Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Bacillus spp. from Available Germplasm
2.2. In Vitro Analysis of Plant Growth-Promoting Traits
2.3. Screening for Production of Extracellular Enzymes: Protease, Cellulase, and Amylase
2.4. Molecular Identification of Potential Bacterial Isolates
2.5. Compatibility Studies
2.6. Plant Growth Promotion under Greenhouse Conditions
2.7. Root Colonization by Bacillus spp.
2.8. Estimation of Iron (Fe) Content of Sorghum Grains
2.9. Statistical Analysis
3. Results
3.1. In Vitro Analysis for Plant Growth-Promoting Traits
3.2. Screening for Production of Extracellular Enzymes: Protease, Cellulase, and Amylase
3.3. Molecular Identification of Potential Bacterial Isolates
3.4. Compatibility Studies
3.5. Plant Growth Promotion under Greenhouse Conditions
3.6. Root Colonization by Bacillus spp.
3.7. Estimation of Iron (Fe) Content of Sorghum Grains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saltzman, A.; Andersson, M.S.; Asare-Marfo, D.; Lividini, K.; De Moura, F.F.; Moursi, M.; Oparinde, A.; Taleon, V. Biofortification techniques to improve food security. In Reference Module in Food Science; Elseveir: Amsterdam, The Netherlands, 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Shaikh, S.S.; Sayyed, R.Z.; Reddy, M.S. Plant growth-promoting rhizobacteria: An eco-friendly approach for sustainable agroecosystem. In Plant, Soil, and Microbes; Springer: Cham, Switzerland, 2016; pp. 181–201. [Google Scholar] [CrossRef]
- Char, S.N.; Wei, J.; Mu, Q.; Li, X.; Zhang, Z.J.; Yu, J.; Yang, B. An agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnol. J. 2020, 18, 319. [Google Scholar] [CrossRef] [Green Version]
- Aruna, C.; Visarada, K.; Bhat, B.V.; Tonapi, V.A. Breeding Sorghum for Diverse End Uses; Woodhead Publishing: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Stamenković, O.S.; Siliveru, K.; Veljković, V.B.; Banković-Ilić, I.B.; Tasić, M.B.; Ciampitti, I.A.; DJalović, I.G.; Mitrović, P.M.; Sikora, V.Š.; Prasad, P.V. Production of biofuels from sorghum. Renew. Sustain. Energy Rev. 2020, 124, 109769. [Google Scholar] [CrossRef]
- Mukisa, I.M.; Ntaate, D.; Byakika, S. Application of starter cultures in the production of Enturire–A traditional sorghum-based alcoholic beverage. Int. J. Food Sci. Nutr. 2017, 5, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.; Duodu, K.G. Sorghum and millets: Grain-quality characteristics and management of quality requirements. In Cereal Grains; Assessing and Managing Quality; Elsevier: Amsterdam, The Netherlands, 2017; pp. 317–351. [Google Scholar] [CrossRef]
- Sayyed, R.Z.; Seifi, S.; Patel, P.R.; Shaikh, S.S.; Jadhav, H.P.; El Enshasy, H. Siderophore production in groundnut rhizosphere isolate, Achromobacter Sp. RZS2 influenced by physicochemical factors and metal ions. Environ. Sustain. 2019, 2, 117–124. [Google Scholar] [CrossRef]
- Hafeez, F.Y.; Abaid-Ullah, M.; Hassan, M.N. Plant growth-promoting rhizobacteria as zinc mobilizers: A promising approach for cereals biofortification. In Bacteria in Agrobiology: Crop Productivity; Springer: Berlin/Heidelberg, Germany, 2013; pp. 217–235. [Google Scholar] [CrossRef]
- Zope, V.P.; El Enshasy, H.A.; Sayyed, R.Z. Plant growth-promoting rhizobacteria: An overview in agricultural perspectives. Plant Growth Promot. Rhizobacteria Sustain. Stress Manag. 2019, 345–361. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Fazeli-Nasab, B.; Sayyed, R.Z. Plant growth-promoting rhizobacteria and salinity stress: A journey into the soil. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management; Springer: Singapore, 2019; pp. 21–34. [Google Scholar] [CrossRef]
- Shaikh, S.S.; Wani, S.J.; Sayyed, R.Z. Statistical-based optimization and scale-up of siderophore production process on laboratory bioreactor. 3 Biotech 2016, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Chbel, A.; Delgado, A.S.; Soukri, A.; El Khalfi, B. Marine Biomolecules: A promising approach in therapy and biotechnology. Eur. J. Biol. Res. 2021, 11, 122–133. [Google Scholar] [CrossRef]
- Albdaiwi, R.N.; Khaymi-Horani, H.; Ayad, J.Y.; Alananbeh, K.M.; Kholoud, M.; Al-Sayaydeh, R. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the Dead Sea region. Front. Microbiol. 2019, 10, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Wang, H.; Xu, W.; Wang, Z. Isolation and evaluation of the plant growth promoting rhizobacterium Bacillus methylotrophicus (DD-1) for growth enhancement of rice seedling. Arch. Microbiol. 2020, 202, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, P.; Srivastava, R.; Pandiyan, K.; Singh, A.; Chakdar, H.; Kashyap, P.L.; Bhardwaj, A.K.; Murugan, K.; Karthikeyan, N.; Bagul, S.Y.; et al. Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by Bacillus altitudinis. J. Soil Sci. Plant Nutr. 2021, 21, 922–935. [Google Scholar] [CrossRef]
- Nithyapriya, S.; Lalitha, S.; Sayyed, R.Z.; Reddy, M.S.; Dailin, D.J.; El Enshasy, H.A.; Luh Suriani, N.; Herlambang, S. Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability 2021, 13, 5394. [Google Scholar] [CrossRef]
- Prittesh, P.; Avnika, P.; Kinjal, P.; Jinal, H.N.; Sakthivel, K.; Amaresan, N. Amelioration effect of salt-tolerant plant growth-promoting bacteria on growth and physiological properties of rice (Oryza sativa) under salt-stressed conditions. Arch. Microbiol. 2020, 202, 2419–2428. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjya, S.; Chandra, R. Effect of inoculation methods of Mesorhizobium ciceri and PGPR in chickpea (Cicer areietinum L.) on symbiotic traits, yields, nutrient uptake and soil properties. Legum. Res.-Int. J. 2013, 36, 331–337. [Google Scholar]
- Nautiyal, C.S. An Efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Bhatt, K.; Maheshwari, D.K. Decoding multifarious role of cow dung bacteria in mobilization of zinc fractions along with growth promotion of C. annuum L. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nuntagij, A.; Abe, M.; Uchiumi, T.; Seki, Y.; Boonkerd, N.; Higashi, S. Characterization of Bradyrhizobium strains isolated from soybean cultivation in Thailand. J. Gen. Appl. Microbiol. 1997, 43, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.P.; Desai, S.; Amalraj, L.; Reddy, G. Isolation of fluorescent Pseudomonas Spp. from diverse agro-ecosystems of India and characterization of their PGPR traits. Bacteriol. J. 2015, 5, 13–24. [Google Scholar] [CrossRef]
- Lorck, H. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1948, 1, 142–146. [Google Scholar] [CrossRef]
- Ali, S.Z.; Sandhya, V.; Rao, L.V. Isolation and characterization of drought-tolerant ACC Deaminase and exopolysaccharide-producing fluorescent Pseudomonas Sp. Ann. Microbiol. 2014, 64, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Hendricks, C.W.; Doyle, J.D.; Hugley, B. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol. 1995, 61, 2016–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, M.M.; Marzan, L.W.; Hosna, A.; Hakim, A.; Azad, A.K. Optimization of some fermentation conditions for the production of extracellular amylases by using Chryseobacterium and Bacillus isolates from organic kitchen wastes. J. Genet. Eng. Biotechnol. 2017, 15, 59–68. [Google Scholar] [CrossRef]
- Prasad, A.A.; Babu, S. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut (Arachis hypogea L.). An. Acad. Bras. Cienc. 2017, 89, 1027–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alekhya, G.; Gopalakrishnan, S. Plant growth-promotion by Streptomyces Spp. in sorghum (Sorghum bicolor L.). Afr. J. Biotechnol. 2016, 15, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
- Association of Analytical Chemists. Official Methods of Analysis (AOAC); AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Pandey, S.; Gupta, S. ACC Deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front. Microbiol. 2019, 10, 1506. [Google Scholar] [CrossRef]
- He, Y.; Pantigoso, H.A.; Wu, Z.; Vivanco, J.M. Co-Inoculation of Bacillus Sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J. Appl. Microbiol. 2019, 127, 196–207. [Google Scholar] [CrossRef]
- Jabborova, D.; Wirth, S.; Kannepalli, A.; Narimanov, A.; Desouky, S.; Davranov, K.; Sayyed, R.Z.; El Enshasy, H.; Malek, R.A.; Syed, A. Co-Inoculation of rhizobacteria and biochar application improves growth and nutrients in soybean and enriches soil nutrients and enzymes. Agronomy 2020, 10, 1142. [Google Scholar] [CrossRef]
- Izquierdo-García, L.F.; González-Almario, A.; Cotes, A.M.; Moreno-Velandia, C.A. Trichoderma virens Gl006 and Bacillus velezensis Bs006: A compatible interaction controlling Fusarium wilt of Cape gooseberry. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Prajakta, B.M.; Suvarna, P.P.; Raghvendra, S.P.; Alok, R.R. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. SN Appl. Sci. 2019, 1, 1143. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.B.; Sayyed, R.Z.; Sonawane, M.; Trivedi, M.H.; Thivakaran, G.A. Neurospora Sp. SR8, a novel phosphate solubiliser from rhizosphere soil of sorghum in Kachchh, Gujarat, India. Indian J. Exp. Biol. 2016, 54, 644–649. [Google Scholar]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, V.; Kumar, A.; Sayyed, R.Z.; Hesham, A.E.-L.; Dhaliwal, H.S.; Saxena, A.K. Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In Plant Growth-Promoting Rhizobacteria for Sustainable Stress Management; Springer: Singapore, 2019; pp. 255–308. [Google Scholar] [CrossRef]
- Grover, M.; Madhubala, R.; Ali, S.Z.; Yadav, S.K.; Venkateswarlu, B. Influence of Bacillus Spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J. Basic Microbiol. 2014, 54, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Arora, N.K. Phosphate-solubilizing Bacillus Sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Sharma, A.; Patni, B.; Shankhdhar, D.; Shankhdhar, S.C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 2013, 19, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Arshad, M.; Zahir, Z.; Asghar, M. Prospects of zinc solubilizing bacteria for enhancing growth of Maize. Pak. J. Agric. Sci. 2015, 52, 915–922. [Google Scholar]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In Plant, Soil, and Microbes; Springer: Cham, Switzerland, 2016; pp. 145–168. [Google Scholar] [CrossRef]
- Shaikh, S.S.; Sayyed, R.Z. Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In Plant Microbes Symbiosis: Applied Facets; Springer: New Delhi, India, 2015; pp. 337–351. [Google Scholar] [CrossRef]
- Jadhav, H.P.; Shaikh, S.S.; Sayyed, R.Z. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: Plant Growth Promotion to Bioremediation; Springer: Singapore, 2017; pp. 183–203. [Google Scholar] [CrossRef]
- Sagar, A.; Sayyed, R.Z.; Ramteke, P.W.; Sharma, S.; Marraiki, N.; Elgorban, A.M.; Syed, A. ACC Deaminase and antioxidant enzymes producing halophilic Enterobacter Sp. PR14 promotes the growth of Rice and Millets under salinity stress. Physiol. Mol. Biol. Plants 2020, 26, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, T.; Smith, D.; Sultan, T.; Seleiman, M.F.; Alsadon, A.A.; Ali, S.; Chaudhary, H.J.; Solieman, T.H.; Ibrahim, A.A.; Saad, M.A. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: Effects on biochemical profiling. Sustainability 2020, 12, 2159. [Google Scholar] [CrossRef] [Green Version]
- Verma, J.P.; Jaiswal, D.K.; Krishna, R.; Prakash, S.; Yadav, J.; Singh, V. Characterization and screening of thermophilic Bacillus Strains for developing plant growth promoting consortium from Hot Spring of Leh and Ladakh region of India. Front. Microbiol. 2018, 9, 1293. [Google Scholar] [CrossRef]
- Haddoudi, I.; Cabrefiga, J.; Mora, I.; Mhadhbi, H.; Montesinos, E.; Mrabet, M. Biological control of Fusarium Wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus Spp. Biol. Control. 2021, 104671. [Google Scholar] [CrossRef]
- HASSAN12, T.U.; Bano, A.; Naz, I.; Hussain, M. Bacillus cereus: A competent plant growth promoting bacteria of saline sodic field. Pak. J. Bot. 2018, 50, 1029–1037. [Google Scholar]
- Akhtar, N.; Ilyas, N.; Yasmin, H.; Sayyed, R.Z.; Hasnain, Z.; Elsayed, E.A.; El Enshasy, H.A. Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules 2021, 26, 1569. [Google Scholar] [CrossRef]
- Niu, D.-D.; Wang, C.-J.; Guo, Y.-H.; Jiang, C.-H.; Zhang, W.-Z.; Wang, Y.; Guo, J.-H. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response. Biocontrol. Sci. Technol. 2012, 22, 991–1004. [Google Scholar] [CrossRef]
- Rath, M.; Mitchell, T.R.; Gold, S.E. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol. Res. 2018, 208, 76–84. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Babalola, O.O. Bacterial consortium for improved Maize (Zea mays L.) production. Microorganisms 2019, 7, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shilev, S.; Babrikova, I.; Babrikov, T. Consortium of plant growth-promoting bacteria improves Spinach (Spinacea oleracea L.) growth under heavy metal stress conditions. J. Chem. Technol. Biotechnol. 2020, 95, 932–939. [Google Scholar] [CrossRef]
- Kapadia, C.; Sayyed, R.Z.; El Enshasy, H.A.; Vaidya, H.; Sharma, D.; Patel, N.; Malek, R.A.; Syed, A.; Elgorban, A.M.; Ahmad, K. Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability 2021, 13, 8369. [Google Scholar] [CrossRef]
- Hussain, A.; Ahmad, M.; Nafees, M.; Iqbal, Z.; Luqman, M.; Jamil, M.; Maqsood, A.; Mora-Poblete, F.; Ahmar, S.; Chen, J.-T. Plant growth promoting Bacillus and Paenibacillus species improve the nutritional status of Triticum aestivum L. PLoS ONE 2020, 15, e0241130. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhang, L.; Wang, D.; Hu, Q.; Dai, X.; Xie, Y.; Li, Q.; Liu, H. Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front. Microbiol. 2019, 10, 1668. [Google Scholar] [CrossRef] [Green Version]
- Saleemi, M.; Kiani, M.Z.; Sultan, T.; Khalid, A.; Mahmood, S. Integrated effect of plant growth promoting rhizobacteria and phosphate-solubilizing microorganisms on growth of Wheat (Triticum aestivum L.) under rainfed conditions. Agric. Food Secur. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Yuan, J.; Ruan, Y.; Wang, B.; Zhang, J.; Waseem, R.; Huang, Q.; Shen, Q. Plant growth promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6 enriched bio-organic fertilizer suppressed Fusarium Wilt and promoted the growth of Banana plants. J. Agric. Food chem. 2013, 61, 3774–3780. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Ali, A.; Tahir, M.; Ali, S. Growth, seed yield and quality of Mungbean as influenced by foliar application of iron sulfate. Pak. J. Life Soc. Scis. 2014, 12, 20–25. [Google Scholar]
Isolate | IAA Production (µg/mL) | Phosphate Solubilization (µg/mL) | Zinc Solubilization | Ammonia Production | ACCD Production | Siderophore Production |
---|---|---|---|---|---|---|
KSRH1 | 97.8 | 147.61 | − | ++ | +++ | 40.3 |
KSRH7 | 86.3 | 170.19 | − | + | + | 18.3 |
MMRH22 | 173 | 180.76 | 30 mm | +++ | +++ | 64.3 |
KSRH34 | 169 | 145.65 | − | + | ++ | 46.8 |
RHPR20 | 197 | 252.4 | 10 mm | +++ | +++ | 59.8 |
RHPR22 | 84 | 84.32 | − | + | +++ | 47.2 |
RHPR24 | 113 | 56.3 | − | ++ | + | 40.3 |
Isolate | Production of Extracellular Enzymes | ||
---|---|---|---|
Protease | Amylase | Cellulase | |
KSRH1 | + | + | + |
KSRH7 | ++ | + | ++ |
MMRH22 | +++ | +++ | +++ |
KSRH34 | + | ++ | + |
RHPR20 | +++ | +++ | +++ |
RHPR22 | + | + | + |
RHPR24 | ++ | + | ++ |
Treatment | Plant Height (cm) | No of Leaves | Leaf Area (cm2/Plant) | Root Weight (g/Plant) | Shoot Weight (g/Plant) | Leaf Weight (g/Plant) |
---|---|---|---|---|---|---|
Bacillus mojavensis RHPR20 | 88 | 7 | 453 | 0.57 | 0.96 | 1.34 |
Bacillus cereus MMRH22 | 71 | 6 | 388 | 0.74 | 0.93 | 1.19 |
Consortia–RHPR20 + MMRH22 | 69 | 7 | 415 | 0.71 | 1.22 | 1.48 |
Control | 58 | 6 | 366 | 0.40 | 0.74 | 0.92 |
SE± | 1.5 *** | 0.2 ** | 15.9 * | 0.05 ** | 0.06 ** | 0.09 * |
LSD (5%) | 5.3 | 0.6 | 55.2 | 0.17 | 0.20 | 0.33 |
CV% | 4 | 5 | 7 | 14 | 10 | 13 |
Treatment | Plant Height (cm) | No of Leaves | Leaf Area (cm2/pl) | Root Weight (g/pl) | Shoot Weight (g/pl) | Leaf Weight (g/pl) |
---|---|---|---|---|---|---|
Bacillus mojavensis RHPR20 | 109 | 10 | 1310 | 3.32 | 6.15 | 6.58 |
Bacillus cereus MMRH22 | 106 | 12 | 1101 | 4.16 | 5.81 | 5.86 |
Consortia–RHPR20 + MMRH22 | 130 | 12 | 1015 | 2.63 | 6.20 | 7.97 |
Control | 83 | 8 | 382 | 2.25 | 2.25 | 2.18 |
SE± | 2.6 *** | 0.2 *** | 41.4 *** | 0.169 *** | 0.205 *** | 0.216 *** |
LSD (5%) | 9.1 | 0.7 | 143.2 | 0.585 | 0.710 | 0.746 |
CV% | 4 | 4 | 8 | 10 | 7 | 7 |
Treatment | Panicle Length (cm) | Panicle Weight (g/Plant) | Seed Weight (g/Plant) | Shoot Weight (g/Plant) | Root Weight (g/Plant) |
---|---|---|---|---|---|
Bacillus mojavensis RHPR20 | 15.2 | 7.95 | 6.96 | 11.52 | 6.38 |
Bacillus cereus MMRH22 | 15.3 | 7.90 | 6.60 | 11.60 | 8.49 |
Consortia–RHPR20 + MMRH22 | 16.9 | 9.79 | 8.54 | 13.45 | 9.31 |
Control | 9.5 | 3.64 | 3.05 | 7.27 | 2.98 |
SE± | 0.39 *** | 0.298 *** | 0.305 *** | 0.503 *** | 0.542 *** |
LSD (5%) | 1.17 | 0.898 | 0.918 | 1.517 | 1.633 |
CV% | 7 | 10 | 12 | 11 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manasa, M.; Ravinder, P.; Gopalakrishnan, S.; Srinivas, V.; Sayyed, R.Z.; El Enshasy, H.A.; Yahayu, M.; Kee Zuan, A.T.; Kassem, H.S.; Hameeda, B. Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum. Sustainability 2021, 13, 12091. https://doi.org/10.3390/su132112091
Manasa M, Ravinder P, Gopalakrishnan S, Srinivas V, Sayyed RZ, El Enshasy HA, Yahayu M, Kee Zuan AT, Kassem HS, Hameeda B. Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum. Sustainability. 2021; 13(21):12091. https://doi.org/10.3390/su132112091
Chicago/Turabian StyleManasa, Mansani, Polapally Ravinder, Subramaniam Gopalakrishnan, Vadlamudi Srinivas, R. Z. Sayyed, Hesham Ali El Enshasy, Maizatulakmal Yahayu, Ali Tan Kee Zuan, Hazem S. Kassem, and Bee Hameeda. 2021. "Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum" Sustainability 13, no. 21: 12091. https://doi.org/10.3390/su132112091
APA StyleManasa, M., Ravinder, P., Gopalakrishnan, S., Srinivas, V., Sayyed, R. Z., El Enshasy, H. A., Yahayu, M., Kee Zuan, A. T., Kassem, H. S., & Hameeda, B. (2021). Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum. Sustainability, 13(21), 12091. https://doi.org/10.3390/su132112091