Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review
Abstract
:1. Introduction
2. Role of Microorganisms and Endophytes at All Life Cycle Stages of Invasive Plant
3. Endophytes: Are They Tools That Promote Plants’ Invasion?
4. Mycorrhiza: Multipurpose Roles for Invasive Plants
5. Symbiotic Nitrogen Fixation: An Opportunity for Invasive Legumes
6. Pathogens: Invasive Species Protection and Strong Weapon to Suppress Native Species
7. Allelochemicals: Promotion of Invasive Plants and Native Attack
8. Microbial Changes under Invasive Species: Self-Defense and Native Distraction
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milton, S.; Dean, W. Plant invasions in arid areas: Special problems and solutions: A South African perspective. Biol. Invasions 2010, 12, 3935–3948. [Google Scholar] [CrossRef]
- Daffonchio, D.; Hirt, H.; Berg, G. Plant–microbe interactions and water management in arid and saline soils. In Principles of Plant–Microbe Interactions; Lugtenberg, B., Ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Chen, E.; Liao, H.; Chen, B.; Peng, S. Arbuscular mycorrhizal fungi are a double-edged sword in plant invasion controlled by phosphorus concentration. New Phytol. 2020, 226, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Zhang, Y.J.; Li, Z.; Bai, D.F.; Zhong, Y.P.; Fang, J.B. Effect of salt stress on growth, physiological and biochemical characters of Four kiwifruit genotypes. Sci. Hortic. 2020, 271, 109473. [Google Scholar] [CrossRef]
- Wang, Y. Terrestrial Ecosystems and Biodiversity; CRC Press: Milton, UK, 2020. [Google Scholar]
- El-Keblawy, A.; Ksiksi, T. Artificial forests as conservation sites for the native flora of the UAE. Ecol. Manag. 2005, 213, 288–296. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Al-Rawai, A. Impacts of the invasive exotic Prosopis juliflora (Sw.) D.C. on the native flora and soils of the UAE. Plant Ecol. 2007, 190, 23–35. [Google Scholar] [CrossRef]
- Hussain, M.I.; Tsombou, F.M.; El-Keblawy, A. Surface canopy position determines the photosystem II photochemistry in invasive and native Prosopis congeners at Sharjah Desert, UAE. Forests 2020, 11, 740. [Google Scholar] [CrossRef]
- Dakhil, M.A.; El-Keblawy, A.; El-Sheikh, M.A.; Halmy, M.W.A.; Ksiksi, T.; Hassan, W.A. Global Invasion Risk Assessment of Prosopis juliflora at Biome Level: Does Soil Matter? Biology 2021, 10, 203. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Abdelfatah, M.A. Impacts of native and invasive exotic Prosopis congeners on soil properties and associated flora in the arid United Arab Emirates. J. Arid Environ. 2014, 100–101, 1–8. [Google Scholar] [CrossRef]
- Collins, C.D.; Bever, J.D.; Hersh, M.H. Community context for mechanisms of disease dilution: Insights from linking epidemiology and plant–soil feedback theory. Ann. N. Y. Acad. Sci. 2020, 1469, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Wilgen, N.J.; van Wilgen, B.W.; Midgley, G.F. Biological invasions as a component of South Africa’s global change research effort. In Biological Invasions in South Africa. Invading Nature—Springer Series in Invasion Ecology; Van Wilgen, B., Measey, J., Richardson, D., Wilson, J., Zengeya, T., Eds.; Springer: Cham, Switzerland, 2020; Volume 14, p. 855. [Google Scholar] [CrossRef]
- Simberloff, D. Non-native Species DO Threaten the Natural Environment. J. Agric. Environ. Ethics. 2005, 18, 595–607. [Google Scholar] [CrossRef]
- Richardson, D.M.; Rejmánek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Edrisi, S.A.; El-Keblawy, A.; Abhilash, P.C. Sustainability Analysis of Prosopis juliflora (Sw.) DC Based Restoration of Degraded Land in North India. Land 2020, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.I.; Shackleton, R.T.; El-Keblawy, A.; Del Mar Trigo Pérez, M.; González, L. Invasive Mesquite (Prosopis juliflora), an Allergy and Health Challenge. Plants 2020, 9, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar Rai, P.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.R. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida. Ecol. Appl. 1998, 8, 975–989. [Google Scholar] [CrossRef]
- Abdallah, M.A.B.; Durfee, N.; Mata-González, R.; Ochoa, C.G.; Noller, J.S. Water use and soil moisture relationships on western juniper trees at different growth stages. Water 2020, 12, 1596. [Google Scholar] [CrossRef]
- Mata-González, R.; Abdallah, M.A.B.; Ochoa, C.G. Water use by mature and sapling western juniper (Juniperus occidentalis) trees. Rangel. Ecol. Manag. 2021, 74, 110–113. [Google Scholar] [CrossRef]
- Zhang, H.; Goncalves, P.; Copeland, E.; Qi, S.; Dai, Z.; Li, G.; Wang, C.; Du, D.; Thomas, T. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol. Biochem. 2020, 143, 107739. [Google Scholar] [CrossRef]
- Hu, Z.; Li, J.; Shi, K.; Ren, G.; Dai, Z.; Sun, J.; Zheng, X.; Zhou, Y.; Zhang, J.; Li, G.; et al. Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry. Sustainability 2021, 13, 3768. [Google Scholar] [CrossRef]
- Hejda, M.; Pysek, P.; Jarosik, V. Impact of Invasive Plants on the Species Richness, Diversity and Composition of Invaded Communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- Abdallah, M.A.B.; Mata-González, R.; Noller, J.S.; Ochoa, C.G. Effects of western juniper (Juniperus occidentalis) control on ecosystem nitrogen stocks in central Oregon, USA. J. Plant Ecol. 2021, 14, 1073–1089. [Google Scholar] [CrossRef]
- Gioria, M.; Osborne, B.A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 2014, 5, 501. [Google Scholar] [CrossRef] [Green Version]
- Koutika, L.; Richardson, D.M. Acacia mangium Willd: Benefits and threats associated with its increasing use around the world. For. Ecosyst. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Callaway, R.M.; Walker, L.R. Competition and Facilitation: A Synthetic Approach to Interactions in Plant Communities. Ecology 1997, 78, 1958. [Google Scholar] [CrossRef]
- Barea, J.M.; Palenzuela, J.; Cornejo, P.; Sánchez-Castro, I.; Navarro-Fernández, C.; Lopéz-García, A.; Estrada, B.; Azcón, R.; Ferrol, N.; Azcón-Aguilar, C. Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J. Arid Environ. 2011, 75, 1292–1301. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M. Induction of Plant Tolerance to Semi-arid Environments by Beneficial Soil Microorganisms—A Review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Springer: Dordrecht, The Netherlands, 2009; pp. 121–135. [Google Scholar]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Duan, X.; Luo, L.; Dai, S.; Ding, Z.; Xia, G. How Plant Hormones Mediate Salt Stress Responses. Trends Plant Sci. 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/32675014/ (accessed on 11 November 2021). [CrossRef]
- Ramirez, K.S.; Snoek, L.B.; Koorem, K.; Geisen, S.; Bloem, L.J.; ten Hooven, F.; Kostenko, O.; Krigas, N.; Manrubia, M.; Caković, D.; et al. Range-expansion effects on the belowground plant microbiome. Nat. Ecol. Evol. 2019, 3, 604–611. [Google Scholar] [CrossRef]
- Reinhart, K.O.; Callaway, R.M. Soil Biota and Invasive Plants. New Phytol. 2006, 170, 445–457. [Google Scholar] [CrossRef]
- Richardson, D.M.; Allsopp, N.; D’antonio, C.M.; Milton, S.J.; Rejmánek, M. Plant invasions—The role of mutualisms. Biol. Rev. Camb. Philos. Soc. 2000, 75, 65–93. [Google Scholar] [CrossRef]
- Khare, E.; Mishra, J.; Arora, N.K. Multifaceted interactions between endophytes and plant: Developments and prospects. Front. Microbiol. 2018, 9, 2732. [Google Scholar] [CrossRef]
- Porras-Alfaro, A.; Raghavan, S.; Garcia, M.; Sinsabaugh, R.L.; Natvig, D.O.; Lowrey, T.K. Endophytic Fungal Symbionts Associated with Gypsophilous Plants; National Research Council of Canada: Ottawa, ON, Canada, 2014; pp. 295–301.
- Knapp, D.G.; Pintye, A.; Kovács, G.M. The dark side is not fastidious—Dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS ONE 2012, 7, e32570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhou, L.; Zhao, J.; Li, J.; Li, X.; Wang, J. Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Lett. Appl. Microbiol. 2008, 46, 68–72. [Google Scholar] [CrossRef]
- Kelemu, S.; White, J.F.; Munoz, F.; Takayama, Y. An endophyte of the tropical forage grass Brachiaria brizantha: Isolating, identifying, and characterizing the fungus, and determining its antimycotic properties. Can. J. Micobiol. 2001, 47, 55–62. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Agrawal, A.A.; Bever, J.D.; Gilbert, G.S.; Hufbauer, R.A.; Klironomos, J.N.; Maron, J.L.; Morris, W.F.; Parker, I.M.; Power, A.G.; et al. Biotic interactions and plant invasions. Ecol. Lett. 2006, 9, 726–740. [Google Scholar] [CrossRef]
- Coats, V.C.; Rumpho, M.E. The rhizosphere microbiota of plant invaders: An overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 2014, 5, 368. [Google Scholar] [CrossRef] [PubMed]
- Mateos Naranjo, E.; Mesa, J.; Pajuelo, E.; Pérez Martín, A.; Caviedes, M.A.; Rodríguez Llorente, I.D. Deciphering the role of plant growth-promoting rhizobacteria in the tolerance of the invasive cordgrass Spartina densiflora to physicochemical properties of salt-marsh soils. Plant Soil. 2015, 394, 45–55. [Google Scholar] [CrossRef]
- Dawson, W.; Schrama, M.; Austin, A. Identifying the role of soil microbes in plant invasions. J. Ecol. 2016, 104, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, K.R.; Thangavelu, M. Role and influence of soil microbial communities on plant invasion. Ecol. Quest. 2017, 27, 9. [Google Scholar] [CrossRef] [Green Version]
- Keet, J.; Ellis, A.G.; Hui, C.; Le Roux, J.J. Legume-Rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness. Ann. Bot. 2017, 119, 1319–1331. [Google Scholar] [CrossRef]
- Zhang, P.; Li, B.; Wu, J.; Hu, S.; Seabloom, E. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: A meta-analysis. Ecol. Lett. 2019, 22, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Caballero, G.; Caravaca, F.; Alguacil, M.M.; Fernández-López, M.; Fernández-González, A.J.; Roldán, A. Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biol. Biochem. 2017, 109, 176–187. [Google Scholar] [CrossRef]
- Soti, P.G.; Purcell, M.; Jayachandran, K. Soil biotic and abiotic conditions negate invasive species performance in native habitat. Ecol. Process. 2020, 9, 18. [Google Scholar] [CrossRef]
- Zhang, J.; He, X.L.; Zhao, L.L.; Xu, W.; Yan, J. Responses of desert soil factors and dark septate endophytes colonization to clonal plants invasion. Acta Ecol. Sin. 2015, 35, 1095. [Google Scholar]
- de Souza, T.; Santos, D.; de Andrade, L.; Freitas, H. Plant-soil feedback of two legume species in semi-arid Brazil. Braz. J. Microbiol. 2019, 50, 1011–1020. [Google Scholar] [CrossRef]
- Lugo, M.; Reinhart, K.; Menoyo, E.; Crespo, E.; Urcelay, C. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 2015, 25, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Coleman-Derr, D.; Desgarennes, D.; Fonseca-Garcia, C.; Gross, S.; Clingenpeel, S.; Woyke, T.; North, G.; Visel, A.; Partida-Martinez, L.P.; Tringe, S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New. Phytol. 2016, 209, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Khidir, H.H.; Eudy, D.M.; Porras-Alfaro, A.; Herrera, J.; Natvig, D.O.; Sinsabaugh, R.L. A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J. Arid Environ. 2010, 74, 35–42. [Google Scholar] [CrossRef]
- González-Teuber, M.; Urzúa, A.; Morales, A.; Ibáñez, C.; Bascuñán-Godoy, L. Benefits of a root fungal endophyte on physiological processes and growth of the vulnerable legume tree Prosopis chilensis (Fabaceae). J. Plant Ecol. 2019, 12, 264–271. [Google Scholar] [CrossRef]
- González-Menéndez, V.; Crespo, G.; de Pedro, N.; Diaz, C.; Martín, J.; Serrano, R.; Mackenzie, T.A.; Justicia, C.; González-Tejero, M.R.; Casares, M.; et al. Fungal endophytes from arid areas of Andalusia: High potential sources for antifungal and antitumoral agents. Sci. Rep. 2018, 8, 9729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loro, M.; Valero-Jiménez, C.A.; Nozawa, S.; Márquez, L.M. Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. J. Arid Environ. 2012, 85, 46–55. [Google Scholar] [CrossRef]
- Burlak, O.P.; de Vera, J.; Yatsenko, V.; Kozyrovska, N.O. Putative mechanisms of bacterial effects on plant photosystem under stress. Biopolim. Cell 2013, 29, 3–10. [Google Scholar] [CrossRef]
- Wani, Z.A.; Ashraf, N.; Mohiuddin, T.; Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 2015, 99, 2955–2965. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Nautiyal, C.S. Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil. J. Gen. Appl. Microbiol. 1999, 45, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnaweera, P.B.; de Silva, E.D.; Williams, D.E.; Andersen, R.J. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement. Altern. Med. 2015, 15, 220. [Google Scholar] [CrossRef] [Green Version]
- Jothibasu, K.; Chinnadurai, C.; Sundaram, S.P.; Kumar, K.; Balachandar, D. Molecular Profiling of Rhizosphere Bacterial Communities Associated with Prosopis juliflora and Parthenium hysterophorus. J. Microbiol. Biotechnol. 2012, 22, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Saadoun, I.; Ahmad, A.; Nasir, A.; Al-Joubori, B.; El-Keblawy, A. Effect of Invasive and Native Prosopis Plants from Deserts of the UAE on Soil Microbiota and Seed Germination of Desert Plants. Int. J. Life Sci. Med. Res. 2014, 4, 1–8. [Google Scholar] [CrossRef]
- Marchante, E.; Marchante, H.; Freitas, H.; Kjøller, A.; Struwe, S. Decomposition of an N-fixing invasive plant compared with a native species: Consequences for ecosystem. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2019, 138, 19–31. [Google Scholar] [CrossRef]
- Vallejo, V.E.; Arbeli, Z.; Terán, W.; Lorenz, N.; Dick, R.P.; Roldan, F. Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agric. Ecosys. Environ. 2012, 150, 139–148. [Google Scholar] [CrossRef]
- Mahdhi, M.; Tounekti, T.; Khemira, H. Effects of Prosopis juliflora on germination, plant growth of Sorghum bicolor, mycorrhiza and soil microbial properties. Allelopath. J. 2019, 46, 121–132. [Google Scholar] [CrossRef]
- Herrera, I.; Ferrer-Paris, J.R.; Benzo, D.; Flores, S.; García, B.; Nassar, J.M. An Invasive Succulent Plant (Kalanchoe daigremontiana) Influences Soil Carbon and Nitrogen Mineralization in a Neotropical Semiarid Zone. Pedosphere 2018, 28, 632–643. [Google Scholar] [CrossRef]
- Dawkins, K.; Esiobu, N. The Invasive Brazilian Pepper Tree (Schinus terebinthifolius) Is Colonized by a Root Microbiome Enriched with Alphaproteobacteria and Unclassified Spartobacteria. Front. Microbiol. 2018, 9, 876. [Google Scholar] [CrossRef] [PubMed]
- Cibichakravarthy, B.; Preetha, R.; Sundaram, S.; Kumar, K.; Balachandar, D. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus. World J. Microbiol. Biotechnol. 2012, 28, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, P.; Rodríguez-Echeverría, S.; González, L.; Freitas, H. Effect of invasive Acacia dealbata Link on soil microorganisms as determined by PCR-DGGE. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2010, 44, 245–251. [Google Scholar] [CrossRef]
- Guisande-Collazo, A.; González, L.; Souza-Alonso, P. Impact of an invasive nitrogen-fixing tree on arbuscular mycorrhizal fungi and the development of native species. AoB Plants 2016, 8, plw018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkes, C.V.; Belnap, J.; D’antonio, C.; Firestone, M.K. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant Soil. 2006, 281, 369–380. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Antunes, P.M.; Martins-Loução, M.A.; Klironomos, J.N. Disturbance influences the outcome of plant-soil biota interactions in the invasive Acacia longifolia and in native species. Oikos 2010, 119, 1172–1180. [Google Scholar] [CrossRef]
- Srivastava, A.; Anandrao, R.K. Antimicrobial potential of fungal endophytes isolated from leaves of Prosopis juliflora (SW.) DC. an important weed. Int. J. Pharm. Pharm. 2015, 7, 128–136. [Google Scholar]
- Ortiz, N.; Armada, E.; Duque, E.; Roldán, A.; Azcón, R. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. J. Plant Physiol. 2015, 174, 87–96. [Google Scholar] [CrossRef]
- Li, G.; Kim, S.; Han, S.H.; Chang, H.; Du, D.; Son, Y. Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biol. Biochem. 2018, 120, 212–221. [Google Scholar] [CrossRef]
- Filippou, P.; Bouchagier, P.; Skotti, E.; Fotopoulos, V. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ. Exp. Bot. 2014, 97, 1–10. [Google Scholar] [CrossRef]
- Khan, A.L.; Hussain, J.; Al-Harrasi, A.; Al-Rawahi, A.; Lee, I. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 2015, 35, 62–74. [Google Scholar] [CrossRef]
- Ren, C.; Dai, C. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Boil. 2012, 12, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.U.; Sessitsch, A.; Harris, M.; Fatima, K.; Imran, A.; Arslan, M.; Shabir, G.; Khan, Q.M.; Afzal, M. Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front. Plant Sci. 2015, 5, 755. [Google Scholar] [CrossRef] [Green Version]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.; Kim, Y.; Lee, I. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.R.; Pineda, R.P.; Barney, J.N.; Nilsen, E.T.; Barrett, J.E.; Williams, M.A. Plant invasions associated with change in root-zone microbial community structure and diversity. PLoS ONE 2015, 10, e0141424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosme, M.; Lu, J.; Erb, M.; Stout, M.J.; Franken, P.; Wurst, S. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol. 2016, 211, 1065–1076. [Google Scholar] [CrossRef]
- Dai, Z.; Fu, W.; Wan, L.; Cai, H.; Wang, N.; Qi, S.; Du, D. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 2016, 7, 706. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wei, S.; Shang, L.; Carrillo, J.; Gabler, C.A.; Nijjer, S.; Li, B.; Siemann, E. Mycorrhizal associations of an invasive tree are enhanced by both genetic and environmental mechanisms. Ecography 2015, 38, 1112–1118. [Google Scholar] [CrossRef]
- Aslani, F.; Juraimi, A.; Ahmad-Hamdani, M.; Alam, M.; Hasan, M.; Hashemi, F.; Bahram, M. The role of arbuscular mycorrhizal fungi in plant invasion trajectory. Plant Soil. 2019, 441, 1–14. [Google Scholar] [CrossRef]
- Callaway, R.M.; Ridenour, W.M. Novel Weapons: Invasive Success and the Evolution of Increased Competitive Ability. Front. Ecol. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef]
- Rout, M.E.; Callaway, R.M. Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’. Ann. Bot. 2012, 110, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcántara-Martínez, N.; Figueroa-Martínez, F.; Rivera-Cabrera, F.; Gutiérrez-Sánchez, G.; Volke-Sepúlveda, T. An endophytic strain of Methylobacterium sp. increases arsenate tolerance in Acacia farnesiana (L.) Willd: A proteomic approach. Sci. Total Environ. 2018, 625, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoteleb, A.; Troncoso-Rojas, R.; Gonzalez-Soto, T.; González-Mendoza, D. Antifungical Activity of Autochthonous Bacillus subtilis Isolated from Prosopis juliflora against Phytopathogenic Fungi. Mycobiology 2017, 45, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangla, S.; Callaway, R.M. Exotic Invasive Plant Accumulates Native Soil Pathogens Which Inhibit Native Plants. J. Ecol. 2008, 96, 58–67. [Google Scholar] [CrossRef]
- Vilcinskas, A. Pathogens as Biological Weapons of Invasive Species. PLoS Pathog. 2015, 11, e1004714. [Google Scholar] [CrossRef]
- Adil, S.; Muneer, M.A.; Imran, M.; Munir, M.Z. Seasonality of arbuscular mycorrhiza and dark septate endophytes in some grasses under arid climatic conditions. J. Agric. Res. 2017, 55, 601–610. [Google Scholar]
- Menoyo, E.; Teste, F.P.; Ferrero, M.A.; Lugo, M.A. Associations between fungal root endophytes and grass dominance in arid highlands. Fungal Ecol. 2020, 45, 100924. [Google Scholar] [CrossRef]
- Gonzalez Mateu, M.; Baldwin, A.H.; Maul, J.E.; Yarwood, S.A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME J. 2020, 14, 1943–1954. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Hou, L.; Ren, Y.; Wang, S.; Su, F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci. Rep. 2018, 8, 7896. [Google Scholar] [CrossRef] [Green Version]
- Udaiyan, K.; Karthikeyan, A.; Muthukumar, T. Influence of edaphic and climatic factors on dynamics of root colonization and spore density of vesicular-arbuscular mycorrhizal fungi in Acacia farnesiana Willd. and A. planifrons W.et.A. Trees 1996, 11, 65–71. [Google Scholar] [CrossRef]
- Pennisi, E. Fungi Shield New Host Plants from Heat and Drought. Science 2003, 301, 1466–1467. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Martinez-Medina, A.; Lopez-Raez, J.; Pozo, M. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, A.; Batool, A.; Nasir, F.; Jiang, S.; Mingsen, Q.; Zhang, Q.; Pan, J.; Liu, Y.; Feng, H. Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. Int. J. Mol. Sci. 2019, 20, 4199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wipf, D.; Krajinski, F.; Tuinen, D.; Recorbet, G.; Courty, P. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, J.L. The physiology of invasive plants in low-resource environments. Conser. Physiol. 2013, 1, cot026. [Google Scholar] [CrossRef] [Green Version]
- Willis, A.; Rodrigues, B.F.; Harris, P.J.C. The Ecology of Arbuscular Mycorrhizal Fungi. Crit. Rev. Plant Sci. 2013, 32, 1–20. [Google Scholar] [CrossRef]
- Elsheikh, E.A.; Mirghani, A.M. Interaction of VA mycorrhizal fungi and root-knot nematode on tomato plants: Effects of nematode inoculum density, soil texture and soil sterilization. Natl. Resour. Environ. 1997, 1, 1–6. [Google Scholar]
- Al-Barakah, F.N.; Mridha, M. Status and need of research on arbuscular mycorrhizal fungi and Rhizobium for growth of Acacias. J. Pure Appl. Microbiol. 2014, 8, 129–140. [Google Scholar]
- Makarov, M.I. The role of mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: A review. Eurasian Soil Sci. 2019, 52, 193. [Google Scholar] [CrossRef]
- Lumini, E.; Pan, J.; Magurno, F.; Huang, C.; Bianciotto, V.; Xue, X.; Balestrini, R.; Tedeschi, A. Native arbuscular mycorrhizal fungi characterization from Saline Lands in Arid Oases, Northwest China. J. Fungi 2020, 6, 80. [Google Scholar] [CrossRef]
- Zhao, M.; Lu, X.; Zhao, H.; Yang, Y.; Hale, L.; Gao, Q.; Liu, W.; Guo, J.; Li, Q.; Zhou, J.; et al. Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Sci. Total Environ. 2019, 677, 47–56. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Dias, T.; Mahdhi, M.; Cruz, C.; Mars, M.; Caeiro, M.F. Does Arbuscular Mycorrhiza Determine Soil Microbial Functionality in Nutrient-Limited Mediterranean Arid Ecosystems? Diversity 2020, 12, 234. [Google Scholar] [CrossRef]
- Yanfang, B.; Min, L.; Shaoxia, G. Development status of Arbuscular mycorrhizal fungi associated with invasive plant Coreopsis grandiflora Hogg. Afr. J. Microbiol. Res. 2012, 6, 2779–2784. [Google Scholar] [CrossRef] [Green Version]
- Dhar, P.; Al-Qarawi, A.; Mridha, M. Arbuscular mycorrhizal fungal association in Asteraceae plants growing in the arid lands of Saudi Arabia. J. Arid Land. 2015, 7, 676–686. [Google Scholar] [CrossRef]
- Martínez-García, L.B.; Armas, C.; Miranda, J.d.D.; Padilla, F.M.; Pugnaire, F.I. Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biol. Biochem. 2011, 43, 682–689. [Google Scholar] [CrossRef]
- Sun, C.; Johnson, J.M.; Cai, D.; Sherameti, I.; Oelmüller, R.; Lou, B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 2010, 167, 1009–1017. [Google Scholar] [CrossRef]
- Pinzone, P.; Potts, D.; Pettibone, G.; Warren II, R. Do novel weapons that degrade mycorrhizal mutualisms promote species invasion? Plant Ecol. 2018, 219, 539–548. [Google Scholar] [CrossRef]
- Eid, K.E.; Abbas, M.H.H.; Mekawi, E.M.; ElNagar, M.M.; Abdelhafez, A.A.; Amin, B.H.; Mohamed, I.; Ali, M.M. Arbuscular mycorrhiza and environmentally biochemicals enhance the nutritional status of Helianthus tuberosus and induce its resistance against Sclerotium rolfsii. Ecotoxicol. Environ. Saf. 2019, 186, 109783. [Google Scholar] [CrossRef]
- Pringle, A.; Bever, J.D.; Gardes, M.; Parrent, J.L.; Rillig, M.C.; Klironomos, J.N. Mycorrhizal Symbioses and Plant Invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 699–715. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.L.; Weber, S.E.; Andrews, L.V.; Aronson, E.L.; Allen, M.F.; Allen, E.B. Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecol. 2019, 40, 107–117. [Google Scholar] [CrossRef]
- Gemeda, W.S. Effects of Prosopis juliflora on Soil Microbial and Other Pathogenic Activities: A Review Paper. CPQ Microbiol. 2019, 3, 1–8. [Google Scholar]
- Soliman, A.S.; Shanan, N.T.; Massoud, O.N.; Swelim, D.M. Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr. J. Biotechnol. 2012, 11, 1259–1266. [Google Scholar]
- Badalamenti, E.; Ciolfi, M.; Lauteri, M.; Quatrini, P.; Mantia, T. Effects of Arbuscular Mycorrhizal Fungi on the Vegetative Vigor of Ailanthus altissima (Mill.) Swingle Seedlings under Sustained Pot Limitation. Forests 2018, 9, 409. [Google Scholar] [CrossRef] [Green Version]
- Silva, I.R.d.; Mello, C.M.A.d.; Ferreira Neto, R.A.; Silva, D.K.A.d.; Melo, A.L.d.; Oehl, F.; Maia, L.C. Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Agric. Ecosyst. Environ. Appl. 2014, 84, 166–175. [Google Scholar] [CrossRef]
- Menezes, K.M.S.; Silva, D.K.A.; Queiroz, M.A.A.; Félix, W.P.; Yano-Melo, A.M. Arbuscular mycorrhizal fungal communities in buffelgrass pasture under intercropping and shading systems in Brazilian semiarid conditions. Agric. Ecosyst. Environ. 2016, 230, 55–67. [Google Scholar] [CrossRef]
- Belay, Z.; Vestberg, M.; Assefa, F. Diversity and abundance of arbuscular mycorrhizal fungi associated with acacia trees from different land use systems in Ethiopia. Afr. J. Microbiol. Res. 2013, 7, 5503–5515. [Google Scholar] [CrossRef] [Green Version]
- El-Khateeb, M.A.; El-Leithy, A.S.; Aljemaa, B.A. Effect of mycorrhizal fungi inoculation and humic acid on vegetative growth and chemical composition of Acacia saligna Labill. seedlings under different irrigation intervals. J. Hortic. Sci. Ornam. Plants 2011, 3, 283–289. [Google Scholar]
- Mortimer, P.; Le Roux, M.; Pérez-Fernández, M.; Benedito, V.; Kleinert, A.; Xu, J.; Valentine, A. The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant Soil 2013, 366, 229–241. [Google Scholar] [CrossRef]
- Duponnois, R.; Plenchette, C.; Bâ, A.M. Growth stimulation of seventeen fallow leguminous plants inoculated with Glomus aggregatum in Senegal. Eur. J. Soil Biol. 2001, 37, 181–186. [Google Scholar] [CrossRef]
- Mahdhi, M.; Tounekti, T.; Khemira, H. Invasive Character of Prosopis juliflora Facilitated by its Allelopathy and a Wide Mutualistic Interaction with Soil Microorganisms. J. Biol. Sci. 2018, 18, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Reshi, Z.; Khasa, D. Arbuscular Mycorrhizas: Drivers or Passengers of Alien Plant Invasion. Bot. Rev. 2009, 75, 397–417. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Menge, D.N.L.; Reed, S.C.; Cleveland, C.C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. Biol. Sci. 2013, 368, 20130119. [Google Scholar] [CrossRef] [Green Version]
- Otieno, J.O.; Odee, D.W.; Omondi, S.F.; Oduor, C.; Kiplagat, O. Isolation and characterization of nitrogen fixing bacteria that nodulate alien invasive plant species Prosopis juliflora (Swart) DC. in Marigat, Kenya. Trop. Plant Res. 2017, 4, 183–191. [Google Scholar] [CrossRef]
- Pathak, R.; Singh, S.K.; Gehlot, P. Diversity, Nitrogen fixation, and Biotechnology of Rhizobia from Arid Zone Plants. In Rhizobium Biology and Biotechnology; Springer International Publishing: Cham, Switzerland, 2017; pp. 61–81. [Google Scholar]
- Zahran, H.H. Legume-Microbe Interactions under Stressed Environments. In Microbes for Legume Improvement; Springer International Publishing: Cham, Switzerland, 2017; pp. 301–339. [Google Scholar]
- Benata, H.; Mohammed, O.; Noureddine, B.; Abdelbasset, B.; Abdelmoumen, H.; Muresu, R.; Squartini, A.; Idrissi, M.M.E. Diversity of bacteria that nodulate Prosopis juliflora in the eastern area of Morocco. Syst. Appl. Microbiol. 2008, 31, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Malage, A.; Sibi, G. Quantitative analysis of biological nitrogen fixation in various models of legumes and the factors influencing the process: A review. J. Crit. Rev. 2019, 24–28. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.I.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef]
- Khan, A.G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Boil. 2005, 18, 355–364. [Google Scholar] [CrossRef]
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Quero, J.L.; García-Gómez, M.; Gallardo, A.; Ulrich, W.; et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 2015, 112, 15684–15689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsheikh, E.A.E.; Wood, M. Response of chickpea and soybean rhizobia to salt: Osmotic and specific ion effects of salts. Soil Biol. Biochem. 1989, 21, 889–895. [Google Scholar] [CrossRef]
- Elsheikh, E.A.E.; Wood, M. Rhizobia and bradyrhizobia under salt stress: Possible role of trehalose in osmoregulation. Lett. Appl. Microbiol. 1990, 10, 127–129. [Google Scholar] [CrossRef]
- Elsheikh, E.A.E.; Wood, M. Nodulation and N 2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Boil. Biochem. 1995, 27, 657–661. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.; Bellingrath-Kimura, S.D.; Mishra, J.; Arora, N.K. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019, 10, 2791. [Google Scholar] [CrossRef] [Green Version]
- Dhull, S.; HS, S.; Kakar, R.; Gera, R. Selection of temperature stress tolerance of Rhizobium isolated from root nodules of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] growing in arid and semi-arid regions of Haryana, India. Ann. Biol. 2018, 34, 24–27. [Google Scholar]
- Marinkovic, J.; Bjelic, D.; AorAevic, V.; Balesevic-Tubic, S.; Josic, D.; Vucelic-Radovic, B. Performance of different Bradyrhizobium strains in root nodule symbiosis under drought stress. Acta Physiol. Plant 2019, 41, 37. [Google Scholar] [CrossRef]
- Elsheikh, E.A.E. Effects of salt on rhizobia and bradyrhizobia: A review. Ann. Appl. Biol. 1998, 132, 507–524. [Google Scholar] [CrossRef]
- Mahdhi, M.; Tounekti, T.; Khemira, H. Status and need of research on rhizobia and arbuscular mycorrhizal Fungi associated with leguminous plants in Saudi Arabia. Am. J. Curr. Microbiol. 2017, 5, 1–8. [Google Scholar]
- Galaviz, C.; Lopez, B.R.; de-Bashan, L.E.; Hirsch, A.M.; Maymon, M.; Bashan, Y. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil. Land Degrad. Dev. 2018, 29, 1453–1466. [Google Scholar] [CrossRef]
- Ramana, C.V.; Parag, B.; Girija, K.R.; Ram, B.R.; Ramana, V.V.; Sasikala, C. Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int. J. Syst. Evol. Microbiol. 2013, 63, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.X.; Wang, E.T.; Wang, S.Y.; Li, Y.B.; Chen, X.Q.; Li, J. Characteristics of Rhizobium tianshanense sp. nov., a Moderately and Slowly Growing Root Nodule Bacterium Isolated from an Arid Saline Environment in Xinjiang, People’s Republic of China. Int. J. Syst. Bacteriol. 1995, 45, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, N.; Willems, A.; Pot, B.; Dewettinck, D.; Vandenbruaene, I.; Maestrojuan, G.; Dreyfus, B.; Kersters, K.; Collins, M.D.; Gillis, M. Phenotypic and Genotypic Characterization of Bradyrhizobia Nodulating the Leguminous Tree Acacia albida. Int. J. Syst. Bacteriol. 1994, 44, 461–473. [Google Scholar] [CrossRef]
- Dupuy, N.C.; Dreyfus, B.L. Bradyrhizobium Populations Occur in Deep Soil under the Leguminous Tree Acacia albida. Appl. Environ. Microbiol. 1992, 58, 2415–2419. [Google Scholar] [CrossRef] [Green Version]
- Marsudi, N.D.S.; Glenn, A.R.; Dilworth, M.J. Identification and characterization of fast- and slow-growing root nodule bacteria from South-Western Australian soils able to nodulate Acacia saligna. Soil Boil. Biochem. 1999, 31, 1229–1238. [Google Scholar] [CrossRef]
- Birnbaum, C.; Bissett, A.; Thrall, P.H.; Leishman, M.R. Nitrogen-fixing bacterial communities in invasive legume nodules and associated soils are similar across introduced and native range populations in Australia. J. Biogeogr. 2016, 43, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- Alshaharani, T.S.; Shetta, N.D. Phenotypic and biochemical characterization of root nodule bacteria naturally associated with woody tree legumes in Saudi Arabia. J. Environ. Biol. 2015, 36, 363–370. [Google Scholar] [PubMed]
- Sharma, S.; Rao, N.; Gokhale, T.; Ismail, S. Isolation and characterization of salt-tolerant rhizobia native to the desertsoils of United Arab Emirates. Emir. J. Food Agric. 2013, 25, 102. [Google Scholar] [CrossRef]
- Fterich, A.; Mahdhi, M.; Caviedes, M.; Pajuelo, E.; Rivas, R.; Rodriguez-Llorente, I.; Mars, M. Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch. Microbiol. 2011, 193, 385–397. [Google Scholar] [CrossRef]
- Helene, L.C.F.; Delamuta, J.R.M.; Ribeiro, R.A.; Ormeño-Orrillo, E.; Rogel, M.A.; Martínez-Romero, E.; Hungria, M. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int. J. Syst. Evol. Microbil. 2015, 65, 4441–4448. [Google Scholar] [CrossRef]
- Shetta, N.D.; Al-Shaharani, T.S.; Abdel-Aal, M. Identification and characterization of Rhizobium associated with woody legume trees grown under Saudi Arabia condition. Am. Eurasian J. Agric. Environ. Sci. 2011, 10, 410–418. [Google Scholar]
- Boukhatem, Z.F.; Domergue, O.; Bekki, A.; Merabet, C.; Sekkour, S.; Bouazza, F.; Duponnois, R.; de Lajudie, P.; Galiana, A. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol. Ecol. 2012, 80, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Ceccon, E.; Almazo-Rogel, A.; Martínez-Romero, E.; Toledo, I. The effect of inoculation of an indigenous bacteria on the early growth of Acacia farnesiana in a degraded area. Cerne 2012, 18, 49–57. [Google Scholar] [CrossRef]
- Lebrazi, S.; Chraibi, M.; Fadil, M.; Barkai, H.; Fikri-Benbrahim, K. Phenotypic, Genotypic and Symbiotic Characterization of Rhizobial Isolates Nodulating Acacia sp. in Morocco. J. Pure Appl. Microbiol. 2018, 12, 249–263. [Google Scholar] [CrossRef]
- Swelim, D.M.; Ali, M.A.; El-Khatib, E.I. Some tree-legume-rhizobia are meagerly arising in Egyptian soil. Aust. J. Basic Appl. Sci. 2010, 4, 1297–1304. [Google Scholar]
- Stock, W.D.; Wienand, K.T.; Baker, A.C. Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: Evidence from soil incubation studies and 15N natural abundance values. Oecologia 1995, 101, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canad. J. Microbiol. 1992, 38, 475–484. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Baddeley, J.A.; Watson, C.A. Models of biological nitrogen fixation of legumes. Agron. Sustain. Dev. 2011, 31, 155–172. [Google Scholar] [CrossRef]
- Polley, H.W.; Johnson, H.B.; Mayeux, H.S. Leaf physiology, production, water use, and nitrogen dynamics of the grassland invader Acacia smallii at elevated CO2 concentrations. Tree Physiol. 1997, 17, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Brockwell, J.; Searle, S.D.; Jeavons, A.C.; Waayers, M. Nitrogen Fixation in Acacias: An Untapped Resource for Sustainable Plantations, Farm Forestry and Land Reclamation. 2005. Available online: https://ideas.repec.org/b/ags/aciarm/114065.html (accessed on 11 November 2021).
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Felker, P.; Clark, P.R. Nitrogen fixation (acetylene reduction) and cross inoculation in 12 Prosopis (mesquite) species. Plant Soil. 1980, 57, 177–186. [Google Scholar] [CrossRef]
- Hughes, R.F.; Denslow, J.S. Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecol. Appl. 2005, 15, 1615–1628. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, C.L.; Williard, K.W.J.; Schoonover, J.E.; Baer, S.G.; Groninger, J.W.; Snyder, J.M. Soil and Groundwater Nitrogen Response to Invasion by an Exotic Nitrogen-Fixing Shrub. J. Environ. Qual. 2010, 39, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Mahdhi, M.; Tounekti, T.; Khemira, H. Occurrence of arbuscular mycorrhizal fungi and nodules in the roots of twelve legume species in South-Western Saudi Arabia. Acta Sci. Pol.-Hortoru. Cultus. 2018, 17, 53–60. [Google Scholar] [CrossRef]
- Rodríguez-Echeverría, S.; Crisóstomo, J.; Nabais, C.; Freitas, H. Belowground mutualists and the invasive ability of Acacia longifolia in coastal dunes of Portugal. Biol. Invasions 2009, 11, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Ndoye, F.; Kane, A.; Diedhiou, A.G.; Bakhoum, N.; Fall, D.; Sadio, O.; Sy, M.O.; Noba, K.; Diouf, D. Effects of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Acacia senegal (L.) Willd. seedling growth and soil enzyme activities in Senegal. Int. J. Biosci. 2015, 6, 36–48. [Google Scholar]
- Mangan, S.A.; Bever, J.D.; Schnitzer, S.A.; Mack, K.M.L.; Valencia, M.C.; Sanchez, E.I.; Herre, E.A. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 2010, 466, 752–755. [Google Scholar] [CrossRef]
- Maron, J.L.; Klironomos, J.; Waller, L.; Callaway, R.M.; Austin, A. Invasive plants escape from suppressive soil biota at regional scales. J. Ecol. 2014, 102, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; Palomera-Pérez, A.; Reigosa, M.; González, L. Allelopathic interference of invasive Acacia dealbata Link on the physiological parameters of native understory species. Plant Ecol. 2011, 212, 403–412. [Google Scholar] [CrossRef]
- Lorenzo, P.; Pereira, C.S.; Rodríguez-Echeverría, S. Differential impact on soil microbes of allelopathic compounds released by the invasive Acacia dealbata Link. Soil Boil. Biochem. 2013, 57, 156–163. [Google Scholar] [CrossRef]
- Motard, E.; Muratet, A.; Clair-Maczulajtys, D.; Machon, N. Does the invasive species Ailanthus altissima threaten floristic diversity of temperate peri-urban forests? Comptes Rendus Biol. 2011, 334, 872–879. [Google Scholar] [CrossRef]
- Jarchow, M.E.; Cook, B.J. Allelopathy as a Mechanism for the Invasion of Typha angustifolia. Plant Ecol. 2009, 204, 113–124. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Biotechnol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Shehu, Z.; Lamayi, D.W.; Sabo, M.A.; Shafiu, M.M. Synthesis, Characterization and Antibacterial Activity of Kaolin/Gum Arabic Nanocomposite on Escherichia Coli and Pseudomonas Aeruginosa. Res. J. Nanosci. Eng. 2018, 2, 23–29. [Google Scholar]
- Padil, V.V.T.; Černík, M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013, 8, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Saleh, I.; Abu-Dieyeh, M.H. Novel Prosopis juliflora leaf ethanolic extract as natural antimicrobial agent against food spoiling microorganisms. Sci. Rep. 2021, 11, 7871. [Google Scholar] [CrossRef]
- Badri, A.M.; Garbi, M.I.; Kabbashi, A.S.; Saleh, M.S.; Yousof, Y.S.; Mohammed, S.F.; Ibrahim, I.T.; Magzoub, A.A. In vitro anti-bacterial activity of Prosopis juliflora leafs extract against pathogenic bacteria. Adv. Med. Plant Res. 2017, 5, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Alkaabi, D.; Gasmelbari, M.; Abumukhaimar, N.H.; A./Futuh Shandal, I. Antimicrobial activity of United Arab Emirates indigenous medicinal plants Prosopis cineraria, Prosopis juliflora and Acacia tortilis. Hamdan Med. J. 2020, 13, 110–114. [Google Scholar] [CrossRef]
- Mazinani, Z.; Zamani, M.; Sardari, S. Isolation and identification of phyllospheric bacteria possessing antimicrobial activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa. Avicenna J. Med. Biotechnol. 2017, 9, 31. [Google Scholar]
- Mdee, L.K.; Masoko, P.; Eloff, J.N. The activity of extracts of seven common invasive plant species on fungal phytopathogens. S. Afr. J. Bot. 2009, 75, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Garg, V.K.; Singh, B. Macronutrient dynamics and use efficiency in three species of short rotation forestry developed on sodic soils in North India. J. Trop. For. Sci. 2003, 15, 289–302. [Google Scholar]
- Kaur, R.; Callaway, R.M. Inderjit Soils and the conditional allelopathic effects of a tropical invader. Soil Boil. Biochem. 2014, 78, 316–325. [Google Scholar] [CrossRef]
- Abd El Gawad, A.M.; El-Amier, Y.A. Allelopathy and Potential Impact of Invasive Acacia saligna (Labill.) Wendl. on Plant Diversity in the Nile Delta Coast of Egypt. Int. J. Environ. Res. 2015, 9, 923–932. [Google Scholar]
- Aslam, M.M.; Jamil, M.; Malook, I.; Khatoon, A.; Rehman, A.; Khan, P.; Shakir, U.K.S.; Irfan, I.; Ullah, F.; Bashar, K.U.; et al. Phytotoxic effects of Calotropis procera, Tamarix aphylla and Peganum harmala on plant growth of wheat and mustard. Pak. J. Agric. Res. 2016, 29. [Google Scholar]
- Luo, Y.; Du, Z.; Yan, Z.; Zhao, X.; Li, Y.; Jiang, H.; Yang, Y.; Li, M. Artemisia halodendron Litters Have Strong Negative Allelopathic Effects on Earlier Successional Plants in a Semi-Arid Sandy Dune Region in China. Front. Plant Sci. 2020, 11, 961. [Google Scholar] [CrossRef]
- Cantor, A.; Hale, A.; Aaron, J.; Traw, M.; Kalisz, S. Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination. Biol. Invasions 2011, 13, 3015–3025. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, P.; Shao, M.; Luo, Y.; Zhu, X. Energy and water exchanges over a riparian Tamarix spp. stand in the lower Tarim River basin under a hyper-arid climate. Agric. For. Meteorol. 2014, 194, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.J.; Wang, N.L.; Zhu, H.; Guo, S.J.; Chen, D.S. Isolation and identification of allelochemicals from invasive plant Ipomoea cairica. Allelopath. J. 2009, 24. [Google Scholar]
- Thiébaut, G.; Tarayre, M.; Rodríguez-Pérez, H. Allelopathic Effects of Native versus Invasive Plants on One Major Invader. Front. Plant Sci. 2019, 10, 854. [Google Scholar] [CrossRef]
- Pearse, I.; Bastow, J.; Tsang, A. Radish introduction affects soil biota and has a positive impact on the growth of a native Plant. Oecologia 2014, 174, 471–478. [Google Scholar] [CrossRef]
- Portales-Reyes, C.; Van Doornik, T.; Schultheis, E.H.; Suwa, T. A novel impact of a novel weapon: Allelochemicals in Alliaria petiolata disrupt the legume-rhizobia mutualism. Biol. Invasions 2015, 17, 2779–2791. [Google Scholar] [CrossRef]
- Alford, É.R.; Vivanco, J.M.; Paschke, M.W. The Effects of Flavonoid Allelochemicals from Knapweeds on Legume-Rhizobia Candidates for Restoration. Restor. Ecol. 2009, 17, 506–514. [Google Scholar] [CrossRef]
- Aschehoug, E.; Callaway, R.; Newcombe, G.; Tharayil, N.; Chen, S. Fungal endophyte increases the allelopathic effects of an invasive forb. Oecologia 2014, 175, 285–291. [Google Scholar] [CrossRef]
- Latif, S.; Chiapusio, G.; Weston, L.A. Allelopathy and the Role of Allelochemicals in Plant Defence. In How Plants Communicate with Their Biotic Environment; Academic Press, INC, 2017; Volume 82, pp. 19–54. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0065229616301203 (accessed on 11 November 2021).
- Hierro, J.L.; Callaway, R.M. Allelopathy and exotic plant invasion. Plant Soil. 2003, 256, 29–39. [Google Scholar] [CrossRef]
- Meng, P.; Pei, H.; Hu, W.; Liu, Z.; Li, X.; Xu, H. Allelopathic effects of Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere 2015, 141, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, G.; Long, W.; Zou, X.; Li, F.; Nishio, T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci. 2014, 64, 60–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, M.L.; Cleveland, C.C.; Lekberg, Y.; Maron, J.L.; Philippot, L.; Bru, D.; Callaway, R.M.; Aerts, R. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 2016, 104, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- de Souza, T.A.F.; Rodriguez-Echeverría, S.; Andrade, L.A.d.; Freitas, H. Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil? Acta Bot. Bras. 2016, 30, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, P.A.; Rothballer, M.; Chowdhury, S.P.; Nussbaumer, T.; Gutjahr, C.; Falter-Braun, P. Systems Biology of Plant-Microbiome Interactions. Mol. Plant 2019, 12, 804–821. [Google Scholar] [CrossRef] [Green Version]
- Zubek, S.; Majewska, M.; Błaszkowski, J.; Stefanowicz, A.; Nobis, M.; Kapusta, P. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol. Fertil. Soils 2016, 52, 879–893. [Google Scholar] [CrossRef] [Green Version]
- Inderjit; van der Putten, W.H. Impacts of soil microbial communities on exotic plant invasions. Ecol. Evol. 2010, 25, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 2004, 7, 740–754. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Crisóstomo, J.A.; Rodríguez-Echeverría, S.; Freitas, H. Co-introduction of exotic rhizobia to the rhizosphere of the invasive legume Acacia saligna, an intercontinental study. Appl. Soil Ecol. 2013, 64, 118–126. [Google Scholar] [CrossRef]
- Trabelsi, D.; Mhamdi, R. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review. Biomed. Res. Int. 2013, 2013, 863240. [Google Scholar] [CrossRef] [PubMed]
Roles of Endophytes | Invasive Plant | Reference |
---|---|---|
(i) Change microbial communities | ||
(a) Invasive species harbor more diversified bacterial communities compared to the bulk soil | Prosopis juliflora Parthenium hysterophorus | [61,62] |
(b) Alter the diversity and structure of native soil microbes in the rhizosphere | Acacia longifolia Prosopis juliflora Kalanchoe daigremontiana Pennisetum setaceum Schinus terebinthifolius | [47,63,64,65,66,67] |
(c) Increase the population of diazotrophs and total heterotrophs | Prosopis juliflora | [68] |
(d) Modify and disturb the composition and structure of the mycorrhizal community in the rhizosphere | Acacia dealbata Bromus tectorum | [69,70,71] |
(e) Encourage mycorrhizal association with invasive plant | Prosopis juliflora | [65] |
(ii) Influence microbial biomass carbon and enzymatic activity | ||
(a) Increase the microbial biomass of carbon | P. juliflora | [65] |
(b) Improve metabolic activity in the rhizosphere of invasive plant | P. juliflora | [64] |
(c) Influence and modify the enzyme activity | Pennisetum setaceum Prosopis juliflora Acacia dealbata | [47,64,65,69] |
(d) Increase urease and glucosaminidase activities | Kalanchoe daigremontiana | [66] |
(iii) Change soil properties and processes | ||
(a) Change soil processes | Acacia longifolia | [72] |
(b) Influence the properties and processes of soils, increase nutrient availability | Kalanchoe daigremontiana Prosopis juliflora Acacia dealbata | [64,65,66,69] |
(c) Increase soil N, C and organic matter under invasive species | Prosopis juliflora Acacia dealbata | [64,65,69] |
(d) Increase the salinity level in their rhizosphere of invasive species | Atriplex sp. Tamarix sp. | [1] |
(iv) Effect on above ground vegetation | ||
(a) Improve alien plant growth | Prosopis chilensis | [54] |
(b) Alter the aboveground vegetation | Acacia longifolia Prosopis juliflora Kalanchoe daigremontiana | [62,63,64,65,66] |
(c) Prohibit the establishment and growth of native species | Acacia dealbata Bromus tectorum | [69,70,71] |
Invasive Species | Growth Form | Invaded Habitat/Region | Main Findings | Reference(s) |
---|---|---|---|---|
Cenchrus ciliaris | Grasses | Sandy loam and alkaline soil, Pakistan | Mycorrhizal inoculation improved hyphal colonization rate up to 90% | [92] |
Cenchrus ciliaris | Grasses | pasture in semi-arid regions, Brazil | 31 mycorrhizal species were detected mainly from Acaulospora and Glomus | [121] |
Acacia farnesiana | Trees | Alkaline soils, India | Spores of Acaulospora foveata, Gigaspora albida and Glomus fasciculatum, G. geosporum and Sclerocystis sinuosa were isolated | [96] |
Acacia saligna | Trees | Different areas, Ethiopia | Highest species diversity of 19 species from 7 genera compared to 8 Acacia spp. | [122] |
Acacia saligna | Tree seedlings | Giza, Cairo, Egypt | Mycorrhiza significantly increased plant height, stem diameter, leaf area, fresh and dry weights of stems and roots, chlorophyll content | [123] |
Acacia cyclops | Tree seedlings | South Africa | Both Mycorrhiza and Rhizobium inoculation increased host biomass and relative growth rates. Dual inoculation significantly enhanced N and P acquisition and utilization rates | [124] |
Prosopis juliflora | Tree seedlings | Semi-arid zones, Mexico | Prosopis juliflora inoculated with Glomus aggregatum showed 41.7% intensity of infection. | [125] |
Prosopis juliflora | Trees | Arid zones, Saudi Arabia | Prosopis juliflora showed highest root colonization, spores, soil microbial biomass and number of nodules compared to the other 11 noninvasive plants | [126] |
Prosopis juliflora | Trees | Arid zones, Saudi Arabia | Prosopis juliflora encouraged mycorrhiza, improved the microbial biomass carbon content and enzymes’ activities in soils and inhibited the growth of other species under their canopy | [65] |
Invasive Host Plant | Total Number of Genera or Strains Isolated | Rhizobial spp. Identified | Reference(s) |
---|---|---|---|
Prosopis farcta | 50 | Ensifer; Mesorhizobium | [154] |
Prosopis juliflora | 274 | Achromobacter; Ensifer; Rhizobium; Sinorhizobium | [132] |
Prosopis juliflora | 150 | Rhizobium spp. | [129] |
Acacia saligna | 133 | Rhizobium leguminosarum Rhizobium tropici Bradyrhizobium japonicum Bradyrhizobium spp. | [150] |
Acacia saligna | 1 | Bradyrhizobium viridifuturi | [155] |
Acacia saligna | 1 | Rhizobium | [150] |
Acacia saligna | 5 | Rhizobium; Sinorhizobium | [156] |
Acacia saligna | 7 | Mesorhizobium; Rhizobium Bradyrhizobium; Ensifer | [157] |
Acacia farnesiana | 1 | Sinorhizobium | [158] |
Acacia Saligna | 28 | Rhizobium;Phyllobacterium | [159] |
Acacia longifolia; Acaciacyclops Acaciamelanoxylon Acaciasaligna | 7 | Bradyrhizobium; Azorhizobium Burkholderia; Ensifer Methylobacterium Phyllobacterium | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsheikh, E.A.E.; El-Keblawy, A.; Mosa, K.A.; Okoh, A.I.; Saadoun, I. Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review. Sustainability 2021, 13, 13081. https://doi.org/10.3390/su132313081
Elsheikh EAE, El-Keblawy A, Mosa KA, Okoh AI, Saadoun I. Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review. Sustainability. 2021; 13(23):13081. https://doi.org/10.3390/su132313081
Chicago/Turabian StyleElsheikh, Elsiddig A. E., Ali El-Keblawy, Kareem A. Mosa, Anthony I. Okoh, and Ismail Saadoun. 2021. "Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review" Sustainability 13, no. 23: 13081. https://doi.org/10.3390/su132313081
APA StyleElsheikh, E. A. E., El-Keblawy, A., Mosa, K. A., Okoh, A. I., & Saadoun, I. (2021). Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review. Sustainability, 13(23), 13081. https://doi.org/10.3390/su132313081