Public Works Heritage 3D Model Digitisation, Optimisation and Dissemination with Free and Open-Source Software and Platforms and Low-Cost Tools
Abstract
:1. Introduction
1.1. Digitising Heritage
1.2. Disseminating the Digitised Heritage
2. Methodology
2.1. SfM Photogrammetric Restitution
2.1.1. Image Capture
2.1.2. Three-Dimensional Mesh
2.2. Three-Dimensional Model Optimisation
2.2.1. Low Poly Model
2.2.2. Model Texturisation
2.3. Dissemination 3D Model
2.3.1. Web Repositories
2.3.2. Holograms
- a.
- Holographic pyramid. The pyramid and the structure underlying holographic systems can be made of materials such as glass, methacrylate or acetate.
- b.
- Video editing. A video is generated in which the left, right, front and rear views of the 3D model are viewed simultaneously so the three-dimensional optical effect can be correctly viewed when projected on the screen.
- c.
- Viewing the hologram. The final hologram is viewed by setting the pyramid upside-down on the screen and projecting the video.
2.3.3. Augmented Reality
2.3.4. Three-Dimensional Printouts
- a.
- Verification of the 3D model. Three important, along with other minor factors, must be borne in mind before printing a model. First, the model must be air-tight, i.e., the mesh should have no gaps. Second, the mesh thickness must be defined and monitored from outside in, for objects with no thickness cannot be printed. Third, when the model is converted to an STL file, the tolerance or the difference between the original form and the new format must be established. The standard tolerance of 0.01 mm may vary depending on the 3D printer.
- b.
- From .STL format to G-CODE. Once the model is prepared and the .STL file (standard triangle language, a computer-aided design (CAD) format that defines 3D object geometry, excluding information on colour, texture and physical properties) is generated, a G-CODE must be produced, consisting in numerical control instructions whose lines guide the printer as it builds the piece. Free printing software such as Cura [71], Slic3r [72] and Repetier [73] can be used for this purpose.
- c.
- Final printout. Many printing techniques are in place, such as fused deposition modelling (FDM), stereolithography (SLA), digital light processing (DLP), selective laser sintering and so on.
3. Results: Case Study of Ariza Bridge
3.1. SfM Photogrammetric Restitution
3.1.1. Image Capture
3.1.2. Three-Dimensional Mesh
- Image entry. After the 159 photographs needed to cover the entire bridge studied here were entered into the application, Regard3D displayed the metadata for the photographs on the screen.
- Feature and concurrence detection. This step identifies the key points in each image and their concurrence in the entire set of photos. As changing the default settings may have substantial effects on computing times, it is not recommended.
- Triangulation. The following step, triangulation, consists in positioning the key points detected in the preceding step in three dimensions. At the end of the process, the results, the most important of which is ‘Cameras calibrated/total’, are displayed in a pop-up window showing whether all the photos in the set were used. The three-dimensional scattered point cloud can be seen in the 3D viewer.
- Densification. Point clouds are a set of points containing dimensional, geometric, and colorimetric information. As the cloud delivered in step 1 is scattered, i.e., contains only the concurrent key points in the photo set, the object or scene is scantly recognisable. Densification yields a high-density, highly accurate point cloud, in this case for the bridge studied (Figure 3). The point cloud must be processed and discretised before generating the mesh to lower noise and delete non-valid points, which may generate undesired effects during subsequent mesh creation. Since Regard3D software does not feature editing tools, the point cloud must be exported to MeshLab [78], a free, open-source software that delivers a mesh based on the Regard3D-generated point cloud. The imported point cloud must then be cleansed of noise, atypical values and irrelevant points with tools furnished by MeshLab for point selection and elimination. The initial point cloud (outcome of the photogrammetric survey) generated here weighed 43.8 MB and comprised 1,703,874 points. For it to be usable, however, the scope of the work had to be delimited. As here it was defined to comprise the bridge and its closest surroundings, the cloud ultimately used contained 1,154,940 points and weighed 33.9 MB.
- Mesh creation. A mesh is a discrete representation of a geometric model based on its geometry, typology and associated attributes [79]. The MeshLab algorithm triangulates a point cloud using its vertices to convert it into a tri-based structure or triangular mesh. The triangulation systems used by the software include the Delaunay procedure, the ball point pivoting algorithm, and the marching cube algorithm, along with Poisson surface reconstruction, a particularly favourable approach, for it consistently delivered dense, smooth reconstructed surfaces [80] (p. 6)
- Application of texture. Texturing is the operation in which 3D models are afforded a skin, and virtual objects a real appearance. Texture is introduced by automatic orientation and rectification of each photo adapted to the model from its vantage point. The result is a texture map which more often than not is confusing, for the texture cannot be matched with the naked eye to the parts comprising the model (Figure 4). During subsequent optimisation, the texture is oriented by a process known as baking. The texturised 3D model obtained is optimised prior to entry in dissemination tools with 3D image modelling and edition software such as InstantMeshes [76] and Blender [81] to reduce model size for readier handling.
3.2. Three-Dimensional Model Optimisation
3.2.1. Low Poly Model
3.2.2. Model Texturisation
3.3. Three-Dimensional Model Dissemination
3.3.1. Web Repositories
3.3.2. Hologram
- Holographic pyramid. Acetate, a semi-soft, transparent plastic, was used in the present case study. The four sides of the pyramid were cut to a size in keeping with the screen used. For tablet-like screens the trapezoids have a 12 cm long base, a 2 cm short base and a height of 7.5 cm [83]. When pasted together at the sides the four identical trapezoids formed a truncated pyramid pitched at a 45° angle with the screen, ensuring that the video projected would be visualised as a perfectly vertical, deformation-free hologram.
- Video editing. Open Shot free, an open-source video editor, was used in this step [84].
- Viewing the hologram. The pyramid was then positioned upside-down on the screen while projecting the video with the lights dimmed to enhance visibility (Figure 7).
3.3.3. Augmented Reality
3.3.4. Prints 3D
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández Lamas, P.; Beatriz, C.A.; de Castro Cuartero, O.; Bernabéu Larena, J. Mobile Applications, Geolocation and Information Technologies for the Study and Communication of the Heritage Value of Public Works. Sustainability 2021, 13, 2083. [Google Scholar] [CrossRef]
- Riegl, A. El Culto Moderno a Los Monumentos. Caracteres y Origen; Visor: Madrid, Spain, 1987. [Google Scholar]
- Martínez Vázquez de Parga, R. El patrimonio de las obras públicas. Revista Obras Públicas Colegio Ingenieros Caminos Canales Puertos 2003, 3, 79–82. Available online: http://ropdigital.ciccp.es/revista_op/detalle_articulo.php?registro=18359&numero_revista=3438&anio=2003 (accessed on 20 October 2021).
- Cruz, L. Plan Nacional de Patrimonio Industrial; Instituto del Patrimonio Cultural de, España, Ed.; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2016. Available online: https://www.culturaydeporte.gob.es/planes-nacionales/dam/jcr:eba404cd-e170-419d-b46a-e241ebd1b1b0/04-texto-2016-pnpi-plan-y-anexos.pdf (accessed on 23 November 2021).
- Carrión, A.; Cruz, L. Plan Nacional de Paisaje Cultural; Instituto del Patrimonio Cultural de España, Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2015. Available online: http://www.mecd.gob.es/planes-nacionales/eu/dam/jcr:55b779f7-037f-45a0-baa0-17f27bc2587a/05-maquetado-paisaje-cultural.pdf (accessed on 11 September 2021).
- Fernández-Ordoñez, J.A. Obras Públicas y Monumentos. Rev. Obras Públicas Col. Ing. Caminos Canales Puertos 1995, 3347, 7–13. [Google Scholar]
- Aguiló, M. Qué Significa Construir: Claves Conceptuales De La Ingeniería Civil; Abada: Madrid, Spain, 2013. [Google Scholar]
- Aguilar, I. Patrimonio cultural de la obra pública. Acciones del pasado, propuestas del futuro. In Jornadas Patrimonio Industrial y Obra Pública; Biel, M.P., Ed.; Gobierno de Zaragoza: Zaragoza, Spain, 2007; pp. 206–212. Available online: http://www.patrimonioculturaldearagon.es/documents/10157/675f026a-1329-4dff-9542-ab001c451bef (accessed on 20 January 2021).
- García de Miguel, J.M. La conservación del patrimonio de la obra civil al inicio del siglo XXI y sus riesgos. Ing. Territ. 2010, 92, 4–11. Available online: http://oa.upm.es/8721/2/INVE_MEM_2010_86045.pdf (accessed on 15 February 2021).
- Nárdiz, C. La estética de lo viejo, treinta años después. El reconocimiento progresivo y limitado del Patrimonio de las Obras Públicas. Rev. Obras Públicas 2012, 3, 19–34. Available online: http://ropdigital.ciccp.es/pdf/publico/2012/2012_%20julio-agosto_3534_%2007.pdf (accessed on 20 May 2021).
- Martínez Vázquez de Parga, R. Las obras públicas, un patrimonio poco valorado. Rev. Obras Públicas. Col. Ing. Caminos Canales Puertos 1997, 38, 86–89. [Google Scholar]
- Bernabeu, J.; Berrocal, A.B.; Hernández, P.; López, A.; Hernández, V. La consideración patrimonial de las obras públicas. In Criterios de Intervención en el Patrimonio Arquitectónico del Siglo XX; Ministeros de Educación y Cultura: Madrid, Spain, 2011; pp. 231–240. [Google Scholar]
- Ballester, J.M. Evolución del concepto de patrimonio cultural en Europa: La incorporación de las obras públicas. Rev. Obras Públicas 2014, 3599, 7–12. Available online: http://ropdigital.ciccp.es/pdf/publico/2014/2014_noviembre_3559_02.pdf (accessed on 3 March 2021).
- Addis, B.; Miller, J. Civil engineering heritage: Country profile—England. Eng. Hist. Herit. 2017, 170, 80–86. [Google Scholar] [CrossRef]
- Cox, R.; Gould, M.H. Civil Engineering Heritage; Thomas Telford Ltd.: London, UK, 1998. [Google Scholar]
- Isohata, H. Civil engineering heritage: Country profile—Japan. Eng. Hist. Herit. ICE 2016, 2, 95–100. [Google Scholar] [CrossRef]
- ASCE—American Society of Civil Engineering. Historic Civil Engineering Landmark Program. Available online: https://www.asce.org/landmarks/ (accessed on 20 May 2021).
- IEA—Institution Engineers Australia. Engineering Heritage Recognition Program. Available online: https://www.engineersaustralia.org.au/resource-centre/resource/australian-engineering-heritage-register (accessed on 20 May 2021).
- Fernández-Ordoñez, J.A. Catálogo de Puentes Anteriores a 1936; Colegio de Ingenieros de Caminos, Canales y Puertos: Madrid, Spain, 1984. [Google Scholar]
- Fernández-Ordóñez, J.A. Catálogo de Treinta Canales Españoles Anteriores a 1900; MOPU: Madrid, Spain, 1986. [Google Scholar]
- Fernández-Ordoñez, J.A. Catálogo de Noventa Presas y Azudes Españoles Anteriores a 1936; Colegio de Ingenieros de Caminos, Canales y Puertos: Madrid, Spain, 1988. [Google Scholar]
- Aguilar, I. Las Obras Públicas, 100 Elementos del Paisaje Valenciano; Conselleria d’Obres Públiques i Transports: Valencia, Spain, 2005. [Google Scholar]
- Aguilar, I.; Aguiló, M. Guía de Puentes de la Comunitat Valenciana; Consejería de Infraestructura y Medio Ambiente, Generalitat Valenciana: Valencia, Spain, 2016. [Google Scholar]
- De las Casas, A. Guía de Obras Públicas en Andalucía; Colegio de Ingenieros de Caminos, Canales y Puertos: Madrid, Spain, 2014. [Google Scholar]
- Sánchez Beitia, S. Catálogo de Faros Con Valor Patrimonial en España; Instituto del Patrimonio Cultural de España: Madrid, Spain, 2017. [Google Scholar]
- Romero, D. El patrimonio documental de las obras públicas y las exposiciones: Cómo se enseña y se difunde. Rev. Obras Públicas. Col. Ing. Caminos Canales Puertos 2014, 3559, 43–50. [Google Scholar]
- Hernández-Lamas, P.; Ruiz-Bedia, M.L. Patrimonio y Paisaje de la Ingeniería Civil. In I Jornada de Trabajo; Universidad de Cantabria: Santander, Spain, 2014. [Google Scholar]
- Ruiz-Bedia, M.L.; Hernández-Lamas, P.; Castro, O. Difusión del paisaje y patrimonio a través de las nuevas tecnologías. In Proceedings of the REHABEND, Congreso Latinoamericano Sobre Patología de la Construcción, Tecnología de la Rehabilitación y Gestión del Patrimonio, Santander, Spain, 1–4 April 2014; pp. 2215–2221. [Google Scholar]
- Hernández-Lamas, P.; Cabau, B. Geography of Torroja’s works: An app for the geolocation and dissemination of his works. In Proceedings International Conference on Construction Research, Eduardo Torroja AEC; Instituto de Ciencias de la Construcción y Fundación Eduardo Torroja: Madrid, Spain, 2018; pp. 383–390. [Google Scholar]
- Hernández Lamas, P.; Ruiz Fernández, R. Proyecto piloto G•O•ING Grandes Obras de Ingeniería. Rev. Obras Públicas. Col. Ing. Caminos Canales Puertos 2019, 3613, 58–67. Available online: http://ropdigital.ciccp.es/pdf/publico/2019/2019_octubre_3613.pdf (accessed on 21 May 2021).
- Hernández-Lamas, P. GEOPACK. App para Geolocalización del Patrimonio Construido. Cuad. Diseño Obra Pública 2013, 5, 36. [Google Scholar]
- Castro, O.; Sarabia, A. El sentido de catalogar: De los estudios históricos y los inventarios a las nuevas aplicaciones. Rev. Obras Públicas. Col. Ing. Caminos, Canales y Puertos 2014, 3559, 73–78. [Google Scholar]
- Alvarenga, A.; Matos, F.; Godina, R.; Matias, J. Digital transformation and Knowledge Management in the Public Sector. Sustainability 2020, 12, 5824. [Google Scholar] [CrossRef]
- Tabrizi, B.; Lam, E.; Girard, K.; Irvin, V. Digital Transformation is Not About Technology. Harv. Bus. Rev. 2019. Available online: https://hbr.org/2019/03/digital-transformation-is-not-about-technology (accessed on 10 November 2021).
- Marchegiani, L. Digital Transformation and Knowledge Management; Routledge-Giappichelli Studies in Business and Management; Routledge: London, UK, 2021. [Google Scholar]
- Haydar, M.; Roussel, D.; Madjid Maïdi, S.O.; Mallem, M. Virtual and augmented reality for cultural computing and heritage: A case study of virtual exploration of underwater archaeological sites (preprint). Virtual Real. 2011, 15, 311–327. [Google Scholar] [CrossRef]
- García-Gómez, I.; Fernández de Gorostiza, M.; Mesanza Moraza, A. Láser escáner y nubes de puntos. Un horizonte aplicado al análisis arqueológico de edificios. Arqueol. Arquit. 2011, 8, 25–44. Available online: https://arqarqt.revistas.csic.es/index.php/arqarqt/article/view/126/122 (accessed on 10 November 2021).
- Torres, J.C.; Cano, P.; Melero, J.; España, M.; Moreno, J. Aplicaciones de la digitalización 3D del patrimonio. Virtual Archaeol. Rev. 2010, 1, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Transporte, Movilidad y Agenda Urbana. ¿Qué es BIM? Available online: https://www.esbim.es (accessed on 16 January 2021).
- Pauwels, P.; Verstraeten, R.; De Meyer, R.; Van Campenhout, J. Architectural Information Modelling for virtual heritage application. In Proceedings of the 14th International Conference on Virtual Systems and Multimedia, Digital Heritage, Limassol, Cyprus, 20–25 October 2008; pp. 18–23. Available online: https://biblio.ugent.be/publication/434809/file/481646.pdf (accessed on 21 November 2021).
- Murphy, M.; McGovern, E.; Pavia, S. Historic building information modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Nieto Julián, J.E.; Moyano, J.; Rico Delgado, F.; Antón, D. La necesidad de un modelo de información aplicada al patrimonio arquitectónico. In Proceedings of the 1er Congreso Nacional BIM-EUBIM, Valencia, Spain, 24–25 May 2013; Volume 1, pp. 1–13. [Google Scholar]
- González Pérez, C. Information Modelling for Archaeology and Amthropology: Software Engineering Principles for Cultural Heritage; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar]
- Korro Bañuelos, J.; Rodríguez Miranda, Á.; Valle Melón, J.M.; Zornoza Indart, A.; Castellano Román, M.; Angulo Fornos, R.; Pinto-Puerto, F.; Acosta Ibáñez, P.; Ferreira-Lopes, P. The Role of Information Management for the Sustainable Conservation of Cultural Heritage. Sustainability 2021, 13, 4325. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Previtali, M.; Roncoroni, F. Bim From Laser Scans… Not Just for Buildings: Nurbs-Based Parametric Modeling of a Medieval Bridge. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-5, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Pinto Puerto, F.; Guerrero Vega, J.M. Imagen y modelo en la investigación del patrimonio arquitectónico. Virtual Archaeol. Rev. 2013, 4, 135–139. [Google Scholar] [CrossRef]
- Angulo Fornos, R. Digital models applied to the analysis, intervention and management of architectural heritage. WIT Trans. Built Environ. 2015, 149, 407–418. [Google Scholar]
- Stone, R.; Ojika, T. Virtual heritage: What next? IEEE Multimed. 2000, 7, 73–74. [Google Scholar] [CrossRef]
- Guarnieri, A.; Pirotti, F.; Vettore, A. Cultural Heritage interactive 3D models on the web: An approach using open source and free software. J. Cult. Herit. 2010, 11, 350–353. [Google Scholar] [CrossRef]
- Mañana-Borrazás, P. Utilidades del pdf3D. Digital CSIC. 1 December 2012. Available online: http://digital.csic.es/handle/10261/63515 (accessed on 21 September 2021).
- Champion, E.; Rahaman, H. 3D Digital Heritage Models as Sustainable Scholary Resources. Sustainability 2019, 11, 2425. [Google Scholar] [CrossRef] [Green Version]
- Potenziani, M.; Callieri, M.; Dellepiane, M.; Corsini, M.; Ponchio, F.; Scopigno, R. 3DHOP: 3D Heritage Online Presenter. Comput. Graph. 2015, 52, 129–141. [Google Scholar] [CrossRef]
- Martí Testón, A. Hacia Una Museografía 4.0. Diseño de Experiencias Inmersivas Con Dispositivos de Realidad Aumentada; Universidad Politécnica de Valencia: Valencia, Spain, 2018. [Google Scholar]
- Wu, H.-K.; We-Yu Lee, S.; Chang, H.-Y.; Liang, J.-C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- De la Torre-Cantero, J.; Saorín, J.L.; Meier, C.; Melián-Díaz, D.; Díaz Alemán, M. Creación de réplicas de patrimonio escultórico mediante reconstrucción 3D e impresoras 3D de bajo coste para uso en entornos educativos. Arte Individuo Soc. 2015, 27, 429–446. Available online: http://www.redalyc.org/articulo.oa?id=513551298005 (accessed on 21 July 2021).
- Tejado Sebastián, J.M. Escaneado en 3D y prototipado de piezas arqueológicas: Las nuevas tecnologías en el registro, conservación, y difusión del patrimonio arqueológico. Iber. Rev. Antigüedad 2005, 8, 135–158. Available online: https://publicaciones.unirioja.es/ojs/index.php/iberia/article/view/303 (accessed on 15 July 2021).
- Hernández-Muñoz, Ó.; Sánchez-Ortiz, A. Digitalización e impresión 3D para la reconstrucción de pérdidas volumétricas en un modelo anatómico de cera del siglo XVIII. Conserv. Património 2019, 30, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Cano, M.; Abellán, A.; Tomás, R.; Riquelme, A. Structure from Motion (SfM): Una técnica fotogramétrica de bajo coste para la caracterización y monitoreo de macizo rocosos. In Proceedings of the 10 Simposio Nacional sobre Ingeniería Geotécnica, A Coruña, Spain, 19–21 October 2016; Volume 1, pp. 209–215. [Google Scholar]
- Gagliolo, S.; Ausonio, E.; Federici, B.; Ferrando, I.; Passoni, D.; Sguerso, D. 3D cultural heritage documentation: A comparision between different photogrammetric software and their products. In Proceedings of the ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020” Mid-Term, Riva del Garda, Italy, 4–7 June 2018; Volume XLII-2, pp. 4–7. Available online: https://pdfs.semanticscholar.org/5b17/d45bd4583f1227caebd06109022c803cb3d5.pdf (accessed on 20 October 2021).
- Rahaman, H.; Champion, E. To 3D or Not 3D: Choosing a Photogrammetry Workflow for Cultural Heritage Groups. Heritage 2019, 2, 1836–1851. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Uzal, J.M.; Robledano-Arillo, J. Uso de tecnologías 3D en la digitalización y difusión de documentos de alto valor patrimonial. El Profesional Información 2013, 22, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Cotec. Innovación en El Sector del Patrimonio Histórico; Fundación Cotec para la Innovación Tecnológica: Madrid, Spain, 2010. Available online: https://docs.google.com/viewerng/viewer?url=https://static.eoi.es/savia/documents/componente67126.pdf (accessed on 7 September 2021).
- Patrimonio de las Universidades Andaluzas. Available online: http://atalaya3d.ugr.es/index.php (accessed on 29 July 2021).
- 3D-ICONS. 3D Digitalisation of Icons of European Architectural and Archaelogical Heritage. Available online: http://3dicons-project.eu (accessed on 29 July 2021).
- Peinado Santana, S. La Documentación 3D del Patrimonio Inmueble: Gestión, Conservación y Difusión; Universidad Politécnica de Madrid: Madrid, Spain, 2019. [Google Scholar]
- Guidazzoli, A.; Liguori, M.C.; Chiavarini, B.; Verri, L.; Imboden, S.; De Luca, D. From 3D Web to VR historical scenarios: A cross-media digital heritage application for audience development. In Proceedings of the 23rd International Conference on Virtual System & Multimedia (VSMM), Dublin, Ireland, 31 October–4 November 2017; IEEE: Dublin, Ireland, 2017; pp. 1–8. [Google Scholar]
- Statham, N. Scientific rigour of online platform for 3D visualization of heritage. Virtual Archaeol. Rev. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Svoboda, J.; Škereň, M.; Květoň, M.; Fiala, P. Holographic 3D imaging—Methods and applications. J. Phys. Conf. Ser. 2013, 415, 012051. [Google Scholar] [CrossRef]
- Lipson, A.; Lipson, S.G.; Lipson, H. Optical Physics; Cambridege University Press: Cambridege, UK, 2010. [Google Scholar]
- Ruiz Torres, D. Realidad aumentada, educación y museos. ICONO 14 Rev. Científica Comun. Tecnol. Emerg. 2011, 9, 212–226. [Google Scholar] [CrossRef]
- GitHub. Available online: https://github.com/Ultimaker/Cura (accessed on 29 July 2021).
- Slic3r. Open Source 3D Printing Toolbox. Version 1.3.0. Available online: https://slic3r.org (accessed on 29 July 2021).
- Repetier. Version 2.1.6, Windows. Available online: https://www.repetier.com (accessed on 29 July 2021).
- Aguiló, M. El Carácter de los Puentes Españoles; ACS: Madrid, Spain, 2007. [Google Scholar]
- GOING. Grandes Obras de la Ingeniería. Available online: http://ingenieria-civil.org/GOING/buscador.php (accessed on 2 August 2021).
- Chías Navarro, P.; Abad Balboa, T. Puentes de España; FCC: Madrid, Spain, 1994; pp. 154–155. [Google Scholar]
- Hispania Nostra, Lista Roja del Patrimonio. Available online: https://listarojapatrimonio.org/ (accessed on 2 August 2021).
- MeshLab. Version 2016. Available online: http://meshlab.net (accessed on 29 July 2021).
- Comes, R.; Neamţu, C.; Zsolt, B.; Bidiu, I. Methodology to create 3D models for augmented reality applications using scanned point clouds. Mediterr. Archael. Archaeom. 2014, 14, 35–44. [Google Scholar]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An open-source mesh processing tool. In Eurographics Italian Chapter Conference; Eurographics Digital Library: Pisa, Italy, 2008; pp. 129–136. [Google Scholar]
- Interactive Geometry Lab. ETH Zurich, Department of Computer Sciences. Available online: https://igl.ethz.ch/projects/instant-meshes/ (accessed on 19 July 2021).
- Blender. Available online: https://www.blender.org/ (accessed on 21 July 2021).
- Palacios Estremera, C. Pirámide holográfica rápida. Facultad de Ciencias. Universidad de Navarra: Departamento de Física y Matemática Aplicada. 2013, pp. 1–8. Available online: https://www.unav.edu/documents/29007/8773000/videc_f05.pdf (accessed on 12 September 2021).
- OpenShot. Available online: https://www.openshot.org/ (accessed on 25 October 2021).
- Portalés, C.; Lerma, J.L.; Pérez, C. Photogrammetry and augmented reality for cultural heritage applications. Photogramm. Rec. 2009, 24, 316–331. [Google Scholar] [CrossRef]
- Rahaman, H.; Champion, E.; Bekele, M. From photo to 3D to mixed reality: A complete workflow for cultural heritage visualisation and experience. Digit. Appl. Archaeol. Cult. Herit. 2019, 13, e00102. [Google Scholar] [CrossRef]
Stage | Step | Sub-Step | Process | Software 1 | References |
---|---|---|---|---|---|
SfM | Image capture | Photogrammetry | - | ||
3D mesh | Imageentry | Stereoscopicpairs | VisualSFM, Regard3D | - | |
Densification | Dense pointcloud | MeshLab | [37,78] | ||
Meshcreation | Triangulation | [79,82] | |||
Texturing | Texturing | InstantMeshes, Blender | [81,82] | ||
3D model | Low poly | Topologicalisation | InstantMeshes | [81] | |
Model texturisation | Baking | - | |||
Dissemination | Web repositories | Georeferencing | Sketchfab | [67] | |
Holograms | Holographic pyramid | 3D screens | [83] | ||
Video editing | Video edition | OpenShot | [84] | ||
Viewing the hologram | Video projection | [68] | |||
Augmented reality | Virtual vision | Sketchfab | [85,86] | ||
3D prints | Scale model | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinado-Santana, S.; Hernández-Lamas, P.; Bernabéu-Larena, J.; Cabau-Anchuelo, B.; Martín-Caro, J.A. Public Works Heritage 3D Model Digitisation, Optimisation and Dissemination with Free and Open-Source Software and Platforms and Low-Cost Tools. Sustainability 2021, 13, 13020. https://doi.org/10.3390/su132313020
Peinado-Santana S, Hernández-Lamas P, Bernabéu-Larena J, Cabau-Anchuelo B, Martín-Caro JA. Public Works Heritage 3D Model Digitisation, Optimisation and Dissemination with Free and Open-Source Software and Platforms and Low-Cost Tools. Sustainability. 2021; 13(23):13020. https://doi.org/10.3390/su132313020
Chicago/Turabian StylePeinado-Santana, Sara, Patricia Hernández-Lamas, Jorge Bernabéu-Larena, Beatriz Cabau-Anchuelo, and José Antonio Martín-Caro. 2021. "Public Works Heritage 3D Model Digitisation, Optimisation and Dissemination with Free and Open-Source Software and Platforms and Low-Cost Tools" Sustainability 13, no. 23: 13020. https://doi.org/10.3390/su132313020
APA StylePeinado-Santana, S., Hernández-Lamas, P., Bernabéu-Larena, J., Cabau-Anchuelo, B., & Martín-Caro, J. A. (2021). Public Works Heritage 3D Model Digitisation, Optimisation and Dissemination with Free and Open-Source Software and Platforms and Low-Cost Tools. Sustainability, 13(23), 13020. https://doi.org/10.3390/su132313020