Emerging Technologies and Innovation—Hopes for and Obstacles to Inclusive Societal Co-Construction
Abstract
:1. Introduction: Emerging Technologies and the Quest for Governing Their Development
2. Common Challenges Arising for RI/RRI, SR and TA from Emerging Technologies
3. ‘Inclusive Construction’ as a Common Theme in Governance
4. The Quandary of Inclusive Construction
4.1. Inclusive Disunion
4.2. The Limits of Objective Evidence and Gold Standards
5. Implications for Policy Approaches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rotolo, D.; Hicks, D.; Martin, B.R. What is an emerging technology? Res. Policy 2015, 44, 1827–1843. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Liu, X.; Porter, A.L.; Youtie, J. Research addressing emerging technological ideas has greater scientific impact. Res. Policy 2019, 48, 103834. [Google Scholar] [CrossRef]
- Li, M.; Porter, A.L.; Suominen, A. Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective. Technol. Forecast. Soc. Chang. 2018, 129, 285–296. [Google Scholar] [CrossRef]
- Torgersen, H. The real and perceived risks of genetically modified organisms: The debate about the potential risks of genetically modified organisms has lasted for almost three decades without any final conclusion in sight. EMBO Rep. 2004, 5, S17–S21. [Google Scholar] [CrossRef] [Green Version]
- Uzogara, S.G. The impact of genetic modification of human foods in the 21st century: A review. Biotechnol. Adv. 2000, 18, 179–206. [Google Scholar] [CrossRef]
- Roco, M.C. The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. In Nanotechnology Research Directions for Societal Needs in 2020; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–28. [Google Scholar]
- Selin, C. Expectations and the Emergence of Nanotechnology. Sci. Technol. Hum. Values 2007, 32, 196–220. [Google Scholar] [CrossRef]
- Morton, O. Synthetic Biology. The Engineering of Living Organisms Could Soon Start Changing Everything; The Economist: London, UK, 2019. [Google Scholar]
- National Academies of Sciences, Engineering and Medicine. Genetically Engineered Crops: Experiences and Prospects; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Reynolds, J.L. Governing New Biotechnologies for Biodiversity Conservation: Gene Drives, International Law, and Emerging Politics. Global Environ. Politics 2020, 20, 28–48. [Google Scholar] [CrossRef]
- National Academy of Medicine; National Academy of Sciences; Royal Society. Heritable Human Genome Editing; The National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- Meng, F.; Ellis, T. The second decade of synthetic biology: 2010–2020. Nat. Commun. 2020, 11, 5174. [Google Scholar] [CrossRef]
- Baldwin, T.; Cole, J.; Fitzgerald, M.; Kitzinger, J.; Laurie, G.; Price, J.; Rose, N.; Rose, S.; Singh, I.; Walsh, V. Novel Neurotechnologies: Intervening in the Brain; Nuffield Council on Bioethics: London, UK, 2013. [Google Scholar]
- OECD. Neurotechnology and Society: Strengthening Responsible Innovation in Brain Science; OECD Science, Technology and Industry Policy Papers No. 46; OECD: Paris, France, 2017. [Google Scholar] [CrossRef]
- Coenen, C.; Grunwald, A. Responsible research and innovation (RRI) in quantum technology. Ethics Inf. Technol. 2017, 19, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.D.; Yadav, A.; Chopra, R. Artificial intelligence and effective governance: A review, critique and research agenda. Sustain. Futures 2020, 2, 100004. [Google Scholar] [CrossRef]
- Baruffaldi, S.; van Beuzekom, B.; Dernis, H.; Harhoff, D.; Rao, N.; Rosenfeld, D.; Squicciarini, M. Identifying and Measuring Developments in Artificial Intelligence: Making the Impossible Possible; OECD: Paris, France, 2020. [Google Scholar] [CrossRef]
- OECD. Emerging Technologies. Available online: https://www.oecd.org/sti/emerging-tech/ (accessed on 22 November 2021).
- OECD. Technology Governance. Available online: https://www.oecd.org/sti/science-technology-innovation-outlook/technology-governance/ (accessed on 22 November 2021).
- Owen, R.; Pansera, M. Responsible innovation and responsible research and innovation. In Handbook on Science and Public Policy; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar]
- UNCTAD. Catching Technological Waves. Innovation with Equity; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Winickoff, D.; Kreiling, L.; Borowiecki, M.; Garden, H.; Philp, J. Collaborative Platforms for Emerging Technology: Creating Convergence Spaces; OECD: Paris, France, 2021. [Google Scholar]
- Pollock, N.; Williams, R. How Industry Analysts Shape the Digital Future; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Daddario, E.Q. Technology Assessment: Statement of Emilio Q. Daddario, Chairman, Subcommittee on Science, Research, and Development of the Committee on Science and Astronautics, US House of Representatives, Ninetieth Congress, First Session; US Government Printing Office: Washington, DC, USA, 1967; Volume 2.
- Ely, A.; van Zwanenberg, P.; Stirling, A. Broadening out and opening up technology assessment: Approaches to enhance international development, co-ordination and democratisation. Res. Policy 2014, 43, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, A. Technology Assessment in Practice and Theory; Routledge: Abingdon, NY, USA, 2019. [Google Scholar]
- Rip, A. Technology assessment. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 125–128. [Google Scholar]
- Schot, J.; Rip, A. The past and future of constructive technology assessment. Technol. Forecast. Soc. Chang. 1997, 54, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Guston, D.H.; Sarewitz, D. Real-time technology assessment. Technol. Soc. 2002, 24, 93–109. [Google Scholar] [CrossRef]
- Nordmann, A. A forensics of wishing: Technology assessment in the age of technoscience. Poiesis Praxis 2010, 7, 5–15. [Google Scholar] [CrossRef]
- Grunwald, A. The objects of technology assessment. Hermeneutic extension of consequentialist reasoning. J. Responsible Innov. 2020, 7, 96–112. [Google Scholar] [CrossRef]
- Jasanoff, S.; Kim, S.-H. (Eds.) Dreamscapes of Modernity Sociotechnical Imaginaries and the Fabrication of Power; University of Chicago Press: Chicago, IL, USA, 2015. [Google Scholar]
- Owen, R.; Macnaghten, P.; Stilgoe, J. Responsible research and innovation: From science in society to science for society, with society. Sci. Public Policy 2012, 39, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Von Schomberg, R. A vision of responsible research and innovation. In Responsible Innovation: Managing the Responsible Emergence of Science and Innovation in Society; Owen, R., Bessant, J., Heintz, M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 51–74. [Google Scholar]
- Genus, A.; Stirling, A. Collingridge and the dilemma of control: Towards responsible and accountable innovation. Res. Policy 2018, 47, 61–69. [Google Scholar] [CrossRef]
- Stilgoe, J.; Owen, R.; Macnaghten, P. Developing a framework for responsible innovation. Res. Policy 2013, 42, 1568–1580. [Google Scholar] [CrossRef] [Green Version]
- Lubberink, R.; Blok, V.; van Ophem, J.; Omta, O. Lessons for Responsible Innovation in the Business Context: A Systematic Literature Review of Responsible, Social and Sustainable Innovation Practices. Sustainability 2017, 9, 721. [Google Scholar] [CrossRef] [Green Version]
- Van Oudheusden, M. Where are the politics in responsible innovation? European governance, technology assessments, and beyond. J. Responsible Innov. 2014, 1, 67–86. [Google Scholar] [CrossRef] [Green Version]
- Schot, J.; Steinmueller, W.E. Three frames for innovation policy: R&D, systems of innovation and transformative change. Res. Policy 2018, 47, 1554–1567. [Google Scholar] [CrossRef]
- Matthews, N.E.; Stamford, L.; Shapira, P. Aligning sustainability assessment with responsible research and innovation: Towards a framework for constructive sustainability assessment. Sustain. Prod. Consum. 2019, 20, 58–73. [Google Scholar] [CrossRef]
- Hölscher, K.; Wittmayer, J.M.; Loorbach, D. Transition versus transformation: What’s the difference? Environ. Innov. Soc. Transit. 2018, 27, 1–3. [Google Scholar] [CrossRef]
- Wiek, A.; Lang, D.J. Transformational sustainability research methodology. In Sustainability Science; Heinrichs, H., Martens, P., Michelsen, G., Wiek, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 31–41. [Google Scholar]
- Hilbeck, A.; Binimelis, R.; Defarge, N.; Steinbrecher, R.; Székács, A.; Wickson, F.; Antoniou, M.; Bereano, P.L.; Clark, E.A.; Hansen, M. No scientific consensus on GMO safety. Environ. Sci. Eur. 2015, 27, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Asveld, L.; Stemerding, D. Algae Oil on Trial: Conflicting Views of Technology and Nature; Rathenau Instituut: Den Haag, The Netherlands, 2016. [Google Scholar]
- Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental sustainability of biofuels: A review. Proc. R. Soc. A 2020, 476, 20200351. [Google Scholar] [CrossRef]
- Nuffieldbioethics. Genome Editing and Human Reproduction: Social and Ethical Issues; Nuffield Council on Bioethics: London, UK, 2018. [Google Scholar]
- National Academies of Sciences, Engineering and Medicine. Human Genome Editing: Science, Ethics, and Governance; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- König, H. The illusion of control in germline-engineering policy. Nat. Biotechnol. 2017, 35, 502–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNCTAD. Synthetic Biology and Its Potential Implications for Biotrade and Access and Benefit-Sharing; United Nations Conference on Trade and Development; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Kvakkestad, V.; Gillund, F.; Kjolberg, K.A.; Vatn, A. Scientists’ perspectives on the deliberate release of GM crops. Environ. Values 2007, 16, 79–104. [Google Scholar] [CrossRef] [Green Version]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Drew, L. The ethics of brain-computer interfaces. Nature 2019, 571, S19. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.; Rotter, S. Neurotechnology: Current developments and ethical issues. Front. Syst. Neurosci. 2017, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Coenen, C.; Stieglitz, T. Neurotech-ethics: Suggestions for the way forward. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Conference, 4–6 May 2021; pp. 639–642. [Google Scholar]
- Gerasimova, K. Debates on genetically modified crops in the context of sustainable development. Sci. Eng. Ethics 2016, 22, 525–547. [Google Scholar] [CrossRef] [PubMed]
- Azadi, H.; Ghanian, M.; Ghoochani, O.M.; Rafiaani, P.; Taning, C.N.; Hajivand, R.Y.; Dogot, T. Genetically modified crops: Towards agricultural growth, agricultural development, or agricultural sustainability? Food Rev. Int. 2015, 31, 195–221. [Google Scholar] [CrossRef]
- Mascarenhas, A.; Nunes, L.M.; Ramos, T.B. Exploring the self-assessment of sustainability indicators by different stakeholders. Ecol. Indic. 2014, 39, 75–83. [Google Scholar] [CrossRef]
- Rametsteiner, E.; Pülzl, H.; Alkan-Olsson, J.; Frederiksen, P. Sustainability indicator development—Science or political negotiation? Ecol. Indic. 2011, 11, 61–70. [Google Scholar] [CrossRef]
- Gutmann, A.; Wagner, J.; Ali, Y.; Allen, A.; Arras, J.; Atkinson, B.; Farahany, N.; Garza, A.; Grady, C.; Hauser, S. New Directions: The Ethics of Synthetic Biology and Emerging Technologies; The Presidential Commission for the Study of Bioethical Issues: Washington, DC, USA, 2010. [Google Scholar]
- OECD. Artificial Intelligence in Society; OECD Publishing: Paris, France, 2019. [Google Scholar]
- OECD. Recommendation of the Council on Responsible Innovation in Neurotechnology; OECD/LEGAL/0457; OECD Publishing: Paris, France, 2019. [Google Scholar]
- EGE. Ethics of Synthetic Biology. Opinion of the European Group on Ethics in Science and New Technologies to the European Commission No. 25; EGE: Herning, Denmark, 2009. [Google Scholar]
- Ribeiro, B.; Bengtsson, L.; Benneworth, P.; Bührer, S.; Castro-Martínez, E.; Hansen, M.; Jarmai, K.; Lindner, R.; Olmos-Peñuela, J.; Ott, C. Introducing the dilemma of societal alignment for inclusive and responsible research and innovation. J. Responsible Innov. 2018, 5, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Dryzek, J.S. Democratization as deliberative capacity building. Comp. Political Stud. 2009, 42, 1379–1402. [Google Scholar] [CrossRef]
- OECD. Emerging Policy Issues in Synthetic Biology; OECD Publishing: Paris, France, 2014. [Google Scholar]
- French, K.E. Harnessing synthetic biology for sustainable development. Nat. Sustain. 2019, 2, 250–252. [Google Scholar] [CrossRef]
- BIO. Renewable Chemical Platforms Building the Biobased Economy. Ind. Biotechnol. 2018, 14, 109–111. [Google Scholar] [CrossRef]
- Lapola, D.M.; Schaldach, R.; Alcamo, J.; Bondeau, A.; Koch, J.; Koelking, C.; Priess, J.A. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 2010, 107, 3388–3393. [Google Scholar] [CrossRef] [Green Version]
- ETCgroup. The New Biomassters. Synthetic Biology and the Next Assault on Biodiversity and Livelihoods; ETC Group: Las Vegas, NV, USA, 2010. [Google Scholar]
- FoE. Synthetic Biology. Available online: https://foe.org/projects/synthetic-biology/# (accessed on 22 November 2021).
- Van der Burg, S.; Bogaardt, M.-J.; Wolfert, S. Ethics of smart farming: Current questions and directions for responsible innovation towards the future. NJAS Wagening. J. Life Sci. 2019, 90, 100289. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Rue, B.D. Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible research and innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, C.; Chapman, D.; Paine, M. Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia. Agric. Syst. 2012, 108, 10–18. [Google Scholar] [CrossRef]
- Chuang, F.; Manley, E.; Petersen, A. The role of worldviews in the governance of sustainable mobility. Proc. Natl. Acad. Sci. USA 2020, 117, 4034–4042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemper, N.P.; Popp, J.S.; Nayga, R.M., Jr.; Kerr, J.B. Cultural worldview and genetically modified food policy preferences. Food Policy 2018, 80, 68–83. [Google Scholar] [CrossRef]
- Cowen, N.; Virk, B.; Mascarenhas-Keyes, S.; Cartwright, N. Randomized controlled trials: How can we know “what works”? Crit. Rev. 2017, 29, 265–292. [Google Scholar] [CrossRef] [Green Version]
- Kvangraven, I.H. Impoverished economics? A critical assessment of the new gold standard. World Dev. 2020, 127, 104813. [Google Scholar] [CrossRef]
- Ahmed, A.U.; Hoddinott, J.; Abedin, N.; Hossain, N. The Impacts of GM Foods: Results from a Randomized Controlled Trial of Bt Eggplant in Bangladesh. Am. J. Agric. Econ. 2021, 103, 1186–1206. [Google Scholar] [CrossRef]
- McKinnon, M.C.; Cheng, S.H.; Garside, R.; Masuda, Y.J.; Miller, D.C. Sustainability: Map the evidence. Nat. News 2015, 528, 185. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Kidd, I.J. Objectivity, abstraction, and the individual: The influence of Søren Kierkegaard on Paul Feyerabend. Stud. Hist. Philos. Sci. Part A 2011, 42, 125–134. [Google Scholar] [CrossRef]
- Feyerabend, P. Conquest of Abundance: A Tale of Abstraction versus the Richness of Being; University of Chicago Press: Chicago, IL, USA, 2001. [Google Scholar]
- Bakunin, M. God and the State; Dover Publications: New York, NY, USA, 1970. [Google Scholar]
- National Academies of Sciences, Engineering and Medicine. International Summit on Human Gene Editing: A Global Discussion; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Jasanoff, S.; Hurlbut, J.B. A global observatory for gene editing. Nature 2018, 555, 435–437. [Google Scholar] [CrossRef]
- Lander, E.S.; Baylis, F.; Zhang, F.; Charpentier, E.; Berg, P.; Bourgain, C.; Friedrich, B.; Joung, J.K.; Li, J.; Liu, D.; et al. Adopt a moratorium on heritable genome editing. Nature 2019, 567, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Manning, R.A. Emerging Technologies: New Challenges to Global Stability; Atlantic Council: Washington, DC, USA, 2020. [Google Scholar]
- Leach, D.K. When freedom is not an endless meeting: A new look at efficiency in consensus-based decision making. Sociol. Q. 2016, 57, 36–70. [Google Scholar] [CrossRef]
- Dryzek, J.S.; Niemeyer, S. Reconciling pluralism and consensus as political ideals. Am. J. Political Sci. 2006, 50, 634–649. [Google Scholar] [CrossRef]
- Forester, J. Dealing with deep value differences. In The Consensus Building Handbook; Susskind, L., McKearnan, S., Thomas-Larmer, J., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Global Environ. Chang. 2010, 20, 550–557. [Google Scholar] [CrossRef]
- Dorsch, M.J.; Flachsland, C. A polycentric approach to global climate governance. Global Environ. Politics 2017, 17, 45–64. [Google Scholar] [CrossRef]
- Bell, S.; Hindmoor, A. Governance without government? The case of the Forest Stewardship Council. Public Adm. 2012, 90, 144–159. [Google Scholar] [CrossRef]
- Schleifer, P. Varieties of multi-stakeholder governance: Selecting legitimation strategies in transnational sustainability politics. Globalizations 2019, 16, 50–66. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
König, H.; Baumann, M.F.; Coenen, C. Emerging Technologies and Innovation—Hopes for and Obstacles to Inclusive Societal Co-Construction. Sustainability 2021, 13, 13197. https://doi.org/10.3390/su132313197
König H, Baumann MF, Coenen C. Emerging Technologies and Innovation—Hopes for and Obstacles to Inclusive Societal Co-Construction. Sustainability. 2021; 13(23):13197. https://doi.org/10.3390/su132313197
Chicago/Turabian StyleKönig, Harald, Martina F. Baumann, and Christopher Coenen. 2021. "Emerging Technologies and Innovation—Hopes for and Obstacles to Inclusive Societal Co-Construction" Sustainability 13, no. 23: 13197. https://doi.org/10.3390/su132313197
APA StyleKönig, H., Baumann, M. F., & Coenen, C. (2021). Emerging Technologies and Innovation—Hopes for and Obstacles to Inclusive Societal Co-Construction. Sustainability, 13(23), 13197. https://doi.org/10.3390/su132313197