; Omanović, D. Nautical Tourism in Marine Protected Areas (MPAs): Evaluating an Impact of Copper Emission from Antifouling Coating. Sustainability 2021, 13, 11897. https://doi.org/10.3390/su132111897
Carić H, Cukrov N, Omanović D. Nautical Tourism in Marine Protected Areas (MPAs): Evaluating an Impact of Copper Emission from Antifouling Coating. Sustainability. 2021; 13(21):11897. https://doi.org/10.3390/su132111897
Chicago/Turabian StyleCarić, Hrvoje, Neven Cukrov, and Dario Omanović. 2021. "Nautical Tourism in Marine Protected Areas (MPAs): Evaluating an Impact of Copper Emission from Antifouling Coating" Sustainability 13, no. 21: 11897. https://doi.org/10.3390/su132111897
APA StyleCarić, H., Cukrov, N., & Omanović, D. (2021). Nautical Tourism in Marine Protected Areas (MPAs): Evaluating an Impact of Copper Emission from Antifouling Coating. Sustainability, 13(21), 11897. https://doi.org/10.3390/su132111897