A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Design and Selection of Papers
2.2. Analysis, Synthesis, and Reconceptualization Methods
3. Compositional Heterogeneity Influences Ecosystem Services
3.1. Vegetation Heterogeneity
3.1.1. Crop Heterogeneity
3.1.2. Non-Crop Heterogeneity
3.2. Non-Vegetation Heterogeneity
3.3. Composition Proportion
4. Configurational Heterogeneity Influences Ecosystem Services
4.1. Distribution Shapes
4.1.1. Patches
4.1.2. Strips
4.1.3. Points
4.2. Spatial Arrangement
5. Framework of Farmland Landscape Heterogeneity
5.1. Layout of the Farmland Landscape
5.2. Ecosystem Services of the Farmland Landscape
6. Current Status of and Prospects for Research on Farmland Landscape Heterogeneity
6.1. Problems and Proposed Solutions in Current Farmland Landscape Research
6.2. Impacts of Field Management
6.3. Farmland Landscape Research Methods
6.4. Spatio-Temporal Analyses and Scaling Issues
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tilman, D. The greening of the green revolution. Nature 1998, 396, 211–212. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Beckmann, M.; Gerstner, K.; Akin Fajiye, M.; Ceaușu, S.; Kambach, S.; Kinlock, N.L.; Phillips, H.R.P.; Verhagen, W.; Gurevitch, J.; Klotz, S.; et al. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Glob. Chang. Biol. 2019, 25, 1941–1956. [Google Scholar] [CrossRef]
- Pingali, P.L. Green Revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T.; Godron, M. Landscape Ecology; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Mahon, N.; Crute, I.; Simmons, E.; Islam, M.M. Sustainable intensification—“Oxymoron” or “third-way”? A systematic review. Ecol. Indic. 2017, 74, 73–97. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T. Some general-principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Food and Agricultural Organization (FAO). Landscapes for Life—Approaches to Landscape Management for Sustainable Food and Agriculture. 2017. Available online: http://www.fao.org/3/i8324en/i8324en.pdf (accessed on 8 October 2017).
- Herzog, F.; Steiner, B.; Bailey, D.; Baudry, J.; Billeter, R.; Bukacek, R.; de Blust, G.; de Cock, R.; Dirksen, J.; Dormann, C.F.; et al. Assessing the intensity of temperate European agriculture at the landscape scale. Eur. J. Agron. 2006, 24, 165–181. [Google Scholar] [CrossRef]
- Fried, G.; Petit, S.; Dessaint, F.; Reboud, X. Arable weed decline in Northern France: Crop edges as refugia for weed conservation? Biol. Conserv. 2009, 142, 238–243. [Google Scholar] [CrossRef]
- Alignier, A.; Sole-Senan, X.O.; Robleno, I.; Baraibar, B.; Fahrig, L.; Giralt, D.; Gross, N.; Martin, J.; Recasens, J.; Sirami, C.; et al. Configurational crop heterogeneity increases within-field plant diversity. J. Appl. Ecol. 2020, 57, 654–663. [Google Scholar] [CrossRef]
- Lu, X.L. Crop layout, land use and land conservation. N. Agric. 1980, 9, 2–3. [Google Scholar]
- Beijing Agricultural University. Farming System; China Agriculture Press: Beijing, China, 1981. [Google Scholar]
- Li, R.H.; Lin, H.; Niu, H.P.; Chen, Y.Q.; Zhao, S.X.; Fan, L.X. Smallholder preference and agroecosystem service trade-offs: A case study in Xinzheng County, China. Agric. Syst. 2019, 168, 19–26. [Google Scholar] [CrossRef]
- Kleijn, D.; Bommarco, R.; Fijen, T.; Garibaldi, L.A.; Potts, S.G.; van der Putten, W.H. Ecological Intensification: Bridging the Gap between Science and Practice. Trends Ecol. Evol. 2019, 34, 154–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weltin, M.; Zasada, I.; Piorr, A.; Debolini, M.; Geniaux, G.; Perez, O.M.; Scherer, L.; Marco, L.T.; Schulp, C. Conceptualising fields of action for sustainable intensification—A systematic literature review and application to regional case studies. Agric. Ecosyst. Environ. 2018, 257, 68–80. [Google Scholar] [CrossRef]
- Vialatte, A.; Barnaud, C.; Blanco, J.; Ouin, A.; Choisis, J.; Andrieu, E.; Sheeren, D.; Ladet, S.; Deconchat, M.; Clement, F.; et al. A conceptual framework for the governance of multiple ecosystem services in agricultural landscapes. Landsc. Ecol. 2019, 34, 1653–1673. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Quart. 2002, 26, XIII–XXIII. [Google Scholar]
- Torraco, R.J. Writing Integrative Literature Reviews: Using the Past and Present to Explore the Future. Hum. Resour. Dev. Rev. 2016, 15, 404–428. [Google Scholar] [CrossRef]
- Ntihinyurwa, P.D.; de Vries, W.T. Farmland fragmentation and defragmentation nexus: Scoping the causes, impacts, and the conditions determining its management decisions. Ecol. Indic. 2020, 119, 106828. [Google Scholar] [CrossRef]
- Pywell, R.F.; Heard, M.S.; Woodcock, B.A.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J.M. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. R. Soc. B Biol. Sci. 2015, 282, 1816. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhang, Q.; Xiao, H.; Liu, W. Countermeasures of landscape and ecological stewardship in agricultural/rural area of China. Chin. J. Eco-Agric. 2012, 20, 813–818. [Google Scholar] [CrossRef]
- Pan, G.X.; Smith, P.; Pan, W.N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 2009, 129, 344–348. [Google Scholar] [CrossRef]
- Dainese, M.; Martin, E.A.; Aizen, M.A.; Albrecht, M.; Bartomeus, I.; Bommarco, R.; Carvalheiro, L.G.; Chaplin-Kramer, R.; Gagic, V.; Garibaldi, L.A.; et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 2019, 5, eaax012110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Manevski, K.; Borgesen, C.D.; Andersen, M.N.; Kristensen, I.S. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe: A combined field and modeling study. Plant. Soil 2015, 388, 67–85. [Google Scholar] [CrossRef]
- De Notaris, C.; Rasmussen, J.; Sorensen, P.; Melander, B.; Olesen, J.E. Manipulating cover crop growth by adjusting sowing time and cereal inter-row spacing to enhance residual nitrogen effects. Field Crop. Res. 2019, 234, 15–25. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, A.; Assefa, Y.; Radicetti, E.; Ayeni, A.; Knezevic, S.Z. Impact of Cover Crop Management on Level of Weed Suppression: A Meta-Analysis. Crop. Sci. 2019, 59, 833–842. [Google Scholar] [CrossRef]
- Wyland, L.J.; Jackson, L.E.; Chaney, W.E.; Klonsky, K.; Koike, S.T.; Kimple, B. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 1996, 59, 1–17. [Google Scholar] [CrossRef]
- De Notaris, C.; Rasmussen, J.; Sorensen, P.; Olesen, J.E. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric. Ecosyst. Environ. 2018, 255, 1–11. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.S.; Li, X.L.; Christie, P.; Sun, J.H.; Yang, S.C.; Tang, C.X. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr. Cycl. Agroecosys. 2003, 65, 61–71. [Google Scholar] [CrossRef]
- Manevski, K.; Laerke, P.E.; Olesen, J.E.; Jorgensen, U. Nitrogen balances of innovative cropping systems for feedstock production to future biorefineries. Sci. Total Environ. 2018, 633, 372–390. [Google Scholar] [CrossRef]
- Dong, H.; Li, H.; Huo, C.; Li, A.; Yan, X.; Wang, G.; Zhou, N. Effect Analysis of Cover Crops in Maize/Soybean Intercropping Model. J. Maize Sci. 2019, 27, 95–101. [Google Scholar]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Xu, N.; Xiao, C. The effect of diversified cropping on phytophagous insect behavior. Chin. J. Appl. Entomol. 2013, 50, 1133–1140. [Google Scholar]
- Martin, E.A.; Dainese, M.; Clough, Y.; Báldi, A.; Bommarco, R.; Gagic, V.; Garratt, M.P.D.; Holzschuh, A.; Kleijn, D.; Kovács Hostyánszki, A.; et al. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 2019, 22, 1083–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiaer, L.P.; Skovgaard, I.M.; Ostergard, H. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field Crop. Res. 2009, 114, 361–373. [Google Scholar] [CrossRef]
- Su, B.; Chen, S.; Li, Y.; Yang, W. Intercropping enhances the farmland ecosystem services. Acta Ecol. Sin. 2013, 33, 4505–4514. [Google Scholar]
- Sun, Y.; Li, X.; Zhang, H.; Chen, B.; Li, Y.; Liu, Y.; Yu, Z. Functions and countermeasures of biodiversity conservation in agricultural landscapes: A review. Chin. J. Eco-Agric. 2017, 25, 993–1001. [Google Scholar]
- Smukler, S.M.; Sanchez-Moreno, S.; Fonte, S.J.; Ferris, H.; Klonsky, K.; O’Geen, A.T.; Scow, K.M.; Steenwerth, K.L.; Jackson, L.E. Biodiversity and multiple ecosystem functions in an organic farmscape. Agric. Ecosyst. Environ. 2010, 139, 80–97. [Google Scholar] [CrossRef]
- Poschlod, P.; Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe—History, value, status, and conservation. Biol. Conserv. 2017, 211, 60–68. [Google Scholar] [CrossRef]
- Schulte, L.A.; Niemi, J.; Helmers, M.J.; Liebman, M.; Arbuckle, J.G.; James, D.E.; Kolka, R.K.; O’Neal, M.E.; Tomer, M.D.; Tyndall, J.C.; et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 11247–11252. [Google Scholar] [CrossRef] [Green Version]
- Tschumi, M.; Albrecht, M.; Entling, M.H.; Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B Biol. Sci. 2015, 282, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dramstad, W.; Fry, G. Foraging activity of bumblebees (bombus) in relation to flower resources on arable land. Agric. Ecosyst. Environ. 1995, 53, 123–135. [Google Scholar] [CrossRef]
- Dennis, P.; Fry, G. Field margins—Can they enhance natural enemy population-densities and general arthropod diversity on farmland. Agric. Ecosyst. Environ. 1992, 40, 95–115. [Google Scholar] [CrossRef]
- Duflot, R.; Daniel, H.; Aviron, S.; Alignier, A.; Beaujouan, V.; Burel, F.; Cochard, A.; Ernoult, A.; Pain, G.; Pithon, J.A. Adjacent woodlands rather than habitat connectivity influence grassland plant, carabid and bird assemblages in farmland landscapes. Biodivers. Conserv. 2018, 27, 1925–1942. [Google Scholar] [CrossRef]
- Villemey, A.; van Halder, I.; Ouin, A.; Barbaro, L.; Chenot, J.; Tessier, P.; Calatayud, F.; Martin, H.; Roche, P.; Archaux, F. Mosaic of grasslands and woodlands is more effective than habitat connectivity to conserve butterflies in French farmland. Biol. Conserv. 2015, 191, 206–215. [Google Scholar] [CrossRef]
- Needeman, B.A.; Kleinman, P.J.A.; Strock, J.S.; Allen, A.L. Improved management of agricultural drainage ditches for water quality protection: An overview. J. Soil Water Conserv. 2007, 62, 171–178. [Google Scholar]
- Ye, Y.; Wu, C.; Yu, J. Ecological design of irrigation and drainage ditches in agricultural land consolidation. Trans. Chin. Soc. Agric. Eng. 2011, 27, 148–153. [Google Scholar]
- Ye, Y.; Wu, C.; Yu, J. Ecological design of ditches in agricultural land consolidation: A review. Yingyong Shengtai Xuebao 2011, 22, 1931–1938. [Google Scholar] [PubMed]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Thies, C.; Tscharntke, T. Landscape structure and biological control in agroecosystems. Science 1999, 285, 893–895. [Google Scholar] [CrossRef]
- Fischer, C.; Thies, C.; Tscharntke, T. Mixed effects of landscape complexity and farming practice on weed seed removal. Perspect. Plant. Ecol. 2011, 13, 297–303. [Google Scholar] [CrossRef]
- Rasmussen, J.; Soegaard, K.; Pirhofer-Walzl, K.; Eriksen, J. N2-fixation and residual N effect of four legume species and four companion grass species. Eur. J. Agron. 2012, 36, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.L.; Acuna, V.; Bauer, D.M.; Bell, K.P.; Calhoun, A.; Felipe-Lucia, M.R.; Fitzsimons, J.A.; Gonzalez, E.; Kinnison, M.; Lindenmayer, D.; et al. Conserving small natural features with large ecological roles: A synthetic overview. Biol. Conserv. 2017, 211, 88–95. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, Z. Agricultural land sharing/sparing and their potential effects on biodiversity. Chin. J. Eco-Agric. 2017, 25, 787–794. [Google Scholar]
- Grass, I.; Loos, J.; Baensch, S.; Batáry, P.; Librán Embid, F.; Ficiciyan, A.; Klaus, F.; Riechers, M.; Rosa, J.; Tiede, J.; et al. Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat. 2019, 1, 262–272. [Google Scholar] [CrossRef]
- Folberth, C.; Khabarov, N.; Balkovic, J.; Skalsky, R.; Visconti, P.; Ciais, P.; Janssens, I.A.; Penuelas, J.; Obersteiner, M. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 2020, 3, 281–289. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, X.; Zhou, J.; Gao, Y. Land sparing versus sharing framework from ecosystem service perspective. Prog. Geogr. 2016, 35, 1100–1108. [Google Scholar]
- Jager, H.I.; Kreig, J. Designing landscapes for biomass production and wildlife. Glob. Ecol. Conserv. 2018, 16, e00490. [Google Scholar] [CrossRef]
- Balmford, A.; Green, R.; Phalan, B. What conservationists need to know about farming. Proc. R. Soc. B Biol. Sci. 2012, 279, 2714–2724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firbank, L.G.; Elliott, J.; Drake, B.; Cao, Y.; Gooday, R. Evidence of sustainable intensification among British farms. Agric. Ecosyst. Environ. 2013, 173, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Tschumi, M.; Albrecht, M.; Baertschi, C.; Collatz, J.; Entling, M.H.; Jacot, K. Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric. Ecosyst. Environ. 2016, 220, 97–103. [Google Scholar] [CrossRef]
- Lindenmayer, D.B. Conserving large old trees as small natural features. Biol. Conserv. 2017, 211, 51–59. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, H.; Klug, H.; Kamkar, B. New services and roles of biodiversity in modern agroecosystems: A review. Ecol. Indic. 2018, 93, 1126–1135. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, C.M.; Deen, W.; Martin, R.C. Service crop management to maximize crop water supply and improve agroecosystem resilience: A review. J. Soil Water Conserv. 2019, 74, 389–404. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Bengtsson, J. Biological control as an ecosystem service: Partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 2015, 401, 45–55. [Google Scholar] [CrossRef]
- Costanza, R. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Zou, Y.; de Kraker, J.; Bianchi, F.J.J.A.; Xiao, H.; Huang, J.; Deng, X.; Hou, L.; van der Werf, W. Do diverse landscapes provide for effective natural pest control in subtropical rice? J. Appl. Ecol. 2020, 57, 170–180. [Google Scholar] [CrossRef]
- Kremen, C. Managing ecosystem services: What do we need to know about their ecology? Ecol. Lett. 2005, 8, 468–479. [Google Scholar] [CrossRef]
- Landis, D.A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 2017, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Odum, H.T.; Odum, E.P. The energetic basis for valuation of ecosystem services. Ecosystems 2000, 3, 21–23. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, C.E.; Magarey, R.C.; Stirling, G.R.; Blair, B.L.; Bell, M.J.; Garside, A.L. Management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Till. Res. 2003, 72, 125–137. [Google Scholar] [CrossRef]
- Manevski, K.; Laerke, P.E.; Jiao, X.; Santhome, S.; Jorgensen, U. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery. Agric. For. Meteorol. 2017, 233, 250–264. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, L. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Duffy, J.E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 2009, 7, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; de Snoo, G.R.; Eden, P. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.F.; Cai, Y.M.; Shen, Y.J.; Ji, X.Y.; Wu, X.W.; Zheng, X.R.; Cheng, W.; Li, J.; Jiang, Y.P.; Chen, X.; et al. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture. eLife 2018, 7, e35103. [Google Scholar] [CrossRef]
- Qiu, J.; Carpenter, S.R.; Booth, E.G.; Motew, M.; Zipper, S.C.; Kucharik, C.J.; Loheide, S.P.I.; Turner, A.G. Understanding relationships among ecosystem services across spatial scales and over time. Environ. Res. Lett. 2018, 13, 054020. [Google Scholar] [CrossRef]
- Struik, P.C.; Kuyper, T. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 2018, 362, 908. [Google Scholar] [CrossRef] [Green Version]
- Mankowski, J.; Pudelko, K.; Kolodziej, J. Cultivation of Fiber and Oil Flax (Linum usitatissimum L.) in No-tillage and Conventional Systems. Part I. Influence of No-tillage and Conventional System on Yield and Weed Infestation of Fiber Flax and the Physical and Biological Properties of the Soil. J. Nat. Fibers 2013, 10, 326–340. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Pu, C.; Zhang, X.; Xue, J.; Ren, Y.; Zhao, X.; Chen, F.; Lal, R.; Zhang, H. Crop yields under no-till farming in China: A meta-analysis. Eur. J. Agron. 2017, 84, 67–75. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Jin, J. Fertilizer use and food security in China. Plant Nutr. Fertitizer Sci. 2013, 19, 259–273. [Google Scholar]
- Internatioal Fertilizer Industry Association. Fertilizer, Climate Change and Enhancing Agricultural Productivity Sustainably. 2009. Available online: https://www.fertilizer.org/images/Library_Downloads/2009_ifa_climate_change.pdf (accessed on 12 November 2019).
- Ministry of Ecology and Environment of the People’s Republic of China, National Bureau of Statistics, Ministry of Agricultural and Rural Affairs of the People’s Republic of China. The First National Census of Pollution Bulletin. 2010. Available online: http://www.stats.gov.cn/tjsj/tjgb/qttjgb/qgqttjgb/201002/t20100211_30641.html (accessed on 12 October 2019).
- Luo, X.; Liao, J.; Hu, L.; Zang, Y.; Zhou, Z. Improving agricultural mechanization level to promote agricultural sustainable development. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–11. [Google Scholar]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Saturni, F.T.; Jaffe, R.; Metzger, J.P. Landscape structure influences bee community and coffee pollination at different spatial scales. Agric. Ecosyst. Environ. 2016, 235, 1–12. [Google Scholar] [CrossRef]
- Lichtenberg, E.M.; Kennedy, C.M.; Kremen, C.; Batary, P.; Berendse, F.; Bommarco, R.; Bosque-Perez, N.A.; Carvalheiro, L.G.; Snyder, W.E.; Williams, N.M.; et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global. Chang. Biol. 2017, 23, 4946–4957. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, B.A.; Garratt, M.P.D.; Powney, G.D.; Shaw, R.F.; Osborne, J.L.; Soroka, J.; Lindström, S.A.M.; Stanley, D.; Ouvrard, P.; Edwards, M.E.; et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Wittman, H.; Chappell, M.J.; Abson, D.J.; Kerr, R.; Blesh, J.; Hanspach, J.; Perfecto, I.; Fischer, J. A social-ecological perspective on harmonizing food security and biodiversity conservation. Reg. Environ. Chang. 2017, 17, 1291–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremen, C.; Merenlender, A.M. Landscapes that work for biodiversity and people. Science 2018, 362, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raebel, E.M.; Merckx, T.; Feber, R.E.; Riordan, P.; Thompson, D.J.; Macdonald, D.W. Multi-scale effects of farmland management on dragonfly and damselfly assemblages of farmland ponds. Agric. Ecosyst. Environ. 2012, 161, 80–87. [Google Scholar] [CrossRef]
- Hvenegaard, G.T. Validating bird diversity indicators on farmland in east-central Alberta, Canada. Ecol. Indic. 2011, 11, 741–744. [Google Scholar] [CrossRef]
Problems | Unit (Field or Landscape) | Proposed Solutions | Possibility to Cross-Scale a | References |
---|---|---|---|---|
Single cropping, long-term monocropping | Field | Rotation; intercropping; strip cropping | + | [24,88] |
A large input of chemical fertilizer and pesticide, Low resource use efficiency | Field Landscape | Reduce or replace chemical fertilizers and pesticides; conservation irrigation; good agricultural practices; integrated pest management; semi-natural habitats | +++ | [45,61] |
Soil deterioration, land degradation | Field Landscape | Conservation tillage; cereal–legume rotation; use of organic fertilizers and green manure; land restoration; buffer zone | +++ | [33,46] |
Soil erosion, non-point pollution | Field Landscape | Conservation tillage; ecological interception and buffer zone; reduction of chemical fertilizers and pesticides | ++ | [42,76] |
Poor-quality farmland landscape | Landscape | Integrated landscape management; land-use planning; semi-natural habitat protection | + | [59,72] |
Lack of biodiversity | Field Landscape | Diversified cropping (agro-forestry, diversified cultivars, crops, and cropping systems); protection of important biological habitats around the farmland; ecological restoration; semi-natural habitats | +++ | [40,43] |
Mismatch among ecosystem services of the farmland landscape, mismatch in crop and non-crop compositions | Landscape | Redesign of the crop planting system; redesign of the farmland landscape | + | [30,78,90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, Y.; Manevski, K.; Fu, M.; Yin, X.; Chen, F. A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review. Sustainability 2021, 13, 12463. https://doi.org/10.3390/su132212463
Wang X, Wu Y, Manevski K, Fu M, Yin X, Chen F. A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review. Sustainability. 2021; 13(22):12463. https://doi.org/10.3390/su132212463
Chicago/Turabian StyleWang, Xiaohui, Yao Wu, Kiril Manevski, Manqi Fu, Xiaogang Yin, and Fu Chen. 2021. "A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review" Sustainability 13, no. 22: 12463. https://doi.org/10.3390/su132212463
APA StyleWang, X., Wu, Y., Manevski, K., Fu, M., Yin, X., & Chen, F. (2021). A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review. Sustainability, 13(22), 12463. https://doi.org/10.3390/su132212463