Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading
Abstract
:1. Introduction
2. Experimental Method
3. Experimental Results and Creep Model Construction
3.1. Data Processing
3.2. Elasto-Visco-Plastic Strain Analysis
3.3. Development of Nonlinear Creep Damage Model
3.3.1. Instantaneous Strain Model
3.3.2. Visco-Elastic Strain Model
3.3.3. Visco-Plastic Strain Model
3.3.4. Model Parameters Identification
3.3.5. Model Parameters Analysis
3.3.6. Advantages and Disadvantages of the Developed Model
4. Conclusions
- (1)
- The triaxial compression creep behaviors of dolomitic limestone subjected to cyclic incremental loading and unloading manifest that the instantaneous deformation occurs firstly during every deviatoric stress level and then creep deformation occurs. When the loading deviatoric stress is not more than 75% of the conventional triaxial compression strength, only transient creep stage and steady-state creep stage occur successively. However, the rock undergoes accelerated creep deformation while the loading stress reaches 82.35% of the instantaneous compressive strength.
- (2)
- The separation of elasto-visco-plastic strain component shows that rock deformation is mainly characterized by instantaneous strain while the deviatoric stress is not more than 75% of the conventional compressive strength, especially the irrecoverable instantaneous plastic strain accounts for 37.97–60.27% of total instantaneous strain and should not be ignored during rock engineering design. Greater deviatoric stress contributes to more obvious creep deformation, the visco-elastic strain increases linearly with deviatoric stress, More importantly, the irrecoverable visco-plastic strain increases exponentially with the deviatoric stress increasing from 26.47% to 82.35% of the compressive strength, and finally leads to the occurrence of accelerated creep and rock failure.
- (3)
- A damage variable considering the proportion of irrecoverable plastic strain to the total strain is put forward, and then the creep equation of a new damaged viscous body is deduced, based on which, a new nonlinear multi-element creep model is established by connecting the new damaged viscous body in series with the Hookean substance, St. Venant body, and Kelvin element. The theoretical curves of the proposed model fit accurately with the experimental curves, indicating the nonlinear multi-element creep model could describe the elasto-visco-plastic deformation characteristics precisely, especially the nonlinear accelerated creep behavior.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, T.N.; Verma, A.K. Prediction of creep characteristic of rock under varying environment. Environ. Geol. 2005, 48, 559–568. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, T.N. Modeling of a jointed rock mass under triaxial conditions. Arab. J. Geosci. 2010, 3, 91–103. [Google Scholar] [CrossRef]
- Singh, T.N.; Kanchan, R.; Verma, A.; Singh, S. An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength. Min. Eng. J. 2003, 5, 12–16. [Google Scholar]
- Li, D.; Cai, M.; Masoumi, H. A constitutive model for modified cable bolts exhibiting cone shaped failure mode. Int. J. Rock Mech. Min. 2021, 145, 104855. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Zhu, W. Analytical modelling of load-displacement performance of cable bolts incorporating cracking propagation. Rock Mech. Rock Eng. 2020, 53, 3471–3483. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J.; Qian, D. Stability control for the rheological roadway by a novel high-efficiency jet grouting technique in deep underground coal mines. Sustainability 2019, 11, 6494. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yan, S.; Liu, L.; Yang, J. Investigation into creep characteristics and model of recycled construction and demolition waste used in Embankment Filler. Sustainability 2020, 12, 1924. [Google Scholar] [CrossRef] [Green Version]
- Bérest, P.; Gharbi, H.; Brouard, B.; Brückner, D.; DeVries, K.; Hévin, G.; Hofer, G.; Spiers, C.; Urai, J. Very slow creep tests on salt samples. Rock Mech. Rock Eng. 2019, 52, 2917–2934. [Google Scholar] [CrossRef] [Green Version]
- Hou, R.; Zhang, K.; Tao, J.; Xue, X.; Chen, Y. A nonlinear creep damage coupled model for rock considering the effect of initial damage. Rock Mech. Rock Eng. 2019, 52, 1275–1285. [Google Scholar] [CrossRef]
- Mansouri, H.; Ajalloeian, R. Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. 2018, 110, 19–27. [Google Scholar] [CrossRef]
- Yang, C.; Daemen, J.J.K.; Yin, J. Experimental investigation of creep behavior of salt rock. Int. J. Rock Mech. Min. 1999, 36, 233–242. [Google Scholar] [CrossRef]
- Maranini, E.; Brignoli, M. Creep behaviour of a weak rock: Experimental characterization. Int. J. Rock Mech. Min. 1999, 36, 127–138. [Google Scholar] [CrossRef]
- Fujii, Y.; Ishijima, Y.; Ichihara, Y.; Kiyama, T.; Kumakura, S.; Takada, M.; Sugawara, T.; Narita, T.; Kodama, J.; Sawada, M.; et al. Mechanical properties of abandoned and closed roadways in the Kushiro Coal Mine, Japan. Int. J. Rock Mech. Min. 2011, 48, 585–596. [Google Scholar] [CrossRef]
- Wang, X.; Xia, C.; Zhu, Z.; Xie, W.; Song, L.; Han, G. Long-term creep law and constitutive model of extremely soft coal rock subjected to single-stage load. Rock Soil Mech. 2021, 42, 2078–2088. [Google Scholar] [CrossRef]
- Xu, W.; Yang, S.; Yang, S.; Xie, S.; Shao, J.; Wang, Y. Investigation on triaxial rheological mechanical properties of greenschist specimen (I): Experimental results. Rock Soil Mech. 2005, 26, 531–537. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Q.; Li, S.; Wang, S. Time-dependent behavior of diabase and a nonlinear creep model. Rock Mech. Rock Eng. 2014, 47, 1211–1224. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, M.; Li, L. Study on nolinear viscoelasto-plastic creep model of rock and its parameter identification. Chin. J. Rock Mech. Eng. 2008, 27, 832–839. [Google Scholar] [CrossRef]
- Hu, B.; Yang, S.; Xu, P. A nonlinear rheological damage model of hard rock. J. Cent. South Univ. 2018, 25, 1665–1677. [Google Scholar] [CrossRef]
- Ma, L.J.; Liu, X.Y.; Fang, Q.; Xu, H. A new elasto-viscoplastic damage model combined with the generalized Hoek-Brown failure criterion for bedded rock salt and its application. Rock Mech. Rock Eng. 2013, 46, 53–66. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, W.; Wan, W.; Tang, J. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int. J. Rock Mech. Min. 2017, 93, 66–75. [Google Scholar] [CrossRef]
- Xu, P.; Yang, S. Study of visco-elasto-plastic constitutive model of coal under cyclic loading. Chin. J. Rock Mech. Eng. 2015, 537–545. [Google Scholar] [CrossRef]
- Fan, J.; Jiang, D.; Liu, W.; Wu, F.; Chen, J.; Daemen, J.J.K. Discontinuous fatigue of salt rock with low-stress intervals. Int. J. Rock Mech. Min. 2019, 115, 77–86. [Google Scholar] [CrossRef]
- Yu, T.Q.; Wang, X.W.; Liu, Z.H. Elasticity and Plasticity; China Architecture and Building Press: Beijing, China, 2004; pp. 170–173. [Google Scholar]
- Xia, C.C.; Zhong, S.Y. Experimental data processing method in consideration of influence of loading history on rock specimen deformation. J. Cent. South Univ. Sci. Technol. 1989, 20, 18–24. [Google Scholar]
- Nomikos, P.; Rahmannejad, R.; Sofianos, A. Supported axisymmetric tunnels within linear viscoelastic Burgers rocks. Rock Mech. Rock Eng. 2011, 44, 553–564. [Google Scholar] [CrossRef]
- Sterpi, D.; Gioda, G. Visco-plastic behaviour around advancing tunnels in squeezing rock. Rock Mech. Rock Eng. 2009, 42, 319–339. [Google Scholar] [CrossRef]
- Aydan, O.; Ito, T.; Oezbay, U.; Kwasniewski, M.; Shariar, K.; Okuno, T.; Ozgenoglu, A.; Malan, D.F.; Okada, T. ISRM suggested methods for determining the creep characteristics of rock. Rock Mech. Rock Eng. 2014, 47, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; He, M.; Liu, D. Rock Mechanics and Engineering; Science Press: Beijing, China, 2012; 121p. [Google Scholar]
- Xie, H.; Ju, Y.; Li, L.; Peng, R. Energy mechanism of deformation and failure of rock mass. Chin. J. Rock Mech. Eng. 2008, 27, 1729–1740. [Google Scholar] [CrossRef]
Conventional Triaxial Compression Experiment | Triaxial Creep Experiment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Confining Pressure (MPa) | Compressive Strength (MPa) | Elastic Modulus (GPa) | Poisson Ratio | Confining Pressure (MPa) | Axial Loading Stress Levels (MPa) | |||||
1st | 2nd | 3rd | 4th | 5th | 6th | |||||
9 | 68.08 | 14.41 | 0.184 | 9 | 27 | 37 | 42 | 50 | 60 | 65 |
Confining Pressure (MPa) | Axial Stress (MPa) | εm (10−3) | εv (10−3) | εme (10−3) | εmp (10−3) | εve (10−3) | εvp (10−3) | ▵εmp (10−3) | ▵εvp (10−3) |
---|---|---|---|---|---|---|---|---|---|
9 | 27 | 3.75 | 0.20 | 1.49 | 2.26 | 0.13 | 0.07 | 2.26 | 0.07 |
37 | 4.84 | 0.36 | 2.41 | 2.43 | 0.24 | 0.12 | 0.17 | 0.05 | |
42 | 5.16 | 0.38 | 2.63 | 2.53 | 0.22 | 0.16 | 0.09 | 0.04 | |
50 | 5.64 | 0.57 | 3.06 | 2.58 | 0.30 | 0.26 | 0.05 | 0.10 | |
60 | 6.98 | 0.72 | 4.32 | 2.65 | 0.26 | 0.46 | 0.08 | 0.20 | |
65 | 7.86 | 3.97 | - | - | - | 3.97 | - | 3.51 |
P (GPa) | A (10−4) | B (10−3) | C (10−4) | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
18 | 12.08 | 6.86 | 2.50 | 196.72 | 1.28 | 0.75 | −1.49 | 0.61 | 86.29 | 0.72 |
28 | 11.62 | 10.49 | 139.98 | 1.12 | 0.14 | −2.41 | 0.69 | 2.67 | 0.93 | |
33 | 12.55 | 12.06 | 185.48 | 1.23 | 1.67 | −2.63 | −1.81 | 96.52 | 0.78 | |
41 | 13.40 | 14.92 | 154.52 | 1.61 | 3.41 | −3.06 | −2.55 | 273.44 | 0.85 | |
51 | 11.81 | 18.30 | 295.99 | 1.08 | 5.93 | −4.32 | −3.66 | 251.18 | 0.92 | |
56 | - | - | - | - | −2.41 × 104 | −4.32 | 2.41 × 104 | 1.98 × 105 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Song, L.; Xia, C.; Han, G.; Zhu, Z. Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading. Sustainability 2021, 13, 12376. https://doi.org/10.3390/su132212376
Wang X, Song L, Xia C, Han G, Zhu Z. Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading. Sustainability. 2021; 13(22):12376. https://doi.org/10.3390/su132212376
Chicago/Turabian StyleWang, Xingkai, Leibo Song, Caichu Xia, Guansheng Han, and Zheming Zhu. 2021. "Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading" Sustainability 13, no. 22: 12376. https://doi.org/10.3390/su132212376
APA StyleWang, X., Song, L., Xia, C., Han, G., & Zhu, Z. (2021). Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading. Sustainability, 13(22), 12376. https://doi.org/10.3390/su132212376