Cost Analysis and Health Risk Assessment of Wastewater Reuse from Secondary and Tertiary Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Treatment Alternatives under Consideration
2.3. Simulation Tool for Assessment of Alternatives
2.4. Quantitative Microbial Risk Assessment
2.4.1. Hazard Identification
2.4.2. Exposure Assessment
- Accidental ingestion of saturated soil particles contaminated with wastewater by farmers and field workers. The exposure occurs through labor-intensive agriculture and no pathogen die-off [8].
- Consumers’ consumption of crops that are irrigated with wastewater and that are eaten uncooked. Globally, according to FAO statistics, tomatoes are the most essential vegetable, with crop production at about 15% of total vegetable production so tomatoes were selected in the current study as a key crop. The consumption of raw tomatoes in Africa reaches 60 kg per year per capita [23].
2.4.3. Dose–Response Assessment
2.4.4. Risk Characterization
2.5. Pathogen Reduction
2.6. Simulation Tool for Economic Analysis
3. Results and Discussion
3.1. Simulated Performance of Proposed WWTPs
3.2. Pathogen Reduction
3.3. QMRA Model Outcomes
3.3.1. Maximum Tolerable Infection Risks
3.3.2. QMRA and Monte Carlo Simulation Outputs
3.4. Treatment Effectiveness Verification
3.5. Simulated Cost Analysis
3.5.1. Capital Costs
3.5.2. Operation and Maintenance
3.5.3. Cost per Cubic Meter of Wastewater Flow
3.6. Overall Assessment of Proposed Alternatives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bedawy, R. Water Resources Management: Alarming Crisis for Egypt. J. Manag. Sustain. 2014, 4, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Hertel, T. Food security under climate change. Nat. Clim. Chang. 2015, 6, 10–13. [Google Scholar] [CrossRef]
- Winpenny, J.; Heinz, I.; Koo-Oshima, S. The Wealth of Waste: The Economics of Wastewater Use in Agriculture; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2010. [Google Scholar]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; Minhas, P.; Drechsel, P.; Bahri, A.; McCornick, P. Agricultural use of marginal—Quality water—Opportunities and challenges. In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; Earthscan: London, UK, 2007; Volume 4, pp. 425–453. [Google Scholar]
- Mojid, M.; Wyseure, G.; Biswas, S. Requirement of nitrogen, phosphorus and potassium fertilizers for wheat cultivation under irrigation by municipal wastewater. Soil Sci. Plant Nutr. 2012, 12, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Jaramillo, M.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; WHO: Geneva, Switzerland, 2006; Volume 1, pp. 19–45. [Google Scholar]
- Singh, A.; Agrawal, M. Effects of Wastewater Irrigation on Physical and Biochemical Characteristics of Soil and Metal Partitioning in Beta vulgaris L. Agric Res. 2012, 1, 379–391. [Google Scholar] [CrossRef] [Green Version]
- EPHC; NRMMC; AHMC. Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1). In Proceedings of the Environment Protection and Heritage Council, the Natural Resource Management Ministerial Council & the Australian Health Ministers’ Conference, Canberra, Australia, November 2006; pp. 83–119. [Google Scholar]
- Alcalde-Sanz, L.; Gawlik, M. Minimum Quality Requirements for Water Reuse in Agricultural Irrigation and Aquifer Recharge—Towards a Water Reuse Regu-Latory Instrument at EU Level; Publications Office of the European Union: Luxembourg, 2017; pp. 10–33. [Google Scholar]
- Sano, D.; Haas, C.; Rose, J. A QMRA Framework for Sanitation Treatment Decisions. In Part 1: The Health Hazards of Excreta: Theory and Control; UNESCO: Paris, France, 2019. [Google Scholar]
- Mara, D.; Sleigh, A.; Blumenthal, U.; Carr, R. Health risks in wastewater irrigation: Comparing estimates from quantitative microbial risk analyses and epidemiological studies. J. Water Health 2007, 5, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Mara, D.; Sleigh, A. Understanding and Updating the 2006 WHO Guidelines for the Safe Use of Wastewater in Agriculture. In Proceedings of the Jornadas Sobre la Reutilización de Aguas Regeneradas: Cuestiones Actuales y Retos de Futuro Conference, Murcia, Spain, 1–2 June 2009. [Google Scholar]
- Hamilton, J.; Stagnitti, F.; Premier, R.; Boland, A.; Hale, G. Quantitative Microbial Risk Assessment Models for Consumption of Vegetables Irrigated with Reclaimed Water. Appl. Environ. Microbiol. 2006, 75, 3284–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mara, D.; Sleigh, A. Estimation of Ascaris infection risks in children under 15 from the consumption of wastewater-irrigated carrots. J. Water Health 2010, 8, 8–35. [Google Scholar] [CrossRef]
- Sant’Ana, A.; Franco, B.; Schaffner, D. Risk of infection with Salmonella and Listeria monocytogenes due to consumption of ready-to-eat leafy vegetables in Brazil. Food Control 2014, 42, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Arif, A.; Sorour, M.; Aly, S. Cost analysis of activated sludge and membrane bioreactor WWTPs using CapdetWorks simulation program: Case study of Tikrit WWTP (middle Iraq). Alex. Eng. J. 2020, 59, 4659–4667. [Google Scholar] [CrossRef]
- Sethi, S.; Wiesner, M. Cost Modeling and Estimation of Crossflow Membrane Filtration Processes. Env. Eng. Sci. 2000, 17, 61–79. [Google Scholar] [CrossRef]
- Allam, M.; Allam, G. Water Resources in Egypt: Future Challenges and Opportunities. Water Int. 2007, 32, 205–218. [Google Scholar] [CrossRef]
- Abbasi, N.; Ahmadi, M.; Naseri, M. Quality and cost analysis of a wastewater treatment plant using GPS-X and CapdetWorks simulation programs. J. Environ. Manag. 2021, 284, 111993. [Google Scholar] [CrossRef]
- World Health Organization. Quantitative Microbial Risk Assessment: Application for Water Safety Management; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Elgallal, M. Development of an Approach for the Evaluation of Wastewater Reuse Options for Arid and Semi-arid Area. Ph.D. Thesis, University of Leeds, Leeds, UK, 2017. [Google Scholar]
- Ward, R.; Bernstein, D.; Young, E.; Sherwood, J.; Knowlton, D.; Schiff, G. Human rotavirus studies in volunteers: Determination of infectious dose and serological response to infection. J. Infect. Dis. 1986, 154, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.; Rose, J.; Gerba, C. Quantitative Microbial Risk Assessment; John Wiley and Sons: New York, NY, USA, 1999. [Google Scholar]
- Navarro, I.; Jiménez, B.; Lucario, S.; Cifuentes, E. Application of helminth ova infection dose curve to estimate the risks associated with biosolid application on soil. J. Water Health 2009, 7, 31–44. [Google Scholar] [CrossRef]
- Rendtorff, R. The experimental transmission of human intestinal protozoan parasites II. Giardia lamblia cysts given in capsules. Am. J. Epidemiol. 1954, 59, 209–222. [Google Scholar] [CrossRef]
- Sakaji, R.; Funamizu, N. Microbial risk assessment and its role in the development of wastewater reclamation policy. Wastewater Reclam. Reuse 1998, 10, 705–756. [Google Scholar]
- Jafarinejad, S. Comparison of the Full-Scale Municipal Wastewater Treatment Plant Designs Consisting of Modified Bardenpho Process with and Without Membrane Bioreactor for Nutrient Removal: Cost Analysis. In Proceedings of the International Conference on Sustainable Development of Water and Environment, Bangkok, Thailand, 12 March 2021; Jeon, H.Y., Ed.; Environmental Science and Engineering, Springer: Cham, Switzerland, 2021; pp. 47–63. [Google Scholar]
- Tchobanoglous, G.; Burton, F.; Tsuchihashi, R.; Stensel, D. Wastewater Engineering: Treatment and Resource Recovery, 4th ed.; Metcalf & Eddy Inc.: Boston, MA, USA; McGraw-Hill Professional: New York, NY, USA, 2003; pp. 1369–1383. [Google Scholar]
- Valderrama, C.; Ribera, G.; Bahi, N.; Rovira, M.; Gimenez, T.; Nomen, R.; Lluch, S.; Yuste, M.; Martinez-Llado, X. Winery wastewater treatment for water reuse purpose: Conventional activated sludge versus membrane bioreactor (MBR): A comparative case study. Desalination 2012, 306, 1–7. [Google Scholar] [CrossRef]
- Bertanza, G.; Canato, M.; Laera, G.; Vaccari, M.; Svanström, M.; Heimersson, S. A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: Techno-economic-environmental assessment. Env. Sci. Pollut. Res. 2017, 24, 17383–17393. [Google Scholar] [CrossRef] [Green Version]
- Hamoda, M.; Al-Ghusain, I.; Nayef, N. Sand filtration of wastewater for tertiary treatment and water reuse. Desalination 2004, 164, 203–211. [Google Scholar] [CrossRef]
- Riley, T.; Hai, F.; Shawkat, S.; Magram, S.; Yamamoto, K. Removal of Pathogens by Membrane Bioreactors: A Review of the Mechanisms, Influencing Factors and Reduction in Chemical Disinfectant Dosing. Water 2014, 6, 3603–3630. [Google Scholar]
- Rose, J.B.; Farrah, S.R.; Harwood, V.J.; Levine, A.D.; Lukasik, J.; Menendez, P.; Scott, T.M. Reduction of Pathogens, Indicator Bacteria, and Alternative Indicators by Wastewater Treatment and Reclamation Processes; Final Report; Water Environment Research Foundation; IWA Publishing: London, UK, 2005; pp. 3-1–3-29. [Google Scholar]
- Jiménez, B.; Mara, D.; Carr, R.; Brissaud, F. Wastewater Treatment for Pathogen Removal and Nutrient Conservation: Suitable Systems for Use in Developing Countries; Reports H042608; IWMI (International Water Management Institute): Colombo, Sri Lanka, 2010. [Google Scholar]
- Bastian, R.; Murray, D. Guidelines for Water Reuse; EPA/600/R-12/618; US EPA Office of Research and Development: Washington, DC, USA, 2012. [Google Scholar]
- Kirk, D.; Pires, S.; Black, R.; Caipo, M.; Crump, J.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, L.; Hald, T. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001940. [Google Scholar]
- Zioui, D.; Tigrine, Z.; Aburideh, H.; Hout, S.; Abbas, M.; Kasbadji, N. Membrane Technology for Water Treatment Applications. In Proceedings of the International Conference on Communication, Computing and Electronics Systems, Istanbul, Turkey, 9–12 January 2015. [Google Scholar]
- Smith, D. Treating Wastewater in a Conventional Activated Sludge (CAS) System or a Membrane Bioreactor (MBR): A Comparison of Capital and Operating Costs. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2020. [Google Scholar]
- World Health Organization. Regional Office for the Eastern Mediterranean. A Regional Overview of Wastewater Management and Reuse in the Eastern Mediterranean Region; WHO, Regional Office for the Eastern Mediterranean, Regional Centre for Environmental Health Activities (CEHA): Geneva, Switzerland, 2005. [Google Scholar]
- ALMAR. Desalination Technologies and Economics: CAPEX, OPEX & Technological Game Changers to Come. In Proceedings of the Mediterranean Regional Technical Meeting, Marseille, France, 12–14 December 2016; Center for Mediterranean Integration (CMI): Marseille, France, 2016. [Google Scholar]
Parameter | Unit | Value |
---|---|---|
Biochemical Oxygen Demand (BOD5) | mg/L | 500 ± 10 |
Chemical Oxygen Demand (COD) | mg/L | 800 ± 20 |
Total Suspended Solids (TSS) | mg/L | 350 |
Total Nitrogen (TN) | mg/L | 45 |
Total Phosphorus (TP) | mg/L | 10 |
Temperature | °C | 22 ± 8 |
Unit Process | Design Criteria | Value | Unit |
---|---|---|---|
Primary sedimentation tanks (added to existing ones) | Type of sedimentation tank | Circular | – |
Detention time of tank (HRT) | 2.17 | h | |
Weir loading rate (WLR) | 301 | m3/m·d | |
surface loading rate (SLR) | 40.13 | m3/m2·d | |
Side-water depth (d) | 3.5 | m | |
Diameter of tank (D) | 30 | m | |
Number of tanks (n) | 6 | – | |
Secondary sedimentation tanks | Type of sedimentation tank | Circular | – |
Weir loading rate (WLR) | 202.1 | m3/m·d | |
surface loading rate (SLR) | 23 | m3/m2·d | |
Side-water depth (d) | 4 | m | |
Diameter of tank (D) | 35 | m | |
Number of tanks (n) | 27 | – | |
Anoxic tanks (for alternatives 2, 4, and 6) | Anoxic volume/Total volume percentage | 40 | % |
Number of tanks (n) | 27 | – | |
Volume of tank (VD) | 7800 | m3 | |
Membrane bioreactor (for alternatives 3 and 4) | Maximum operating flux | 40 | L/m2·h |
Average flux (J) | 15.23 | L/m2·h | |
SADm | 0.54 | Nm3/h·m2 | |
Physical cleaning; interval, duration | 900, 30 | Sec | |
Membrane packing density (φ) | 45 | m2/m3 | |
Dimensions (Length, width and depth) | 18, 8 and 5 | m | |
Sand filter (for alternatives 5 and 6) | Rate of filtration | 180 | m3/m2·d |
Number of sand filters | 27 | – | |
Length and width | 15, 12 | m | |
Depth of sand | 50 | cm | |
Perforation diameter for under drainage | 10 | mm | |
Length of laterals | 5.4 | m | |
Number of reservoirs for backwashing | 15 | – | |
Detention time in backwashing reservoir | 6 | h | |
Dimensions (Length, width and depth) | 64, 64 and 5 | m |
Design Criteria | Value | Unit | |||
---|---|---|---|---|---|
CAS & CAS-Sand | CAS-N & CAS-N-Sand | MBR | MBR-N | ||
Design SRT (θX) | 8 | 15 | 20 | 20 | d |
Mean hydraulic retention time (θh) | 7.8 | 12 | 5.5 | 9 | h |
Reactor volume (V) | 6000 | 10,520 | 4230 | 7890 | m3 |
Number of reactors (n) | 27 | 27 | 27 | 27 | |
Width, depth | 15, 6 | 20, 6 | 12, 6 | 15, 6 | m |
MLVSS | 4000 | 4000 | 8000 | 8000 | mg/L |
Required air flow (OR) (Diffused aeration fine bubbles) | 4.4 | 5.5 | 6.6 | 8.5 | m3/m3 of WW flow |
Parameter Group | Parameter | Symbol | Unit | Value |
---|---|---|---|---|
User Inputs | ||||
Influent composition | Total carbonaceous BOD5 | BOD | gO2/m3 | 500.0 |
Total Suspended Solids | X | g/m3 | 350.0 | |
Total TKN | TKN | gN/m3 | 45.0 | |
Organic variables | Soluble inert organic material | Si | gCOD/m3 | 21.5 |
BOD based model coefficients | VSS/TSS ratio | Ivt | gVSS/gTSS | 0.75 |
Ammonium/TKN ratio | Fnh | – | 0.63 | |
Particulate organic N/total organic N ratio | Fxn | – | 0.9 | |
ASM1 nutrient fraction | XCOD/VSS ratio | Icv | gCOD/gVSS | 1.8 |
State Variables | ||||
Inorganic suspended solids | Inert inorganic suspended solids | Xii | g/m3 | 87.5 |
Organic variables | Soluble inert organic material | Si | gCOD/m3 | 21.5 |
Readily biodegradable substrate material | Ss | gCOD/m3 | 303.0 | |
Particulate inert organic material | Xi | gCOD/m3 | 18.0 | |
Slowly biodegradable substrate material | Xs | gCOD/m3 | 454.5 | |
Nitrogen compounds | Free and ionized ammonia | Snh | gN/m3 | 28.4 |
Soluble biodegradable organic N | Snd | gN/m3 | 1.66 | |
Particulate biodegradable organic N | Xnd | gN/m3 | 13.9 | |
Composite Variables | ||||
Composite Variables | Volatile suspended solids | VSS | g/m3 | 262.5 |
Total inorganic suspended solids | XISS | g/m3 | 87.5 | |
Total COD | COD | gCOD/m3 | 797.0 | |
Additional composite Variables | Filtered carbonaceous BOD5 | sBOD | gO2/m3 | 200.0 |
Particulate carbonaceous BOD5 | xBOD | gO2/m3 | 300.0 | |
Filtered ultimate carbonaceous BOD | sBODu | gO2/m3 | 303.0 | |
Particulate ultimate carbonaceous BOD | xBODu | gO2/m3 | 454.5 | |
Total ultimate carbonaceous BOD | BODu | gO2/m3 | 757.6 | |
Filtered COD | Scod | gCOD/m3 | 324.5 | |
Particulate COD | Xcod | gCOD/m3 | 472.5 | |
Filtered TKN | sTKN | gN/m3 | 30.0 | |
Particulate TKN | xTKN | gN/m3 | 15.0 |
Parameter (Process) | Unit | Value |
---|---|---|
Building Cost | USD/m2 | 313.48 |
Excavation | USD/m3 | 6.01 |
Wall Concrete | USD/m3 | 274.12 |
Slab Concrete | USD/m3 | 219.17 |
Crane Rental | USD/h | 68.47 |
Canopy Roof | USD/m2 | 40.26 |
Handrail | USD/m | 95.85 |
Electricity | USD/kWh | 0.07 |
Parameter (Labor Rates) | ||
Construction Labor Rate | USD/h | 4.57 |
Operator Labor Rate | USD/h | 6.07 |
Administration Labor Rate | USD/h | 9.14 |
Laboratory Labor Rate | USD/h | 9.14 |
Treatment Alternative | Pathogen Reduction in Log Units | Sources | |||
---|---|---|---|---|---|
Salmonella | Rotavirus | Giardia duodenalis | Ascaris | ||
CAS/CAS-N | 4 | 3 | 1 | 2 | [8,23,34,35,36,37] |
MBR/MBR-N | 6 | 5 | 6 | 6 | [10,34,36,37] |
CAS-Sand/CAS-N-Sand | 6 | 5 | 3 | 4 | [23,35,36,37] |
Pathogen | DALY Losses (pppy) | Disease/Infection Ratio | Tolerable Infection Risk (pppy) |
---|---|---|---|
Salmonella | 6.3 × 10−2 [38] | 0.7 [23] | 2.3 × 10−5 |
Rotavirus | 1.4 × 10−2 [14] | 0.05 [14] | 1.43 × 10−3 |
Giardia duodenalis | 1.66 × 10−3 [38] | 1 [23] | 6 × 10−4 |
Ascaris | 8.25 × 10−3 [16] | 1 [23] | 1.2 × 10−4 |
Quality * | Median Infection Risk pppy (Restricted Scenario) | Median Infection Risk pppy (Unrestricted Scenario) | ||||
---|---|---|---|---|---|---|
Salmonella | Rotavirus | Giardia duodenalis | Salmonella | Rotavirus | Giardia duodenalis | |
107–108 | 2.92 × 10−3 | 1 | 0.048 | 0.2 | 1 | 0.89 |
106–107 | 2.92 × 10−4 | 0.79 | 4.94 × 10−3 | 2.12 × 10−2 | 1 | 0.19 |
105–106 | 2.93 × 10−5 | 0.15 | 4.95 × 10−4 | 2.12 × 10−3 | 1 | 0.02 |
104–105 | 2.93 × 10−6 | 1.64 × 10−2 | 4.96 × 10−5 | 2.12 × 10−4 | 0.69 | 2.18 × 10−3 |
103–104 | 2.94 × 10−7 | 1.65 × 10−3 | 4.96 × 10−6 | 2.12 × 10−5 | 0.11 | 2.19 × 10−4 |
102–103 | 3 × 10−8 | 1.65 × 10−4 | 5 × 10−7 | 2.12 × 10−6 | 1.19 × 10−2 | 2.18 × 10−5 |
10–100 | 3 × 10−9 | 1.66 × 10−5 | 5 × 10−8 | 2.1 × 10−7 | 1.2 × 10−3 | 2.19 × 10−6 |
1–10 | 3.1 × 10−10 | 1.67 × 10−6 | 5.1 × 10−9 | 2 × 10−8 | 1.2 × 10−4 | 2.2 × 10−7 |
Quality * | Median Infection Risk pppy (Restricted Scenario) | Median Infection Risk pppy (Unrestricted Scenario) |
---|---|---|
10–100 | 7.03 × 10−2 | 0.99 |
1–10 | 7.34 × 10−3 | 0.57 |
1 | 1.34 × 10−3 | 0.15 |
0.1–1 | 7.36 × 10−4 | 0.08 |
0.01–0.1 | 7.36 × 10−5 | 8.7 × 10−3 |
0.001–0.01 | 7.36 × 10−6 | 8.71 × 10−4 |
0.0001–0.001 | 7.4 × 10−7 | 8.74 × 10−5 |
Treatment Alternative | Median Infection Risk pppy | |||
---|---|---|---|---|
Salmonella | Rotavirus | Giardia duodenalis | Ascaris | |
CAS/CAS-N | 3 × 10−9 | 1.65 × 10−4 | 4.96 × 10−5 | 7.36 × 10−5 |
MBR/MBR-N | 2 × 10−8 | 1.2 × 10−4 | 2.2 × 10−7 | 8.74 × 10−5 |
CAS-Sand/CAS-N-Sand | 2 × 10−8 | 1.2 × 10−4 | 2.18 × 10−5 | 8.74 × 10−5 |
Treatment Alternative | CAS | CAS-N | MBR | MBR-N | CAS-Sand | CAS-N-Sand |
---|---|---|---|---|---|---|
Cost (USD/m3) * | 0.082 | 0.103 | 0.115 | 0.133 | 0.088 | 0.11 |
Treatment Alternative | Effluent Concentrations (mg/L) | Cost (USD/m3) | Accepted for Irrigation * | |||
---|---|---|---|---|---|---|
COD | BOD | TSS | TN | |||
CAS | 38.71 | 7.35 | 13.6 | 22.85 | 0.082 | Restricted |
CAS-N | 35 | 5.69 | 10.02 | 11.93 | 0.103 | Restricted |
MBR | 22.48 | 3.6 | 1.5 | 16.35 | 0.115 | Unrestricted |
MBR-N | 21.2 | 2.88 | 1 | 8.77 | 0.133 | Unrestricted |
CAS-Sand | 27.16 | 3 | 2.92 | 22.43 | 0.088 | Unrestricted |
CAS-N-Sand | 26.85 | 2.5 | 2.04 | 11.9 | 0.11 | Unrestricted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AbdelMoula, S.; Sorour, M.T.; Aly, S.A.A. Cost Analysis and Health Risk Assessment of Wastewater Reuse from Secondary and Tertiary Wastewater Treatment Plants. Sustainability 2021, 13, 13125. https://doi.org/10.3390/su132313125
AbdelMoula S, Sorour MT, Aly SAA. Cost Analysis and Health Risk Assessment of Wastewater Reuse from Secondary and Tertiary Wastewater Treatment Plants. Sustainability. 2021; 13(23):13125. https://doi.org/10.3390/su132313125
Chicago/Turabian StyleAbdelMoula, Sara, Mohamed T. Sorour, and Samia A. Abdelrahman Aly. 2021. "Cost Analysis and Health Risk Assessment of Wastewater Reuse from Secondary and Tertiary Wastewater Treatment Plants" Sustainability 13, no. 23: 13125. https://doi.org/10.3390/su132313125
APA StyleAbdelMoula, S., Sorour, M. T., & Aly, S. A. A. (2021). Cost Analysis and Health Risk Assessment of Wastewater Reuse from Secondary and Tertiary Wastewater Treatment Plants. Sustainability, 13(23), 13125. https://doi.org/10.3390/su132313125