Connectivity Benefits of Small Zero-Emission Autonomous Ferries in Urban Mobility—Case of the Coastal City of Gdańsk (Poland)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Autonomous Ferry Line Locations and Their Main Features
3.2. Benefits of Autonomous Ferry Development in Sustainable Urban Mobility
3.2.1. Travel Time Reduction
3.2.2. Potential Benefits for Walkability and Public Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean. Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Rodriguez, R.S.; Ürge-Vorsatz, D.; Barau, A.S. Sustainable Development Goals and climate change adaptation in cities. Nat. Clim. Chang. 2018, 8, 181–183. [Google Scholar] [CrossRef]
- McEvoy, D. Climate change and cities. Built Environ. 2007, 33, 5–9. [Google Scholar] [CrossRef]
- Bai, X.; Dawson, R.J.; Ürge-Vorsatz, D.; Delgado, G.C.; Barau, A.S.; Dhakal, S.; Dodman, D.; Leonardsen, L.; Masson-Delmotte, V.; Roberts, D.C.; et al. Six research priorities for cities and climate change. Nature 2018, 555, 23–25. [Google Scholar] [CrossRef]
- Reckien, D.; Salvia, M.; Heidrich, O.; Church, J.M.; Pietrapertosa, F.; De Gregorio-Hurtado, S.; D’Alonzo, V.; Foley, A.; Simoes, S.G.; Lorencová, E.K.; et al. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod. 2018, 191, 207–219. [Google Scholar] [CrossRef]
- Chen, G.; Kauppila, J. Global urban passenger travel demand and CO2 emissions to 2050: New model. Transp. Res. Rec. 2017, 2671, 71–79. [Google Scholar] [CrossRef]
- Krishankumar, R.; Pamucar, D.; Deveci, M.; Ravichandran, K.S. Prioritization of zero-carbon measures for sustainable urban mobility using integrated double hierarchy decision framework and EDAS approach. Sci. Total Environ. 2021, 797, 149068. [Google Scholar] [CrossRef] [PubMed]
- Pamucar, D.; Deveci, M.; Gokasar, I.; Işık, M.; Zizovic, M. Circular economy concepts in urban mobility alternatives using integrated DIBR method and fuzzy Dombi CoCoSo model. J. Clean. Prod. 2021, 323, 129096. [Google Scholar] [CrossRef]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef] [Green Version]
- Geels, F.W.; Sovacool, B.K.; Schwanen, T.; Sorrell, S. The Socio-Technical Dynamics of Low-Carbon Transitions. Joule 2017, 1, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Köhler, J.; Geels, F.W.; Kern, F.; Markard, J.; Onsongo, E.; Wieczorek, A.; Alkemade, F.; Avelino, F.; Bergek, A.; Boons, F.; et al. An agenda for sustainability transitions research: State of the art and future directions. Environ. Innov. Soc. Transit. 2019, 31, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Markard, J.; Raven, R.; Truffer, B. Sustainability transitions: An emerging field of research and its prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Geels, F.W. Socio-technical transitions to sustainability: A review of criticisms and elaborations of the Multi-Level Perspective. Curr. Opin. Environ. Sustain. 2019, 39, 187–201. [Google Scholar] [CrossRef]
- Hansen, T.; Coenen, L. The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environ. Innov. Soc. Transit. 2015, 17, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Binz, C.; Coenen, L.; Murphy, J.T.; Truffer, B. Geographies of transition—From topical concerns to theoretical engagement: A comment on the transitions research agenda. Environ. Innov. Soc. Transit. 2020, 34, 1–3. [Google Scholar] [CrossRef]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Walk Score™ As a Global Estimate of Neighborhood Walkability. Am. J. Prev. Med. 2010, 39, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Molaei, P.; Tang, L.; Hardie, M. Measuring Walkability with Street Connectivity and Physical Activity: A Case Study in Iran. World 2021, 2, 49–61. [Google Scholar] [CrossRef]
- Ellis, G.; Hunter, R.; Tully, M.A.; Donnelly, M.; Kelleher, L.; Kee, F. Connectivity and physical activity: Using footpath networks to measure the walkability of built environments. Environ. Plan. B Plan. Des. 2016, 43, 130–151. [Google Scholar] [CrossRef] [Green Version]
- Späth, P.; Rohracher, H. Local Demonstrations for Global Transitions—Dynamics across Governance Levels Fostering Socio-Technical Regime Change Towards Sustainability. Eur. Plan. Stud. 2012, 20, 461–479. [Google Scholar] [CrossRef]
- Frenken, K.; Izquierdo, L.R.; Zeppini, P. Branching innovation, recombinant innovation, and endogenous technological transitions. Environ. Innov. Soc. Transit. 2012, 4, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.P.; Zadeh, M.K.; Thieme, C.A.; Skjetne, R.; Sorensen, A.J.; Aanondsen, S.A.; Breivik, M.; Eide, E. Zero-Emission Autonomous Ferries for Urban Water Transport: Cheaper, Cleaner Alternative to Bridges and Manned Vessels. IEEE Electrif. Mag. 2019, 7, 32–45. [Google Scholar] [CrossRef]
- Zeabus Milliamepere-ZEABUZ. Available online: https://zeabuz.com/miliampere/ (accessed on 27 October 2021).
- Automation, B. Autonomous Boats|Greycraft|Buffalo Automation. Available online: https://www.buffautomation.com/greycraft (accessed on 27 October 2021).
- Nussbaumer, N. Buffalo Automation Launches “Vaar met Ferry” in Netherlands—Buffalo Rising. Available online: https://www.buffalorising.com/2021/07/buffalo-automation-launches-vaar-met-ferry-in-netherlands/ (accessed on 27 October 2021).
- AMS Institute AMS Institute—What Key Ingredients Make Roboat Autonomously Navigate the City? Available online: https://www.ams-institute.org/news/what-key-ingredients-allow-roboat-navigate-autonomously-city/ (accessed on 27 October 2021).
- Wimbadi, R.W.; Djalante, R.; Mori, A. Urban experiments with public transport for low carbon mobility transitions in cities: A systematic literature review (1990–2020). Sustain. Cities Soc. 2021, 72, 103023. [Google Scholar] [CrossRef]
- Knez, M.; Obrecht, M. Policies for Promotion of Electric Vehicles and Factors Influencing Consumers’ Purchasing Decisions of Low Emission Vehicles. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Kester, J.; Sovacool, B.K.; Noel, L.; Zarazua de Rubens, G. Rethinking the spatiality of Nordic electric vehicles and their popularity in urban environments: Moving beyond the city? J. Transp. Geogr. 2020, 82, 102557. [Google Scholar] [CrossRef]
- Heidrich, O.; Hill, G.A.; Neaimeh, M.; Huebner, Y.; Blythe, P.T.; Dawson, R.J. How do cities support electric vehicles and what difference does it make? Technol. Forecast. Soc. Chang. 2017, 123, 17–23. [Google Scholar] [CrossRef]
- Amundsen, A.H.; Sundvor, I.; Institute of Transport Economics (TOI); Agency, S.T. Low Emission Zones in Europe: Requirement, Enforcement and Air Quality; Institute of Transport Economics (TØI): Oslo, Norway, 2018; ISBN 9788248021889. [Google Scholar]
- Połom, M.; Wiśniewski, P. Implementing Electromobility in Public Transport in Poland in 1990–A Review of Experiences and Evaluation of the Current Development Directions. Sustainability 2021, 13, 4009. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Possibilities for Developing Electromobility by Using Autonomously Powered Trolleybuses Based on the Example of Gdynia. Energies 2021, 14, 2971. [Google Scholar] [CrossRef]
- De Bortoli, A.; Fresnet, A.F.; Leurent, F. Life Cycle Assessment to Support Decision-Making in Transportation Planning: A Case of French Bus Rapid Transit. In Proceedings of the Transportation Research Board 96th Annual Meeting, Washington, DC, USA, 8–12 January 2017; Transportation Research Board: Washington, DC, USA, 2017. [Google Scholar]
- Ruiz, S.; Arroyo, N.; Acosta, A.; Portilla, C.; Espinosa, J. An optimal battery charging and schedule control strategy for electric bus rapid transit. In Proceedings of the IET Seminar Digest; Institution of Engineering and Technology, Medellin, Colombia, 18–20 April 2018; Volume 2018, pp. 23–30. [Google Scholar]
- Vásquez, C.; Ramírez-Pisco, R.; Viloria, A.; Martínez Sierra, D.; Ruiz-Barrios, E.; Hernández-P, H.; Ventura, J.M.; De la Hoz Hernández, J. Conglomerates of Bus Rapid Transit in Latin American Countries. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; pp. 220–228. [Google Scholar]
- Cheemakurthy, H.; Tanko, M.; Garme, K. Urban Waterborne Public Transport Systems: An Overview of Existing Operations in World Cities; KTH Royal Institute of Technology: Stockholm, Sweden, 2017. [Google Scholar]
- Sandell, R. Network Design Strategies to Increase Efficiency and Usefulness of Urban Transit Ferry Systems. Transp. Res. Rec. 2017, 2649, 71–78. [Google Scholar] [CrossRef]
- Thompson, R.; Burroughs, R.; Smythe, T. Exploring the connections between ferries and urban form: Some considerations before jumping on board. J. Urban Technol. 2006, 13, 25–52. [Google Scholar] [CrossRef]
- Tanko, M.; Burke, M.I.; Cheemakurthy, H. Water Transit and Ferry-Oriented Development in Sweden: Comparisons with System Trends in Australia. Transp. Res. Rec. 2018, 2672, 890–900. [Google Scholar] [CrossRef]
- Le-Klaehn, D.-T.; Hall, C.M. Tourist use of public transport at destinations—A review. Taylor Fr. 2014, 18, 785–803. [Google Scholar] [CrossRef]
- Tan, P.Y.; Ismail, H.N. Reviews on interrelationship between transportation and tourism: Perspective on sustainability of urban tourism development. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 6–7 November 2019; p. 447. [Google Scholar]
- Tarkowski, M. On the Emergence of Sociotechnical Regimes of Electric Urban Water Transit Systems. Energies 2021, 14, 6111. [Google Scholar] [CrossRef]
- Gu, Y.; Wallace, S.W. Operational benefits of autonomous vessels in logistics—A case of autonomous water-taxis in Bergen. Transp. Res. Part E Logist. Transp. Rev. 2021, 154, 102456. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Q.; Liu, J.; Li, S.; Negenborn, R.R. State-of-the-Art Research on Motion Control of Maritime Autonomous Surface Ships. J. Mar. Sci. Eng. 2019, 7, 438. [Google Scholar] [CrossRef] [Green Version]
- Amro, A.; Gkioulos, V.; Katsikas, S. Connect and Protect: Requirements for Maritime Autonomous Surface Ship in Urban Passenger Transportation. In Computer Security; Katsikas, S., Cuppens, F., Cuppens, N., Lambrinoudakis, C., Kalloniatis, C., Mylopoulos, J., Antón, A., Gritzalis, S., Meng, W., Furnell, S., Eds.; Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 11980 LNCS; Springer International Publishing: Cham, Switzerland, 2020; pp. 69–85. [Google Scholar] [CrossRef]
- Duarte, F.; Johnsen, L.; Ratti, C. Reimagining urban infrastructure through design and experimentation. In The Routledge Companion to Smart Cities, 1st ed.; Willis, K.S., Aurigi, A., Eds.; Routledge: London, UK, 2020; pp. 395–410. [Google Scholar] [CrossRef]
- ESPON 1.1. Potentials for Polycentric Development in Europe; ESPON Monitoring Committee: Luxembourg, 2005. [Google Scholar]
- Tarkowski, M.; Połom, M.; Puzdrakiewicz, K. Bridging tourist attractions. The role of waterbuses in urban tourism development. The case of the coastal city of Gdańsk (Poland). Geoj. Tour. Geosites 2021, 34, 126–131. [Google Scholar] [CrossRef]
- Połom, M.; Tarkowski, M.; Puzdrakiewicz, K.; Dopierała, Ł. Is It Possible to Develop Electromobility in Urban Passenger Shipping in Post-Communist Countries? Evidence from Gdańsk, Poland. Energies 2020, 13, 6362. [Google Scholar] [CrossRef]
- Politechnika Gdańska Grupa. Robocza Pojazdy Autonomiczne Rozpoczęła Działalność—Aktualności—Politechnika Gdańska. Available online: https://pg.edu.pl/aktualnosci/-/asset_publisher/hWGncmoQv7K0/content/grupa-robocza-pojazdy-autonomiczne-rozpoczela-dzialalnosc (accessed on 27 October 2021).
- Bennett, A.; Elman, C. Qualitative research: Recent developments in case study methods. Annu. Rev. Polit. Sci. 2006, 9, 455–476. [Google Scholar] [CrossRef]
- Lowe, R.; Chiu, L.F.; Oreszczyn, T.; Oreszczyn, T. Socio-technical case study method in building performance evaluation. Build. Res. Inf. 2017, 46, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, E.; Leitner, H.; Peck, J. Doing urban studies: Navigating the methodological terrain. In Urban Studies Inside/Out Theory, Method, Practice; Leitner, H., Peck, J., Sheppard, E., Eds.; Sage Publications: London, UK, 2020; pp. 21–44. [Google Scholar]
- Wang, Q.; Cheong, K.C.; Li, R. The Case Study Approach to City Analysis. In City Development and Internationalization in China; Springer International Publishing: Cham, Switzerland, 2019; pp. 53–62. [Google Scholar] [CrossRef]
- Gurgul, M. Analiza Wyników Ankiety, Jak Urządzić Gdańskie Nabrzeża? Biuro Rozwoju Gdańska: Gdańsk, Poland, 2018. [Google Scholar]
- Gdańsk City Council. Gdańsk 2020 Plus Development Strategy; Rada Miasta Gdańska: Gdańsk, Poland, 2014. [Google Scholar]
- Gdańsk City Council. Gdańsk Operational Programmes 2023. Gdańsk, Poland. 2015. Available online: https://download.cloudgdansk.pl/gdansk-pl/d/20160877137/gdansk-operational-programmes-2023.pdf (accessed on 20 October 2021).
- Biuro Rozwoju Gdańska. Directions of Spatial Development Based on the Document Adopted by the City Council on 23 April 2018 „Study of Conditions and Directions of Spatial Development in the City of Gdańsk; Biuro Rozwoju Gdańska: Gdańsk, Poland, 2018. [Google Scholar]
- Rada Miasta Gdańska Gminny. Program Rewitalizacji Miasta Gdańska na Lata 2017–2023; Rada Miasta Gdańska: Gdańsk, Poland, 2019; Available online: https://www.brg.gda.pl/attachments/article/100/GPR-TEKST--2019.pdf (accessed on 20 October 2021).
- Zarząd Transportu Miejskiego. To Dopiero był Sezon! Gdański Tramwaj Wodny Przewiózł W Tym Roku Ponad 65 Tys. Osób! Available online: https://ztm.gda.pl/wiadomosci/to-dopiero-byl-sezon-gdanski-tramwaj-wodny-przewiozl-w-tym-roku-ponad-65-tys-osob,a,3913 (accessed on 28 October 2021).
- Zarząd Transportu Miejskiego. Liczba Pasażerów Tramwajów Wodnych W Okresie Maj–Wrzesień 2018; Zarząd Transportu Miejskiego: Gdańsk, Poland, 2018. [Google Scholar]
- Gdańska Agencja Rozwoju Gospodarczego. Analiza Funkcjonowania Tramwaju Wodnego W Gdańsku Od 2018 r.; Gdańska Agencja Rozwoju Gospodarczego: Gdańsk, Poland, 2018. [Google Scholar]
- Główny Urząd Geodezji i Kartografii Geoportal.gov.pl. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0 (accessed on 28 October 2021).
- Biuro Rozwoju Gdańska. Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Gdańska. Gdańsk, Poland. 2019. Available online: https://bip.brg.gda.pl/attachments/article/793/STUDIUM_zalacznik_uchwaly.pdf (accessed on 22 October 2021).
- OpenStreetMap. Foundation OpenStreetMap Dostępne na. Available online: https://www.openstreetmap.org/#map=6/52.018/19.137 (accessed on 31 July 2021).
- Biuro Rozwoju Gdańska. Gdańskie Badania Ruchu 2016 Wraz z Opracowaniem Transportowego Modelu Symulacyjnego Dla Gdańska. Raport 3—Raport z Przeprowadzenia Badań i Pomiarów; Biuro Rozwoju Gdańska: Gdańsk, Poland, 2016. [Google Scholar]
- Bęben, R.; Papis, O.; Cińcio-Pętlicka, A. Turystyka Gdańska. Raport Roczny za 2017 r.; Pomorski Instytut Naukowy im. prof. Brunona Synaka: Gdańsk, Poland, 2018; Available online: https://download.cloudgdansk.pl/visitgdansk-pl/d/2018053149/2018_05_28_raport-roczny-2017.pdf (accessed on 22 October 2021).
- Zarząd Transportu Miejskiego ZTM. Gdańsk: Lista Linii Z Opisem Trasy. Available online: https://www.ztm.gda.pl/rozklady/ (accessed on 28 October 2021).
- Google LLC Mapy Google. Available online: https://www.google.pl/maps/@54.4097463,18.6425073,14z (accessed on 28 October 2021).
- Vale, D.S. Does commuting time tolerance impede sustainable urban mobility? Analysing the impacts on commuting behaviour as a result of workplace relocation to a mixed-use centre in Lisbon. J. Transp. Geogr. 2013, 32, 38–48. [Google Scholar] [CrossRef]
- Stiglic, M.; Agatz, N.; Savelsbergh, M.; Gradisar, M. Enhancing urban mobility: Integrating ride-sharing and public transit. Comput. Oper. Res. 2018, 90, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Wernham, A. Health Impact Assessments Are Needed In Decision Making About Environmental And Land-Use Policy. Heal. Aff. 2011, 30, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.; Cruz, S.; Ribeiro, A.; Silva, A.B.; Martins, J.; Cunha, I. Walkability Index for Elderly Health: A Proposal. Sustainability 2020, 12, 7360. [Google Scholar] [CrossRef]
- Tanko, M.; Burke, M.I. Transport innovations and their effect on cities: The emergence of urban linear ferries worldwide. In Proceedings of the Transportation Research Procedia, Shanghai, China, 10–15 July 2016; Volume 25, pp. 3957–3970. [Google Scholar]
- Soltani, A.; Tanko, M.; Burke, M.I.; Farid, R. Travel Patterns of Urban Linear Ferry Passengers: Analysis of smart card fare data for Brisbane, Queensland, Australia. Transp. Res. Rec. 2015, 2535, 79–87. [Google Scholar] [CrossRef]
- Geels, F.W. Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective. Res. Policy 2010, 39, 495–510. [Google Scholar] [CrossRef]
- Sareen, S.; Grandin, J. European green capitals: Branding, spatial dislocation or catalysts for change? Geogr. Ann. Ser. B Hum. Geogr. 2020, 102, 101–117. [Google Scholar] [CrossRef]
- Van Wee, B.; Roeser, S. Ethical Theories and the Cost–Benefit Analysis-BasedEx AnteEvaluation of Transport Policies and Plans. Transp. Rev. 2013, 33, 743–760. [Google Scholar] [CrossRef]
- Niemelä, E.; Spohr, J.; Hellström, M.; Långstedt, J.; Tsvetkova, A.; Sjöblom, J.; Khan, F.; Eriksson, J.E.; Wikström, K. Managing passenger flows for seaborne transportation during COVID-19 pandemic. J. Travel Med. 2021, 28, 28. [Google Scholar] [CrossRef]
- Moraci, F.; Errigo, M.F.; Fazia, C.; Campisi, T.; Castelli, F. Cities under Pressure: Strategies and Tools to Face Climate Change and Pandemic. Sustainability 2020, 12, 7743. [Google Scholar] [CrossRef]
Stage | Objective | Materials | Methods |
---|---|---|---|
Initial (1) | Identification of autonomous ferry introduction premises on the basis of previous experiences in waterbuses operations | Data of the transport operator (Municipal Transport Authority) [61,62] Results of the expert opinion on the operation of waterbuses [63] Research studies on the waterbus system in Gdańsk [49,50] | Spatio-temporal statistical data analysis Literature review |
Commuting demand (2) | Specification of demand in terms of commuting on the basis of analysing living space and workplace locations | Geodetic and cartographic data available from public resources [64,65,66] Data with high spatial resolution on the number of inhabitants and workplaces [67] | GIS method: choropleth maps |
Tourist and recreational demand (3) | Specification of demand in terms of location and rank of attractions for tourism recreation and leisure | Location of the most crucial tourist attractions [66,68] | GIS method: single symbol map |
Ferry line locations (4) | Specification of ferry line locations | Research stages 1, 2, and 3 outcomes | GIS method: spatio-temporal accessibility analysis |
Benefits in mobility (5) | Identification of ferries’ potential support for sustainable urban mobility | Research stage 4 outcomes Public transport timetables [69] Google Maps [70] Urban development masterplan [57,58,59,60] | Spatio-temporal accessibility analysis Strategic and operational development goals and qualitative analysis |
Location Number (Figure 2) | Direction | Distance (m) | Main Function | Traffic Intensity | Seasonality |
---|---|---|---|---|---|
1 | Brzeźno–Latarnia Morska–Westerplatte | 440/215 | Tourism and recreation | High | Seasonal |
2 | Nabrzeże Zbożowe–Twierdza Wisłoujście | 220 | Tourism and recreation | Moderate | Seasonal |
3 | Młode Miasto–Polski Hak | 175 | Commuting/ tourism and recreation | Moderate | Year-round |
4 | Muzeum Morskie–Sołdek | 70 | Living lab/ tourism and recreation/ commuting | Moderate | Year-round |
5 | Górki Zachodnie–Górki Wschodnie | 400 | Tourism and recreation | Low | Seasonal |
Location Number (Figure 2) | Direction | Ferry | On Foot | Public Transport | Private Car |
---|---|---|---|---|---|
1 | Brzeźno–Latarnia Morska | 5.5 | 24.0 | 23.0 | 7.0 |
Latarnia Morska–Westerpaltte | 2.5 | Not applicable | 62.0 | 20.0 | |
2 | Nabrzeże Zbożowe–Twierdza Wisłoujście | 2.5 | Not applicable | 95.0 | 12.0 |
3 | Młode Miasto–Polski Hak | 2.0 | 28.0 | Not applicable | 20.0 |
4 | Muzeum Morskie–Sołdek | 1.0 | 10.0 | Not applicable | 12.0 |
5 | Górki Zachodnie–Górki Wschodnie | 5.0 | Not applicable | 60.0 | 30.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarkowski, M.; Puzdrakiewicz, K. Connectivity Benefits of Small Zero-Emission Autonomous Ferries in Urban Mobility—Case of the Coastal City of Gdańsk (Poland). Sustainability 2021, 13, 13183. https://doi.org/10.3390/su132313183
Tarkowski M, Puzdrakiewicz K. Connectivity Benefits of Small Zero-Emission Autonomous Ferries in Urban Mobility—Case of the Coastal City of Gdańsk (Poland). Sustainability. 2021; 13(23):13183. https://doi.org/10.3390/su132313183
Chicago/Turabian StyleTarkowski, Maciej, and Krystian Puzdrakiewicz. 2021. "Connectivity Benefits of Small Zero-Emission Autonomous Ferries in Urban Mobility—Case of the Coastal City of Gdańsk (Poland)" Sustainability 13, no. 23: 13183. https://doi.org/10.3390/su132313183
APA StyleTarkowski, M., & Puzdrakiewicz, K. (2021). Connectivity Benefits of Small Zero-Emission Autonomous Ferries in Urban Mobility—Case of the Coastal City of Gdańsk (Poland). Sustainability, 13(23), 13183. https://doi.org/10.3390/su132313183