Is Einkorn Wheat (Triticum monococcum L.) a Better Choice than Winter Wheat (Triticum aestivum L.)? Wheat Quality Estimation for Sustainable Agriculture Using Vision-Based Digital Image Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Uncontrolled Field Experiment
2.3. Controlled Laboratory Stress Experiment
2.3.1. Experimental Design
2.3.2. Digital Image Recording and Processing
2.3.3. Extraction of Digital Image Parameters
2.4. Data Analysis
3. Results
3.1. Yield and Grain Quality Parameters of Wheat Cultivars
3.2. Dependence of Digital Image Parameters on Cultivars, Treatments over Time
3.3. Correlation between Yield, Grain Quality Parameters and Digital Image Parameters of Wheats
4. Discussion
4.1. Yield and Quality Performance of Different Wheat Cultivars
4.2. The Improvement of VIS-Based Non-Destructive Estimation of Aboveground Biomass
4.3. The Impact of Treatments on the Estimated Aboveground Biomass of Cultivars
4.4. Wheat Quality Estimation Based on Yield, Grain Performance and VIS-Based Data
4.5. Known Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Research Involving Plants
References
- Kim, J.Y. Roadmap to High Throughput Phenotyping for Plant Breeding. J. Biosyst. Eng. 2020, 45, 43–55. [Google Scholar] [CrossRef]
- Pieruschka, R.; Schurr, U. Plant phenotyping: Past, present, and future. Plant Phenomics 2019, 7507131. [Google Scholar] [CrossRef] [PubMed]
- Uzal, L.C.; Grinblat, G.L.; Namías, R.; Larese, M.G.; Bianchi, J.S.; Morandi, E.N.; Granitto, P.M. Seed-per-pod estimation for plant breeding using deep learning. Comput. Electron. Agric. 2018, 150, 196–204. [Google Scholar] [CrossRef]
- Busemeyer, L.; Mentrup, D.; Möller, K.; Wunder, E.; Alheit, K.; Hahn, V.; Maurer, H.P.; Reif, J.C.; Würschum, T.; Müller, J.; et al. BreedVision—A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding. Sensors 2013, 13, 2830–2847. [Google Scholar] [CrossRef]
- Walter, J.; Edwards, J.; Cai, J.; McDonald, G.; Miklavcic, S.J.; Kuchel, H. Throughput Field Imaging and Basic Image Analysis in a Wheat Breeding Programme. Front. Plant Sci. 2019, 10, 449. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, M.G.; Valderrama, M.; Guzman, D.; Valencia, M.; Ruiz, H.; Acharjee, A. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (Manihot esculenta Crantz). Plant Methods 2020, 16, 87. [Google Scholar] [CrossRef]
- Niazian, M.; Niedbała, G. Machine Learning for Plant Breeding and Biotechnology. Agriculture 2020, 10, 436. [Google Scholar] [CrossRef]
- Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; LealBertioli, S.C.M.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff, B.B.H. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019, 37, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.P.; Ibaraki, Y.; Dutta Gupta, S. Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell Tiss. Organ Cult. 2010, 100, 183–188. [Google Scholar] [CrossRef]
- Omari, M.K.; Lee, J.; Faqeerzada, M.A.; Joshi, R.; Park, E.; Cho, B.K. Digital image-based plant phenotyping: A review. Korean J. Agric. Sci. 2020, 47, 119–130. [Google Scholar] [CrossRef]
- Scharr, H.; Dee, H.; French, A.P.; Tsaftaris, S.A. Special issue on computer vision and image analysis in plant phenotyping. Mach. Vis. Appl. 2016, 27, 607–609. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Pattey, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric. For. Meteorol. 2010, 150, 1485–1490. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 2014, 52, 198–209. [Google Scholar] [CrossRef]
- Fahlgren, N.; Feldman, M.; Gehan, M.A.; Wilson, M.S.; Shyu, C.; Bryant, D.W.; Hill, S.T.; McEntee, C.J.; Warnasooriya, S.N.; Kumar, I.; et al. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol. Plant 2015, 8, 1520–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goriewa-Duba, K.; Duba, A.; Wachowska, U.; Wiwart, M. An Evaluation of the Variation in the Morphometric Parameters of Grain of Six Triticum Species with the Use of Digital Image Analysis. Agronomy 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Si, Y.; Lamkey, J.; Boydston, R.A.; Garland-Campbell, K.A.; Sankaran, S. High-Throughput Phenotyping of Seed/Seedling Evaluation Using Digital Image Analysis. Agronomy 2018, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Dana, W.; Ivo, W. Computer image analysis of seed shape and seed color of flax cultivar description. Comput. Electron. Agric. 2008, 61, 126–135. [Google Scholar] [CrossRef]
- Gyulai, G.; Rovner, I.; Vinogradov, S.; Kerti, B.; Emődi, A.; Csákvári, E.; Kerekes, A.; Mravcsik, Z.; Gyulai, F. Digital seed morphometry of dioecious wild and crop plants—Development and usefulness of the seed diversity index. Seed Sci. Technol. 2015, 43, 3. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Shi, P.; Omasa, K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 2014, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brainard, S.H.; Bustamante, J.A.; Dawson, J.C.; Spalding, E.P.; Goldman, I.L. A Digital Image-Based Phenotyping Platform for Analyzing Root Shape Attributes in Carrot. Front. Plant Sci. 2021, 12, 1171. [Google Scholar] [CrossRef]
- Golbach, F.; Kootstra, G.; Damjanovic, S.; Otten, G.; van de Zedde, R. Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping. Mach. Vis. Appl. 2016, 27, 663–680. [Google Scholar] [CrossRef] [Green Version]
- Hemming, J.; Rath, T. PA–Precision Agriculture: Computer-Vision-based Weed Identification under Field Conditions using Controlled Lighting. J. Agric. Eng. Res. 2001, 78, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Golzarian, M.R.; Frick, R.A. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Methods 2011, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, B.; Parent, B.; Tester, M. High-throughput shoot imaging to study drought responses. J. Exp. Bot. 2010, 61, 3519–3528. [Google Scholar] [CrossRef] [Green Version]
- Fanourakis, D.; Briese, C.; Max, J.F.; Kleinen, S.; Putz, A.; Fiorani, F.; Ulbrich, A.; Schurr, U. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture. Plant Methods 2014, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acorsi, M.G.; das Fabiani, D.A.M.; Maurício, M.; Danrley, S.A.; Laercio, S.R. Estimating Biomass of Black Oat Using UAV-Based RGB Imaging. Agronomy 2019, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fageria, N.K.; Baligar, V.C.; Jones, C.A. Growth and Mineral Nutrition of Field Crops, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Eurostat. 2020. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/tag00047 (accessed on 28 October 2021).
- Ruiz, M.; Zambrana, E.; Fite, R.; Sole, A.; Tenorio, J.L.; Benavente, E. Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems. Sustainability 2019, 11, 4522. [Google Scholar] [CrossRef] [Green Version]
- Mefleh, M.; Conte, P.; Fadda, C.; Giunta, F.; Piga, A.; Hassoun, G.; Motzo, R. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. J. Sci. Food Agric. 2019, 99, 2059–2067. [Google Scholar] [CrossRef]
- Charmet, G. Wheat domestication: Lessons for the future. C. R. Biol. 2011, 334, 212–220. [Google Scholar] [CrossRef]
- Guzmán, C.; Caballero, L.; Alvarez, J.B. Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determinated by morphological traits and waxy proteins. Genet. Resour. Crop Evol. 2009, 56, 601–604. [Google Scholar] [CrossRef]
- Hajnalová, M.; Dreslerová, D. Ethnobotany of einkorn and emmer in Romania and Slovakia: Towards interpretation of archeological evidence. Památky Archeol. 2010, 101, 169–202. [Google Scholar]
- Zaharieva, M.; Monneveux, P. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): The long life of a founder crop of agriculture. Genet. Resour. Crop Evol. 2014, 61, 677–706. [Google Scholar] [CrossRef]
- Péntek, J.; Szabó, T.A. Az alakor (Triticum monococcum) Erdélyben. Ethnographia 1981, 92, 259–277. (In Hungarian) [Google Scholar]
- Szabó, T.A. On the borderline of natural science and ethnology. In Ethnological Papers; Kriterion Publ. House: Bucharest, Romania, 1976; pp. 36–40. [Google Scholar]
- Jacomet, S. Identification of Cereal Remains from Archeological Sites; Archaeobotany Lab, IPAS, Basel University: Basel, Switzerland, 2006; 61p. [Google Scholar]
- Bencze, S.; Makádi, M.; Aranyos, T.J.; Földi, M.; Hertelendy, P.; Mikó, P.; Bosi, S.; Negri, L.; Drexler, D. Re-Introduction of Ancient Wheat Cultivars into Organic Agriculture—Emmer and Einkorn Cultivation Experiences under Marginal Conditions. Sustainability 2020, 12, 1584. [Google Scholar] [CrossRef] [Green Version]
- Castagna, R.; Borghi, B.; Di Fonzo, N.; Heun, M.; Salamini, F. Yield and related traits of einkorn (T. monococcum ssp. monococcum) in different environments. Eur. J. Agron. 1995, 4, 371–378. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1e9. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Rodroguez-Quijano, M.; Nunes, F.M.; Carillo, J.M.; Branlard, G.; Igrejas, G. New insights into wheat toxicity: Breeding does not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem. 2016, 213, 8e18. [Google Scholar] [CrossRef]
- Shewry, P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018, 79, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Rasband, W. ImageJ User Guide-IJ1.46r. 2012. Available online: http://imagej.nih.gov/ij/docs/guide (accessed on 28 October 2021).
- MTA ATK. Martonvásári fajtakatalógus 2014–2015. In Cultivar Catalogue of Martonvásár; MTA ATK Mezőgazdasági Intézet: Martonvásár, Hungary, 2015. (In Hungarian) [Google Scholar]
- Juhász, A.; Larroque, O.R.; Tamás, L.; Hsam, S.L.; Zeller, F.J.; Békés, F.; Bedo, Z. Bánkúti 1201-an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 2003, 107, 697–704. [Google Scholar] [CrossRef]
- Balla, K.; Karsai, I.; Bencze, S.; Kiss, T.; Veisz, O. Effect of heat stress on the physiological processes of wheat. Acta Agron. Hun. 2013, 61, 1–12. [Google Scholar] [CrossRef]
- Conviron PGR15. Reach-In Plant Growth. In Management System Certified to ISO 9001; Controlled Environments Ltd.: Winnipeg, Canada, 2018. [Google Scholar]
- Morris, C.E.; Sands, D.C. The breeder’s dilemma—Yield or nutrition? Nat. Biotechnol. 2006, 24, 1078–1080. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Brandolini, A.; Ratti, S. Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. J. Agric. Food Chem. 2009, 57, 6342–6348. [Google Scholar] [CrossRef]
- Van Boxstael, F.; Aerts, H.; Linssen, S.; Latré, J.; Christiaens, A.; Haesaert, G.; Dierickx, I.; Brusselle, J.; De Keyzer, W. A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: Whole grains, processed in bread, and population-level intake implications. J. Sci. Food. Agric. 2020, 100, 4108–4118. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Brandolini, A. Nutritional properties of einkorn wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Brandolini, A.; Hidalgo, A. Einkorn (Triticum monococcum) flour and bread. In Flour and Breads and Their Fortification in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: London, UK, 2011; pp. 79–88. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, B.W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur. J. Agron. 2013, 48, 57–65. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; Hanumantha, R.B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front Plant Sci. 2018, 27, 1705. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Niu, Z.; Huang, N.; Wang, C.; Gao, S.; Wu, C. Airborne LiDAR technique for estimating biomass components of maize: A case study in Zhangye City, Northwest China. Ecol. Indic. 2015, 57, 486–496. [Google Scholar] [CrossRef]
- Iqbal, F.; Lucieer, A.; Barry, K.; Wells, R. Poppy crop height and capsule volume estimation from a single UAS flight. Remote Sens. 2017, 9, 647. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Type | Wheat Ear | Seed Source |
---|---|---|---|
Triticum aestivum L. ssp. aestivum ‘Mv Magdaléna’ | modern winter wheat | Agricultural Institute Centre for Agricultural Research Martonvásár | |
Triticum aestivum L. ssp. aestivum ‘Bánkúti 1201’ | old/traditional winter wheat | Research Institute of Organic Agriculture Budapest | |
Triticum monococcum L. ssp. monococcum ‘Mv Alkor’ | modern einkorn wheat | Agricultural Institute Centre for Agricultural Research Martonvásár | |
Triticum monococcum L. ssp. monococcum ‘Schiemann’ | ancient einkorn wheat | Plant Diversity Centre Tápiószele | |
Triticum monococcum L. ssp. monococcum ‘Bözödi’ | ancient einkorn wheat | Plant Diversity Centre Tápiószele |
Cultivar | Yield [t/ha] | Protein Content [%] | Gluten Content [%] | Storage Volume [kg/hl] |
---|---|---|---|---|
Mv Magdaléna | 6.1 a | 13.4 a | 31.8 a | 81.4 a |
Bánkúti 1201 | 4.5 b | 12.5 b | 23.6 b | 75.7 d |
Mv Alkor | 3.8 c | 11.7 c | 22.5 b | 77.3 c |
Schiemann | 3.5 c | 12.6 b | 25.8 b | 80.1 ab |
Bözödi | 4.4 b | 9.3 d | 15.4 c | 79.1 b |
Yield | Protein Content | Gluten Content | Storage Volume | Area | Perimeter | Width | Height | Feret’s Diameter | ||
---|---|---|---|---|---|---|---|---|---|---|
Yield | Pearson’s r | 1 | ||||||||
Sig. (2-tailed) | ||||||||||
N | 225 | |||||||||
Protein content | Pearson’s r | 0.246 ** | 1 | |||||||
Sig. (2-tailed) | 0.000 | |||||||||
N | 225 | 225 | ||||||||
Gluten content | Pearson’s r | 0.410 ** | 0.935 ** | 1 | ||||||
Sig. (2-tailed) | 0.000 | 0.000 | ||||||||
N | 225 | 225 | 225 | |||||||
Storage volume | Pearson’s r | 0.305 ** | 0.030 | 0.244 ** | 1 | |||||
Sig. (2-tailed) | 0.000 | 0.654 | 0.000 | |||||||
N | 225 | 225 | 225 | 225 | ||||||
Area | Pearson’s r | 0.199 ** | 0.170 * | 0.159 * | −0.053 | 1 | ||||
Sig. (2-tailed) | 0.003 | 0.011 | 0.017 | 0.426 | ||||||
N | 225 | 225 | 225 | 225 | 225 | |||||
Perimeter | Pearson’s r | 0.026 | 0.100 | 0.070 | −0.062 | 0.918 ** | 1 | |||
Sig. (2-tailed) | 0.703 | 0.135 | 0.295 | 0.355 | 0.000 | |||||
N | 225 | 225 | 225 | 225 | 225 | 225 | ||||
Width | Pearson’s r | 0.196 ** | 0.136 * | 0.164 * | 0.080 | 0.619 ** | 0.605 ** | 1 | ||
Sig. (2-tailed) | 0.003 | 0.042 | 0.014 | 0.231 | 0.000 | 0.000 | ||||
N | 225 | 225 | 225 | 225 | 225 | 225 | 225 | |||
Height | Pearson’s r | 0.383 ** | 0.358 ** | 0.398 ** | 0.045 | 0.694 ** | 0.643 ** | 0.529 ** | 1 | |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.501 | 0.000 | 0.000 | 0.000 | |||
N | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225 | ||
Feret’s diameter | Pearson’s r | 0.387 ** | 0.345 ** | 0.392 ** | 0.062 | 0.685 ** | 0.617 ** | 0.649 ** | 0.948 ** | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.358 | 0.000 | 0.000 | 0.000 | 0.000 | ||
N | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csákvári, E.; Halassy, M.; Enyedi, A.; Gyulai, F.; Berke, J. Is Einkorn Wheat (Triticum monococcum L.) a Better Choice than Winter Wheat (Triticum aestivum L.)? Wheat Quality Estimation for Sustainable Agriculture Using Vision-Based Digital Image Analysis. Sustainability 2021, 13, 12005. https://doi.org/10.3390/su132112005
Csákvári E, Halassy M, Enyedi A, Gyulai F, Berke J. Is Einkorn Wheat (Triticum monococcum L.) a Better Choice than Winter Wheat (Triticum aestivum L.)? Wheat Quality Estimation for Sustainable Agriculture Using Vision-Based Digital Image Analysis. Sustainability. 2021; 13(21):12005. https://doi.org/10.3390/su132112005
Chicago/Turabian StyleCsákvári, Edina, Melinda Halassy, Attila Enyedi, Ferenc Gyulai, and József Berke. 2021. "Is Einkorn Wheat (Triticum monococcum L.) a Better Choice than Winter Wheat (Triticum aestivum L.)? Wheat Quality Estimation for Sustainable Agriculture Using Vision-Based Digital Image Analysis" Sustainability 13, no. 21: 12005. https://doi.org/10.3390/su132112005
APA StyleCsákvári, E., Halassy, M., Enyedi, A., Gyulai, F., & Berke, J. (2021). Is Einkorn Wheat (Triticum monococcum L.) a Better Choice than Winter Wheat (Triticum aestivum L.)? Wheat Quality Estimation for Sustainable Agriculture Using Vision-Based Digital Image Analysis. Sustainability, 13(21), 12005. https://doi.org/10.3390/su132112005