Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example
Abstract
:1. Introduction and Background
1.1. Retrospective: The Progress of Mining Method Optimization and Evaluation in China
1.2. Background: Status Quo of Miao-Ling Gold Mine in Henan Province, China
2. Materials and Methods
2.1. The Weight Vector Determined Based on the Improved AHP
2.1.1. Constructing the Comparison Matrix
2.1.2. Constructing the Consistency Judgment Matrix
2.2. Construction of the AHP-TOPSIS Comprehensive Evaluation Model
2.2.1. The Initial Evaluation Matrix Is Established
2.2.2. Establishment of the Standardized Decision Matrix
2.2.3. Construction of the Weighted Standardized Decision Matrix
2.2.4. Calculation of Closeness of the Evaluation Object
3. Results: Examples of Application
3.1. Engineering Background and Comprehensive Evaluation Index System of Mining Method Optimization
3.2. Index Weight Determination
3.3. Comprehensive Evaluation of Factors and Indicators
3.4. Final Evaluation of Mining Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Zhao, Y.; Zhao, H. Assessment indicators and methods for developing the sustainability of mining communities. Int. J. Sustain. Develop. World Ecol. 2008, 15, 35S–43S. [Google Scholar] [CrossRef]
- Si, H.; Bi, H.; Li, X.; Yang, C. Environmental evaluation for sustainable development of coal mining in Qijiang, Western China. Int. J. Coal Geol. 2010, 81, 163–168. [Google Scholar] [CrossRef]
- Su, S.; Yu, J.; Zhang, J. Measurements study on sustainability of China’s mining cities. Expert Syst. Appl. 2010, 37, 6028–6035. [Google Scholar] [CrossRef]
- Zhu, W.; Teng, Y.H. Characteristic of Development of the Fractured Zone in Mining under Medium Hard Overburden Using Fully-Mechanized Top-Coal Caving Method. Appl. Mech. Mater. 2012, 226–228, 1312–1317. [Google Scholar] [CrossRef]
- Jang, H.; Topal, E. Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network. Tunn. Undergr. Space Technol. 2013, 38, 161–169. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, S.-E.; Deng, K.-Z.; Wang, P.; Fan, H.-D. Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review. Sustainability 2018, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Bao, K.; He, G.; Jin, L.; Yang, J.; Zhou, Q. Study on Sustainable Development of Mining Cities by the Method of Relative Resources Carrying Capacity and GM (1, 1) Model. Pol. J. Environ. Stud. 2020, 29, 3983–3995. [Google Scholar] [CrossRef]
- Li, J.-L.; Wang, S.-W.; Wang, Y.; Wang, X.-Y.; Wang, X.-X. Water Inrush Risk Assessment of Coal Floor After CBM Development Based on the Fractal-AHP-Vulnerlability Index Method. Geotech. Geol. Eng. 2021, 39, 3487–3497. [Google Scholar] [CrossRef]
- Lin, C.; He, Y.; Chen, X.; Shi, L.; Zhang, X.; Qi, X.; Hao, R.; Gong, R.; Zhang, J. Relationship between ductile shear zone and gold mineralization—Taking Jinchangyu gold mine, eastern Hebei Province, China. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, A104. [Google Scholar] [CrossRef]
- Wu, J. Research on sublevel open stoping recovery processes of inclined medium-thick orebody on the basis of physical simulation experiments. PLoS ONE 2020, 15, e0232640. [Google Scholar] [CrossRef]
- Chen, D.; Wu, X.; Xie, S.; Sun, Y.; Zhang, Q.; Wang, E.; Sun, Y.; Wang, L.; Li, H.; Jiang, Z.; et al. Study on the Thin Plate Model with Elastic Foundation Boundary of Overlying Strata for Backfill Mining. Math. Probl. Eng. 2020, 2020, 8906091. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y. Research on Mining Technology of Steeply Inclined Thin Ore Body in High-grade Content Mine. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 022038. [Google Scholar] [CrossRef]
- Ligen, Y.; Xiumin, X. Research on the Comprehensive Evaluation Model of Knowledge Capital of Mining Enterprise Based on AHP and Fuzzy Mathematics. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009; Volume 2, pp. 784–787. [Google Scholar]
- Yavuz, M. The application of the analytic hierarchy process (AHP) and Yager’s method in underground mining method selection problem. Int. J. Min. Reclam. Environ. 2013, 29, 1–23. [Google Scholar] [CrossRef]
- Liang, W.-Z.; Zhao, G.Y.; Hao, W.U.; Chen, Y. Optimization of mining method in subsea deep gold mines: A case study. J. Transac. Nonferrous Metals Soc. China 2019, 29, 2160–2169. [Google Scholar] [CrossRef]
- Tian, G.; Guo, Z.; Li, S. Optimization of Tawa Landslide Treatment Scheme Based on the AHP-Fuzzy Comprehensive Evaluation Method. IOP Conf. Ser. Earth Environ. Sci. 2020, 598, 012032. [Google Scholar] [CrossRef]
- Javanshirgiv, M.; Safari, M. The selection of an underground mining method using the fuzzy topsis method: A case study in the kamar mahdi ii fluorine mine. Min. Sci. 2017, 24, 161. [Google Scholar]
- Sensuse, D.I.; Sari, F.R. penerapan metode analytic hierarchy process dalam sistem penunjang keputusan untuk pemilihan asuransi. J. Sist. Inf. 2008, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wang, N.; Pan, J. Application of Fuzzy Extension Analytic Hierarchy Process in Location Selection of Logistics Center. J. Phys. Conf. Ser. 2021, 1995, 012035. [Google Scholar] [CrossRef]
- Dogan, O. Process mining technology selection with spherical fuzzy AHP and sensitivity analysis. Expert Syst. Appl. 2021, 178, 114999. [Google Scholar] [CrossRef]
- Ke, X.; Feng, M.; Xiang, M. The application of analytic hierarchy process and fuzzy comprehensive evaluation in the evaluation of ecological security in coal mine areas. Int. J. Netw. Virtual Organ. 2018, 18, 80. [Google Scholar] [CrossRef]
- Asghari, M.; Nassiri, P.; Monazzam, M.R.; Golbabaei, F.; Arabalibeik, H.; Shamsipour, A.; Allahverdy, A. Weighting Criteria and Prioritizing of Heat stress indices in surface mining using a Delphi Technique and Fuzzy AHP-TOPSIS Method. J. Environ. Heal. Sci. Eng. 2017, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A new approach for multiple objective decision making. J. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Ghalishooyan, M.; Salehi-Ahmadabad, M. Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods. Struct. Eng. Mech. 2013, 48, 849–878. [Google Scholar] [CrossRef] [Green Version]
- Masum, A.K.M.; Karim, A.R.; Bin Al Abid, F.; Islam, S.; Anas, M. A New Hybrid AHP-TOPSIS Method for Ranking Human Capital Indicators by Normalized Decision Matrix. J. Comput. Sci. 2019, 15, 1746–1751. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.R.; Suseno, J.E.; Surarso, B. Emergency Service Search using Ant Colony Optimization Algorithm and AHP-TOPSIS Method. J. Phys. Conf. Ser. 2021, 1943, 012104. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Wang, Z.; Peng, D.; Xue, Y.; Ai, X. Comprehensive Evaluation of Power Grid Security and Benefit Based on BWM Entropy Weight TOPSIS Method. IOP Conf. Ser. Earth Environ. Sci. 2020, 619, 12053. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, C.; Armaghani, D.J.; Ma, S. Developing a hybrid model of information entropy and unascertained measurement theory for evaluation of the excavatability in rock mass. Eng. Comput. 2020, 1, 24. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, C.; Wang, M.; Khandelwal, M. Proposing a novel comprehensive evaluation model for the coal burst liability in underground coal mines considering uncertainty factors. Int. J. Min. Sci. Technol. 2021, 31, 799–812. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, C.; Khandelwal, M.; Tao, M.; Li, C. Novel approach to evaluate rock mass fragmentation in block caving using unascertained measurement model and information entropy with flexible credible identification criterion. Eng. Comput. 2021. [Google Scholar] [CrossRef]
- Shen, L.; Muduli, K.; Barve, A. Developing a sustainable development framework in the context of mining industries: AHP approach. Resour. Policy 2015, 46, 15–26. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Singh, V. Groundwater vulnerability assessment in degraded coal mining areas using the AHP-Modified DRASTIC model. Land Degrad. Dev. 2018, 29, 2351–2365. [Google Scholar] [CrossRef]
- Sheng, J.; Wan, W.; Liu, D.; Jiang, F.; Li, X.; Zhang, H. Investigation of the Optimization of Unloading Mining Scheme in Large Deep Deposit Based on Vague Set Theory and Its Application. Adv. Civ. Eng. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z. The recent technological development of intelligent mining in China. J. Eng. 2017, 3, 439–444. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 2018, 159, 473–478. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 2018, 183, 566–578. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q. Improved strength prediction of cemented paste backfill using a novel model based on adaptive neuro fuzzy inference system and artificial bee colony. Constr. Build. Mater. 2021, 284, 122857. [Google Scholar] [CrossRef]
- Li, G.; Sun, Y.; Qi, C. Machine learning-based constitutive models for cement-grouted coal specimens under shearing. Int. J. Min. Sci. Technol. 2021, 31, 813–823. [Google Scholar] [CrossRef]
- Kim, S.-M.; Choi, Y.; Suh, J. Applications of the Open-Source Hardware Arduino Platform in the Mining Industry: A Review. Appl. Sci. 2020, 10, 5018. [Google Scholar] [CrossRef]
- Kim, Y.; Baek, J.; Choi, Y. Smart Helmet-Based Personnel Proximity Warning System for Improving Underground Mine Safety. Appl. Sci. 2021, 11, 4342. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Yu, H.; Wang, X. Engineering Project: The Method to Solve Practical Problems for the Monitoring and Control of Driver-Less Electric Transport Vehicles in the Underground Mines. World Electr. Veh. J. 2021, 12, 64. [Google Scholar] [CrossRef]
- Yu, H.; Li, S. The Function Design for the Communication-Based Train Control (CBTC) System: How to Solve the Problems in the Underground Mine Rail Transportation? Appl. Syst. Innov. 2021, 4, 31. [Google Scholar] [CrossRef]
- Nardo, M.; Yu, H. Intelligent Ventilation Systems in Mining Engineering: Is ZigBee WSN Technology the Best Choice? Appl. Syst. Innov. 2021, 4, 42. [Google Scholar] [CrossRef]
- Di Nardo, M.; Yu, H. Special Issue “Industry 5.0: The Prelude to the Sixth Industrial Revolution”. Appl. Syst. Innov. 2021, 4, 45. [Google Scholar] [CrossRef]
- Parsajoo, M.; Armaghani, D.J.; Asteris, P.G. A precise neuro-fuzzy model enhanced by artificial bee colony techniques for assessment of rock brittleness index. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef]
- Dumakor-Dupey, N.; Arya, S.; Jha, A. Advances in Blast-Induced Impact Prediction—A Review of Machine Learning Applications. Minerals 2021, 11, 601. [Google Scholar] [CrossRef]
- Jha, A.; Tukkaraja, P. Monitoring and assessment of underground climatic conditions using sensors and GIS tools. Int. J. Min. Sci. Technol. 2020, 30, 495–499. [Google Scholar] [CrossRef]
Project | Plan I | Plan II | Plan III | Plan IV | |
---|---|---|---|---|---|
Criterion Layer | Index Layer | ||||
Economic indicators S1 | X1/(Chinese yuan/t) | 94.2 | 84.7 | 88.6 | 78.5 |
X2/(%) | 95 | 90 | 92 | 85 | |
X3/(%) | 6 | 8 | 8 | 25 | |
Technical indicators S2 | X4/(t/d) | 100 | 150 | 140 | 180 |
X5/(m3/kt) | 79.6 | 79.6 | 71.5 | 62.8 | |
X6 | 8 | 4 | 6 | 4 | |
X7 | 6 | 4 | 8 | 4 | |
X8/(%) | 5 | 6 | 8 | 10 | |
Safety indicators S3 | X9 | 140 | 180 | 200 | 320 |
X10 | 8 | 8 | 8 | 6 |
X | S | Weight (W) | ||
---|---|---|---|---|
S1 (0.472) | S2 (0.377) | S3 (0.151) | ||
x1 | 0.545 | 0.258 | ||
x2 | 0.182 | 0.086 | ||
x3 | 0.273 | 0.129 | ||
x4 | 0.13 | 0.049 | ||
x5 | 0.348 | 0.131 | ||
x6 | 0.261 | 0.098 | ||
x7 | 0.174 | 0.066 | ||
x8 | 0.087 | 0.033 | ||
x9 | 0.417 | 0.063 | ||
x10 | 0.583 | 0.087 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Yu, H.; Dan, Z.; Li, S. Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example. Sustainability 2021, 13, 12503. https://doi.org/10.3390/su132212503
Guo Q, Yu H, Dan Z, Li S. Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example. Sustainability. 2021; 13(22):12503. https://doi.org/10.3390/su132212503
Chicago/Turabian StyleGuo, Qinqiang, Haoxuan Yu, Zhenyu Dan, and Shuai Li. 2021. "Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example" Sustainability 13, no. 22: 12503. https://doi.org/10.3390/su132212503
APA StyleGuo, Q., Yu, H., Dan, Z., & Li, S. (2021). Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example. Sustainability, 13(22), 12503. https://doi.org/10.3390/su132212503