Techno-Economic Assessment of an Air-Multiple PCM Active Storage Unit for Free Cooling Application
Abstract
:1. Introduction
2. Structure of the Work
3. Requirements
3.1. Cooling Ventilation Load
3.2. Occupancy and Thermal Comfort
4. Sizing of the Cooling Ventilation Units
4.1. Sizing of the Air-Multiple PCM Unit
- (i)
- Validity of the CFD model [18]
- (ii)
- Design of the unit [19]
4.2. Sizing of the Air Conditioning System
5. Techno-Economic Analysis
5.1. Running Costs (Energy Consumption)
- (i)
- Air-multiple PCM
- (ii)
- Air conditioning system (AC)
5.2. Capital and Maintenance Costs
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konstantinidou, C.A.; Papadopoulos, A.M.; Lang, W.; Santamouris, M. Life cycle and life cycle cost implications of integrated phase change materials in office buildings. Energy Res. 2018, 43, 150–166. [Google Scholar] [CrossRef]
- Abuelnuor, A.A.A.; Omara, A.; Saqr, K.M.; Elhag, I.H.I. Improving indoor thermal comfort by using phase change materials: A review. Int. J. Energy Res. 2018, 42, 2084–2103. [Google Scholar] [CrossRef]
- Iten, M.; Liu, S. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems. Energy Convers. Manag. 2014, 77, 608–627. [Google Scholar] [CrossRef]
- Iten, M.; Liu, S.; Shukla, A. A review on the air-PCM-TES application for free cooling and heating in the buildings. Renew. Sustain. Energy Rev. 2016, 61, 175–186. [Google Scholar] [CrossRef]
- ASHRAE. Handbook of Fundamentals; American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.: Atlanta, GA, USA, 2011. [Google Scholar]
- Saffari, M.; Gracia, A.; Fernández, C.; Cabeza, L.F. Simulation-based optimization of PCM melting temperature to im-prove the energy performance in buildings. Appl. Energy 2017, 202, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Cunha, J.P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change ma-terials—A review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formula-tion of latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 2010, 14, 615–628. [Google Scholar] [CrossRef]
- Seeniraj, R.; Narasimhan, N.L. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol. Energy 2008, 82, 535–542. [Google Scholar] [CrossRef]
- Chiu, J.N.; Martin, V. Multistage latent heat cold thermal energy storage design analysis. Appl. Energy 2013, 112, 1438–1445. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Huang, Y.; Li, C.; Peng, Z.; Ding, Y. Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs). Appl. Energy 2015, 142, 328–336. [Google Scholar] [CrossRef]
- Mosaffa, A.; Ferreira, C.A.I.; Talati, F.; Rosen, M. Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers. Manag. 2013, 67, 1–7. [Google Scholar] [CrossRef]
- Fang, M.; Chen, G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl. Therm. Eng. 2007, 27, 994–1000. [Google Scholar] [CrossRef]
- Tan, P.; Lindberg, P.; Eichler, K.; Löveryd, P.; Johansson, P.; Kalagasidis, A.S. Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building. Appl. Energy 2020, 276, 115433. [Google Scholar] [CrossRef]
- Nattaporn, C. Energy and economic analysis of a building air-conditioner with a phase change material (PCM). Energy Convers. Manag. 2015, 94, 150–158. [Google Scholar]
- Boccardo, L.B.; Kazanci, O.B.; Allerhand, J.Q.; Olesen, B.W. Economic comparison of TABS, PCM ceiling panels and all-air systems for cooling offices. Energy Build. 2019, 205, 109527. [Google Scholar] [CrossRef]
- Mechouet, A.; Oualim, E.M.; Mouhib, T. Effect of mechanical ventilation on the improvement of the thermal perfor-mance of PCM-incorporated double external walls: A numerical investigation under different climatic conditions in Morocco. J. Energy Storage 2021, 38, 102495. [Google Scholar] [CrossRef]
- Iten, M.; Liu, S.; Shukla, S. Experimental validation of an air-PCM storage unit comparing the Effective Heat Capacity and Enthalpy methods through CFD simulations. Energy 2018, 155, 495–503. [Google Scholar] [CrossRef]
- Liu, S.; Iten, M.; Shukla, A. Numerical study on the performance of an air—Multiple PCMs unit for free cooling and ventilation. Energy Build. 2017, 151, 520–533. [Google Scholar] [CrossRef]
- Decreto de Lei no. 28/2016D.R. no. 119, Série I, 2016. Available online: https://dre.pt/dre/detalhe/decreto-lei/28-2016-74774858 (accessed on 1 September 2021).
- Matias, L. Desenvolvimento De Um Modelo Adaptativo Para Definição Das Condições De Conforto térmico Em Portugal; Dissertação Elaborada No Laboratório Nacional De Engenharia Civil Para a Obtenção Do Grau De Doutor Em Engenharia Civil, Instituto Superior Técnico, Universidade Técnica de Lisboa: Lisboa, Portugal, 2010. [Google Scholar]
- Iten, M.; Liu, S.; Shukla, A. Experimental study on the thermal performance of air-PCM unit. Build. Environ. 2016, 105, 128–139. [Google Scholar] [CrossRef]
- Iten, M.; Liu, S. Experimental Study on the Performance of RT 25 to be Used as Ambient Energy Storage. Energy Procedia 2015, 70, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Rego, F.C.; Rocha, M. Climatic Patterns in the Mediterranean region. Ecol. Mediterr. 2014, 40, 49–59. [Google Scholar] [CrossRef]
- Aguiar, R.; Coelho, R.E. Manual de Instalação e Utilização do Software SolTerm−Versão 5; Laboratório Nacional de Energia e Geologia, I.P. Unidade de Análise Energética e Alterações Climáticas: Lisboa, Portugal, 2012. [Google Scholar]
- Rubitherm Technologies GmbH, Germany, 2021. Available online: https://www.rubitherm.eu/ (accessed on 1 September 2021).
- ERSE, Portugal. 2018. Available online: http://www.erse.pt/ (accessed on 1 September 2021).
- Stritih, U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int. J. Heat Mass Transf. 2004, 47, 2841–2847. [Google Scholar] [CrossRef]
Parameter | Equipment | Uncertainty |
---|---|---|
PCM temperature | K-type thermocouples, Data logger | 1.3% |
Air temperature | K-type thermocouples, Data logger | 1.6% |
Air velocity | Anemometer | 0.16% |
Material | Melting Temperature (°C) | Density (kg/m3) | Thermal Conductivity (W/m. °C) | Specific Heat Capacity (kJ/kg. °C) | |
---|---|---|---|---|---|
Solid | Liquid | ||||
PCM | 23–25 | 880 | 760 | 0.20 | 2000 |
Steel | - | 8030 | 16.27 | 0.502 | |
Air | - | 1.23 | 0.02 | 1006 |
Total PCM mass Mass per panel | 102.6 kg 34.2 kg (17.1 kg/ PCM type) |
PCM panels height | 0.03 m |
PCM panels length | 1.5 m |
PCM panels width | 1 m |
Discharging air mass flow rate | 734.7 m3/h |
Charging air mass flow rate | 5877.6 m3/h |
Average cooling load | 1.1 kW |
Air-Multiple PCM Unite | Traditional AC System | ||
---|---|---|---|
Daytime | Night-Time | ||
Capital cost | PCMs: GBP 718.2 | Ceiling cassette system: GBP 2099 Fan: GBP 254.2 | |
Steel encapsulation: GBP 313 | |||
Air duct: GBP 107 | |||
Fans: GBP 1100.5 | |||
Maintenance cost | GBP 15 (yearly: cleanliness of air-filters) | GBP 70 (yearly: hygiene of the coils, air-filters and leaks detection/remediation) | |
Average cooling load | 1 kW | 1 kW | |
Motor Power (fans/ air-conditioning) | 0.036 kW (daytime) 0.853 kW (night-time) | 0.059 kW/0.362 kW | |
Yearly running hours | Daytime: 8 h per day (520 h) Nighttime: 9 h per day (585 h) | 8 h per day (520 h) | |
Yearly energy consumption (daytime) | 18.67 kWh | 219.02 kWh | |
Total yearly energy consumption (daytime and night-time) | 517.67 kWh | ||
Electricity cost [27] | Day tariff (8 h–24 h): GBP 0.189 /kWh Night tariff (24 h–8 h): GBP 0.098 /kWh | ||
Yearly running cost (daytime) | GBP 3.53 | GBP 41.4 | |
Total yearly running cost (daytime and night-time) | GBP 52.3 | GBP 41.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iten, M. Techno-Economic Assessment of an Air-Multiple PCM Active Storage Unit for Free Cooling Application. Sustainability 2021, 13, 12936. https://doi.org/10.3390/su132312936
Iten M. Techno-Economic Assessment of an Air-Multiple PCM Active Storage Unit for Free Cooling Application. Sustainability. 2021; 13(23):12936. https://doi.org/10.3390/su132312936
Chicago/Turabian StyleIten, Muriel. 2021. "Techno-Economic Assessment of an Air-Multiple PCM Active Storage Unit for Free Cooling Application" Sustainability 13, no. 23: 12936. https://doi.org/10.3390/su132312936
APA StyleIten, M. (2021). Techno-Economic Assessment of an Air-Multiple PCM Active Storage Unit for Free Cooling Application. Sustainability, 13(23), 12936. https://doi.org/10.3390/su132312936