The Chemical and Cytotoxic Properties of Sambucus nigra Extracts—A Natural Food Colorant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extracts Used for Research
2.3. Identification and Quantification of Anthocyanins by HPLC-DAD Method
2.4. Color Measurement
- (a)
- 0.025 M potassium chloride buffer, pH = 1.0;
- (b)
- 0.4 M sodium acetate buffer, pH = 4.5;
- (c)
- 0.03 M phosphate buffer, pH = 7.0.
2.5. Cell Lines and Culture Conditions
2.5.1. Adherent Cells
2.5.2. Non-Adherent Cells
2.5.3. Viability Assay
3. Results and Discussion
3.1. Analysis of Elderberry Extracts
3.2. Color Properties of EDEs
3.3. Effect of Elderberry Extracts on Cell Viability of Cultured Human Cancer Cell Lines
3.4. Effect of Elderberry Extracts on Cell Viability of Cultured Peripheral Blood Mononuclear Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ricardo, F.; da Silva, R.; João, C.M.B.; Sandrina, A.; Heleno, L.B.; Ricardo, C.C.; Isabel, C.F.; Ferreira, R. Anthocyanin Profile of Elderberry Juice: Potential Food Application. Molecules 2019, 24, 2359–2372. [Google Scholar]
- Gebhardt, B.; Sperl, R.; Carle, R.; Müller-Maatsch, J. Assessing the sustainability of natural and artificial food colorants. J. Clean. Prod. 2020, 260, 120884. [Google Scholar] [CrossRef]
- Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of anthocyanins and derivatives. J. Funct. Foods 2014, 7, 54–66. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef]
- Castro-Acosta, M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J. Nutr. Biochem. 2016, 38, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Ścibisz, I.; Ziarno, M.; Mitek, M. Color stability of fruit yogurt during storage. J. Food Sci. Technol. 2019, 56, 1997–2009. [Google Scholar] [CrossRef] [Green Version]
- Bridle, P.; Timberlake, C.F. Anthocyanins as natural food colours—Selected aspects. Food Chem. 1997, 58, 103–109. [Google Scholar] [CrossRef]
- Szalóki-Dorkó, L.; Stéger-Máté, M.; Abrankó, L. Evaluation of colouring ability of main European elderberry (Sambucus nigra L.) varieties as potential resources of natural food colourants. Int. J. Food Sci. Technol. 2015, 50, 1317–1323. [Google Scholar] [CrossRef]
- Straathof, N.; Giusti, M.M. Improvement of Naturally Derived Food Colorant Performance with Efficient Pyranoanthocyanin Formation from Sambucus nigra Anthocyanins Using Caffeic Acid and Heat. Molecules 2020, 25, 5998. [Google Scholar] [CrossRef]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Csorba, V.; Tóth, M.; László, A.M.; Kardos, L.; Kovács, S. Cultivar and year effects on the chemical composition of elderberry (Sambucus nigra L.) fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 770–782. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef]
- Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Torabian, G.; Valtchev, P.; Adil, Q.; Dehghani, F. Anti-influenza activity of elderberry (Sambucus nigra). J. Funct. Foods 2019, 54, 353–360. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Kase, E.T.; Wangensteen, H.; Barsett, H. Phenolic Elderberry Extracts, Anthocyanins, Procyanidins, and Metabolites Influence Glucose and Fatty Acid Uptake in Human Skeletal Muscle Cells. J. Agric. Food Chem. 2017, 65, 2677–2685. [Google Scholar] [CrossRef]
- Lee, J.K.M.; Taip, F.S.; Abdullah, H.Z. Effectiveness of additives in spray drying performance: A review. Food Res. 2018, 2, 486–499. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M. (Ed.) Handbook on Spray Drying Applications for Food Industries; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Murugesan, R.; Orsat, V. Spray Drying of Elderberry (Sambucus nigra L.) Juice to Maintain Its Phenolic Content. Dry. Technol. 2011, 29, 1729–1740. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.; Zhang, M.; Ito, Y.; Zhang, H.; Wang, Y.; Guo, X.; Hu, P. Development of a method to extract and purify target compounds from medicinal plants in a single step: Online hyphenation of expanded bed adsorption chromatography and countercurrent chromatography. Anal. Chem. 2014, 86, 3373–3379. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullahi, R.; Abubakar, M.H. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–5. [Google Scholar]
- Lyddiatt, A. Process chromatography: Current constraints and future options for the adsorptive recovery of bioproducts. Curr. Opin. Biotechnol. 2002, 13, 95–103. [Google Scholar] [CrossRef]
- Chung, M.Y.; Hwang, L.S.; Chiang, B.H. Concentration of Perilla Anthocyanins by Ultrafiltration. J. Food Sci. 1986, 51, 1494–1497. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Gutiérrez-Macías, P.; Orozco-Álvarez, C.; Castro-Muñoz, R. Fractionation of Stevia rebaudiana aqueous extracts via two-step ultrafiltration process: Towards rebaudioside a extraction. Food Bioprod. Process. 2020, 123, 111–122. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R.; Castro-Muñoz, R. Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int. J. Mol. Sci. 2018, 19, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanakis, C.M. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 2015, 42, 44–63. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Retention profile on the physicochemical properties of maize cooking by-product using a tight ultrafiltration membrane. Chem. Eng. Commun. 2020, 207, 887–895. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Methods Mol. Biol. 2017, 1601, 1–17. [Google Scholar]
- Denev, P.; Ciz, M.; Ambrozova, G.; Lojek, A.; Yanakieva, I.; Kratchanova, M. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010, 123, 1055–1061. [Google Scholar] [CrossRef]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Ind. Crop. Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef]
- Bridle, P.; García-Viguera, C. Analysis of anthocyanins in strawberries and elderberries. A comparison of capillary zone electrophoresis and HPLC. Food Chem. 1997, 59, 299–304. [Google Scholar] [CrossRef]
- Kaack, K.; Fretté, X.C.; Christensen, L.P.; Landbo, A.-K.; Meyer, A.S. Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of juice. Eur. Food Res. Technol. 2008, 226, 843–855. [Google Scholar] [CrossRef]
- Tiralongo, E.; Wee, S.S.; Lea, R.A. Elderberry supplementation reduces cold duration and symptoms in air-travellers: A randomized, double-blind placebo-controlled clinical trial. Nutrients 2016, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Cis–trans configuration of coumaric acid acylation affects the spectral and colorimetric properties of anthocyanins. Molecules 2018, 23, 598. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Hrazdina, G. Anthocyanins as food colorants: Effect of pH on the formation of anthocyanin-rutin complexes. J. Food Sci. 1979, 44, 66–68. [Google Scholar] [CrossRef]
- Sun, J.; Cao, X.; Bai, W.; Liao, X.; Hu, X. Comparative analyses of copigmentation of cyanidin 3-glucoside and cyanidin 3-sophoroside from red raspberry fruits. Food Chem. 2010, 120, 1131–1137. [Google Scholar] [CrossRef]
- Wang, L.-S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008, 269, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rugină, D.; Hanganu, D.; Diaconeasa, Z.; Tăbăran, F.; Coman, C.; Leopold, L.; Bunea, A.; Pintea, A. Antiproliferative and apoptotic potential of cyanidin-based anthocyanins on melanoma. Cells. Int. J. Mol. Sci. 2017, 18, 949. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Gupte, A.; Gates, L.; Mumper, R.J. A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms. Food Chem. Toxicol. 2009, 47, 837–847. [Google Scholar] [CrossRef]
- Medic, N.; Tramer, F.; Passamonti, S. Anthocyanins in colorectal cancer prevention. A systematic review of the literature in search of molecular oncotargets. Front. Pharmacol. 2019, 10, 675. [Google Scholar] [CrossRef]
- Maciel, L.G.; Do Carmo, M.A.V.; Azevedo, L.; Daguer, H.; Molognoni, L.; de Almeida, M.M.; Granato, D.; Rosso, N.D. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol. 2018, 113, 187–197. [Google Scholar] [CrossRef]
- Pereira, D.I.; Amparo, T.R.; Almeida, T.C.; Costa, F.S.F.; Brandão, G.C.; Dos Santos, O.D.H.; Da Silva, G.N.; De Souza, G.H.B. Cytotoxic activity of butanolic extract from Sambucus nigra L. flowers in natura and vehiculated in micelles in bladder cancer cells and fibroblasts. Nat. Prod. Res. 2020, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Reddivari, L.; Vanamala, J.; Chintharlapalli, S.; Safe, S.H.; Miller, J.C. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 2007, 28, 2227–2235. [Google Scholar] [CrossRef] [Green Version]
- Shih, P.-H.; Yeh, C.-T.; Yen, G.-C. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem. Toxicol. 2005, 43, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Fischer, J.; Akoh, C.C. Study of Anticancer Activities of Muscadine Grape Phenolics in Vitro. J. Agric. Food Chem. 2005, 53, 8804–8812. [Google Scholar] [CrossRef]
- Gleńsk, M.; Czapińska, E.; Woźniak, M.; Ceremuga, I.; Włodarczyk, M.; Terlecki, G.; Ziółkowski, P.; Seweryn, E. Triterpenoid Acids as Important Antiproliferative Constituents of European Elderberry Fruits. Nutr. Cancer 2017, 13, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.R.; Ray, U.; Chatterjee, B.P.; Roy, S.S. Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin. Cell Death Dis. 2017, 8, e2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, P.; Molla, A.R. Solvent Perturbation of Protein Structures—A Review Study with Lectins. Protein Pept. Lett. 2019, 6, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Bahiense, J.B.; Marques, F.M.; Figueira, M.M.; Vargas, T.S.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm. Biol. 2017, 55, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Barak, V.; Halperin, T.; Kalickman, I. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur. Cytokine Netw. 2001, 12, 290–296. [Google Scholar]
- Ampasavate, C.; Okonogi, S.; Anuchapreeda, S. Cytotoxicity of extracts from fruit plants against leukemic cell lines. J. Pharm. Pharmacol. 2010, 4, 13–21. [Google Scholar]
- Fan, M.; Yeh, P.; Lin, J.; Huang, A.; Lien, J.; Lin, H.-Y.; Chung, J. Anthocyanins from black rice (Oryza sativa) promote immune responses in leukemia through enhancing phagocytosis of macrophages in vivo. Exp. Ther. Med. 2017, 14, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Decendit, A.; Mamani-Matsuda, M.; Aumont, V.; Waffo-Teguo, P.; Moynet, D.; Boniface, K.; Richard, E.; Krisa, S.; Rambert, J.; Mérillon, J.-M.; et al. Malvidin-3-O-β glucoside, major grape anthocyanin, inhibits human macrophage-derived inflammatory mediators and decreases clinical scores in arthritic rats. Biochem. Pharmacol. 2013, 86, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
Batch ID | Total Polyphenols Calculated as Catechin (UV_VIS) [wt.%] | Anthocyanins Calculated as Cy-3-Glu Chloride (HPLC) [wt.%] | Anthocyanins Calculated as Cy-3-Glu (UV-VIS) [wt%] | Rutin (HPLC) [wt%] | Quercetin-3-O Glucoside [wt%] |
---|---|---|---|---|---|
B1 | 20.52 +/− 0.53 | 14.47 +/− 0.39 | 15.24 +/− 0.39 | 0.87 +/− 0.09 | 0.13 +/− 0.03 |
B2 | 48.55 +/− 1.78 | 33.13 +/− 0.62 | 34.28 +/− 0.78 | 4.59 +/− 0.16 | 0.55 +/− 0.08 |
pH | L | a | B | |||
---|---|---|---|---|---|---|
B1 | B2 | B1 | B2 | B1 | B2 | |
7.0 | 56.90 | 26.84 | 15.89 | 34.98 | −2.27 | 9.90 |
4.5 | 84.62 | 74.30 | 18.47 | 32.65 | 1.30 | 2.01 |
1.0 | 65.63 | 56.77 | 63.29 | 69.37 | 38.87 | 72.61 |
24 h | 72 h | 96 h | 24 + 96 h | |||||
---|---|---|---|---|---|---|---|---|
B1 | B2 | B1 | B2 | B1 | B2 | B1 | B2 | |
A-549 | - | - | - | - | - | - | - | - |
A-2780 | - | - | 247 | 147 | - | 132 | - | |
MCF-7 | - | - | 268 | 140 | 299 | - | - | 330 |
HCT-116 | - | 372 | - | 347 | - | 354 | - | 324 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach, M.; Khaidakov, B.; Korewo, D.; Węsierska, M.; Cyplik, W.; Kujawa, J.; Ahrné, L.M.; Kujawski, W. The Chemical and Cytotoxic Properties of Sambucus nigra Extracts—A Natural Food Colorant. Sustainability 2021, 13, 12702. https://doi.org/10.3390/su132212702
Banach M, Khaidakov B, Korewo D, Węsierska M, Cyplik W, Kujawa J, Ahrné LM, Kujawski W. The Chemical and Cytotoxic Properties of Sambucus nigra Extracts—A Natural Food Colorant. Sustainability. 2021; 13(22):12702. https://doi.org/10.3390/su132212702
Chicago/Turabian StyleBanach, Mariusz, Barbara Khaidakov, Daria Korewo, Magdalena Węsierska, Wojciech Cyplik, Joanna Kujawa, Lilia M. Ahrné, and Wojciech Kujawski. 2021. "The Chemical and Cytotoxic Properties of Sambucus nigra Extracts—A Natural Food Colorant" Sustainability 13, no. 22: 12702. https://doi.org/10.3390/su132212702
APA StyleBanach, M., Khaidakov, B., Korewo, D., Węsierska, M., Cyplik, W., Kujawa, J., Ahrné, L. M., & Kujawski, W. (2021). The Chemical and Cytotoxic Properties of Sambucus nigra Extracts—A Natural Food Colorant. Sustainability, 13(22), 12702. https://doi.org/10.3390/su132212702