Numerical Simulation of Erosion Characteristics for Solid-Air Particles in Liquid Hydrogen Elbow Pipe
Abstract
:1. Introduction
2. Numerical Model and Verification
2.1. Numerical Model
2.2. Physical Model and Boundary Conditions
2.3. Simulation Model Verification
3. Result and Discussion
3.1. The Erosion of Solid Particles
3.2. Influence of Initial Conditions
3.3. Influence of Structural Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, X.Y.; Pu, L.; Tang, X.; Yang, S.; Li, Y.Z. Parametric influence study of cryogenic hydrogen dispersion on theoretical aspect. Int. J. Hydrogen Energy 2020, 38, 20153–20162. [Google Scholar] [CrossRef]
- Liu, Y.L.; Wei, J.J.; Lei, G.; Lan, Y.Q.; Chen, H.; Jin, T. Dilution of hazardous vapor cloud in liquid hydrogen spill process under different source conditions. Int. J. Hydrogen Energy 2018, 43, 7643–7651. [Google Scholar] [CrossRef]
- Jin, T.; Liu, Y.L.; Wei, J.J.; Zhang, D.Y.; Wang, X.X.; Lei, G.; Wang, T.X.; Lan, Y.Q.; Chen, H. Numerical investigation on the dispersion of hydrogen vapor cloud with atmospheric inversion layer. Int. J. Hydrogen Energy 2019, 44, 23513–23521. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Lim, C.; Nguyen, Q.B.; Liu, Z.G.; Zhang, Y.W.; Wan, S. A combined numerical-experimental study on the effect of surface evolution on the water-sand multiphase flow characteristics and the material erosion behavior. Wear 2014, 319, 96–109. [Google Scholar] [CrossRef]
- Wallace, M.S.; Dempster, W.M.; Scanlon, T.J.; Peters, J.; Mcculloch, S. Prediction of impact erosion in valve geometries. Wear 2004, 256, 927–936. [Google Scholar] [CrossRef]
- Mazur, Z.; Campos-Amezcua, R.; Urquiza-Beltrán, G.; García-Gutiérrez, A. Numerical 3d simulation of the erosion due to solid particle impact in the main stop valve of a steam turbine. Appl. Therm. Eng. 2004, 24, 1877–1891. [Google Scholar] [CrossRef]
- Chen, X.H.; Mclaury, B.S.; Shirazi, S.A. Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees. Comput. Fluids 2004, 33, 1251–1272. [Google Scholar] [CrossRef]
- Forder, A.; Thew, M.; Harrison, D. A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear 1998, 216, 184–193. [Google Scholar] [CrossRef]
- Pereira, G.C.; Souza, F.J.; Martins, D.A. Numerical prediction of the erosion due to particles in elbows. Powder Technol. 2014, 261, 105–117. [Google Scholar] [CrossRef]
- Oka, Y.I.; Okamura, K. Practical estimation of erosion damage caused by solid particle impact. Part 1: Effects of impact parameters on a predictive equation. Wear 2005, 259, 95–101. [Google Scholar] [CrossRef]
- Grant, G.; Tabakoff, W. Erosion Prediction in turbomachinery resulting from environmental solid particles. J. Aircr. 2012, 12, 471–478. [Google Scholar] [CrossRef]
- Wang, G.R.; Chu, F.; Tao, S.Y.; Jiang, L.; Zhu, H. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology. Wear 2015, 338–339, 114–121. [Google Scholar] [CrossRef]
- Dai, W.; Cremaschi, S.; Subramani, H.J.; Gao, H. A bi-objective optimization approach to reducing uncertainty in pipeline erosion predictions. Comput. Chem. Eng. 2019, 127, 175–185. [Google Scholar] [CrossRef]
- Dai, W.; Cremaschi, S.; Subramani, H.J.; Gao, H. Uncertainty quantification in erosion predictions using data mining methods. Wear 2018, 408, 108–119. [Google Scholar] [CrossRef]
- Dai, W.; Cremaschi, S. Quantifying model uncertainty in scarce data regions—A case study of particle erosion in pipelines. Comput. Aided Chem. Eng. 2015, 37, 1811–1816. [Google Scholar]
- Banakermani, M.R.; Naderan, H.; Saffar-Avval, M. An investigation of erosion prediction for 15° to 90° elbows by numerical simulation of gas-solid flow. Powder Technol. 2018, 334, 9–26. [Google Scholar] [CrossRef]
- Ossai, C.I. Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation. Eng. Fail. Anal. 2020, 110, 104397. [Google Scholar] [CrossRef]
- Ossai, C.I. Fitness-for-purpose evaluation of corroded pipelines using finite element analysis and fractural reliability estimation. J. Struct. Integr. Maint. 2017, 2, 209–216. [Google Scholar] [CrossRef]
- Ossai, C.I.; Boswell, B.; Davies, I.J. Application of markov modelling and monte carlo simulation technique in failure probability estimation—A consideration of corrosion defects of internally corroded pipelines. Eng. Fail. Anal. 2016, 68, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Rohit, D.; Andrew, D.B. Small-scale dynamics of settling, bidisperse particles in turbulence. J. Fluid Mech. 2018, 839, 594–620. [Google Scholar]
- Juan, P.L.C.S.; Lance, R.C. Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 2009, 41, 405–432. [Google Scholar]
- Brian, S. Turbulent relative dispersion. Annu. Rev. Fluid Mech. 2001, 33, 289–317. [Google Scholar]
- Balachandar, S.; John, K.E. Turbulent dispersed multiphase ow. Annu. Rev. Fluid Mech. 2010, 42, 111–133. [Google Scholar] [CrossRef]
- Federico, T.; Eberhard, B. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 2009, 41, 375–404. [Google Scholar]
- Sarma, L.R.; Rohit, D.; Donald, L.K. A stochastic model for the relative motion of high stokes number particles in isotropic turbulence. J. Fluid Mech. 2014, 756, 870–902. [Google Scholar]
- Rohit, D.; Sarma, L.R.; Donald, L.K. Stochastic theory and direct numerical simulations of the relative motion of high-inertia particle pairs in isotropic turbulence. J. Fluid Mech. 2017, 813, 205–249. [Google Scholar]
- Nicholas, T.O.; Haitao, X.; Mickael, B.; Eberhard, B. An experimental study of turbulent relative dispersion models. New J. Phys. 2006, 8, 109. [Google Scholar]
- Luca, B.; Eberhard, B.; Massimo, C.; Alessandra, S.; Nicholas, T.O.; Federico, T.; Haito, X. Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation. Phys. Fluids 2008, 20, 065103. [Google Scholar]
- Riaz, S.; Park, S.J. Effective reinforcement of melamine-functionalized WS2 nanosheets in epoxy nanocomposites at low loading via enhanced interfacial interaction. Macromol. Res. 2020, 28, 1116–1126. [Google Scholar] [CrossRef]
- Riaz, S.; Park, S.J. Thioacetamide-derived nitrogen and sulfur co-doped carbon quantum dots for “green” quantum dot solar cells. J. Ind. Eng. Chem. 2022, 105, 111–120. [Google Scholar] [CrossRef]
- Riaz, S.; Park, S.J. A comparative study on nanoinclusion effect of MoS2 nanosheets and MoS2 quantum dots on fracture toughness and interfacial properties of epoxy composites. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106419. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Jin, R. The influence of human walking on the flow and airborne transmission in a six-bed isolation room: Tracer gas simulation. Build. Environ. 2014, 77, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Reuterfors, E.P.; Mclaury, B.S. Comparison of computed and measured particle velocities and erosion in water and air flows. Wear 2007, 263, 330–338. [Google Scholar] [CrossRef]
- Zhang, L.A.; Qian, F.P.; Hu, J.; Xia, Y.J.; Han, Y.L. Numerical simulation on erosion of wall by particles in a 90° bending duct of ventilation pipeline. Chin. J. Process. Eng. 2016, 16, 394–401. [Google Scholar]
Physical Parameter | Parameter Value |
---|---|
Air velocity (m·s−1) | 45.72 |
Particle diameter (μm) | 150.00 |
Particle mass flow (kg·s−1) | 2.08 × 10−4 |
Particle volume fraction (%) | 4.20 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Xun, Q.; Shu, Z.; Lu, F.; Qian, H. Numerical Simulation of Erosion Characteristics for Solid-Air Particles in Liquid Hydrogen Elbow Pipe. Sustainability 2021, 13, 13303. https://doi.org/10.3390/su132313303
Liang W, Xun Q, Shu Z, Lu F, Qian H. Numerical Simulation of Erosion Characteristics for Solid-Air Particles in Liquid Hydrogen Elbow Pipe. Sustainability. 2021; 13(23):13303. https://doi.org/10.3390/su132313303
Chicago/Turabian StyleLiang, Wenqing, Qining Xun, Zhiyong Shu, Fuming Lu, and Hua Qian. 2021. "Numerical Simulation of Erosion Characteristics for Solid-Air Particles in Liquid Hydrogen Elbow Pipe" Sustainability 13, no. 23: 13303. https://doi.org/10.3390/su132313303
APA StyleLiang, W., Xun, Q., Shu, Z., Lu, F., & Qian, H. (2021). Numerical Simulation of Erosion Characteristics for Solid-Air Particles in Liquid Hydrogen Elbow Pipe. Sustainability, 13(23), 13303. https://doi.org/10.3390/su132313303