A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid
Abstract
:1. Introduction
1.1. Research Motivation
1.2. Review Methodology
1.2.1. Literature Review
- Q1.
- What are the existing research topics in smart grid energy management systems?
- Q2.
- Who are energy data contributors related to smart grid energy systems?
- Q3.
- What are the aesthetic and operational hurdles faced in the implementation of the smart grid?
- Q4.
- How will big data analytics assist energy management systems to reach sustainable goals in the future?
- Q5.
- What is the future of smart grid research to attain sustainable goals?
1.2.2. Background Methodology
1.2.3. Role of Big Data Analytics in the Smart Grid and Achieving Sustainable Goals
2. Smart Grid
2.1. Big Data from Smart Grid Operations
2.1.1. MV and LV Grid Planning
Impact of Embedded Generation
Load & Phase Balance
2.1.2. Asset Management
2.1.3. Voltage Regulation and Protection
2.1.4. Customer Operation
2.1.5. Field Services
2.1.6. Customer and Utility Operations
2.1.7. Regulatory Compliance
2.2. Asset and Workforce Management
2.2.1. Operation of the Assets
2.2.2. Asset Maintenance
2.2.3. System Control
2.2.4. Regulatory Reporting
2.3. Big Data from Smart Metering
2.3.1. Grid Operations
2.3.2. Field Service
2.3.3. Resource Planning
2.3.4. Scheduled Use of Assets
3. Role of Big Data Analytics in Smart Grids
3.1. Key Issues in Smart Grids and the Outcomes of Big Data Implementation
3.2. Big Data Analytics Process in the Smart Grid
4. The Smart Grid with Big Data Analytics in Social, Economic, Technical and Policy Aspects to Achieve Sustainability
4.1. Big Data Analytics’ Role in the Smart Grid to Achieve Sustainability
Author & Year | Objectives | Outcomes |
---|---|---|
[95] | Big data analytics in data management for energy presumption. Big data analytics in energy management. | The architectural pattern gathers energy data and distributes it to prosumers who generate, utilize, exchange and market renewable energy in order to enhance smart grid energy usage. Big data analytics in data management for energy presumption. |
[96] | Big data analytics in data management for energy presumption. | Smart electric grids are potential enough to improve their capabilities to boost smart grid activities and energy management flow. Big data analytics can enhance the decision making on power-sharing and safety of power grids. |
[69] | Big data analytics in energy management. Microgrid Energy management | Empower consumers’ interests through the use of a wide range of data for efficient operation of energy-related sources in order to ensure a sustainable energy environment. |
[71] | Microgrid Energy management | Determine the system’s ability to withstand power outages. |
[97] | Big data analytics for energy load forecasting approaches. | Consumer needs are important for efficient energy production and usage. |
[98] | New Price and Load Forecasting Scheme. | Enhances the perfection of assessing a day-ahead load to increase the dependability, control and administration of energy market operations. |
[99] | Big Data-Based Electricity Price Forecasting. | With the integration of distributed resources and instabilities in load periodicity, it is vital to forecast a realistic cost for efficient generation scheduling and operation, while reducing power losses in the smart grid. |
[43] | To promote sustainable smart manufacturing, big data analytics should be used throughout the product lifetime. | In complex management situations, industry leaders should be assisted in making smart business decisions. |
4.2. Smart Grid Sustainability in Connection with the Achievement of SDGs
5. Big Data Analytics as Solutions to Achieve Sustainability in the Smart Grid
6. Challenges and Future Directions
6.1. Scaling of Testing Labs
6.2. Interoperability
6.3. Data Analytics Innovation
6.4. Data Privacy Innovation
6.5. Need for Standards and Regulatory Frameworks
6.6. Monitoring, Real-Time Control and Operation
6.7. Innovative Computational Analytics
6.8. Integration with Advanced Visualization
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Liu, S.; Wang, T.; Dai, X.; Baninla, Y.; Nakatani, J.; Moriguchi, Y. Urbanization impacts on greenhouse gas (GHG) emissions of the water infrastructure in China: Trade-offs among sustainable development goals (SDGs). J. Clean. Prod. 2019, 232, 474–486. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, J.; Khanna, N.; Fridley, D.; Jiang, S.; Liu, X. Intertwined impacts of water, energy development, and carbon emissions in China. Appl. Energy 2019, 238, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Schappert, M.; von Hauff, M. Sustainable consumption in the smart grid: From key points to eco-routine. J. Clean. Prod. 2020, 267, 121585. [Google Scholar] [CrossRef]
- Baležentis, T.; Štreimikienė, D. Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China. Energies 2019, 12, 1142. [Google Scholar] [CrossRef] [Green Version]
- Milchram, C.; Künneke, R.; Doorn, N.; van de Kaa, G.; Hillerbrand, R. Designing for justice in electricity systems: A comparison of smart grid experiments in the Netherlands. Energy Policy 2020, 147, 111720. [Google Scholar] [CrossRef]
- Elsevier. The Power of Data to Advance the SDGs. In Mapping Research for the Sustainable Development Goals; SDG Resource Centre: London, UK, 2020. [Google Scholar]
- Marcillo-Delgado, J.C.; Ortego, M.I.; Pérez-Foguet, A. A compositional approach for modelling SDG7 indicators: Case study applied to electricity access. Renew. Sustain. Energy Rev. 2019, 107, 388–398. [Google Scholar] [CrossRef]
- Minas, H.; Tsutsumi, A.; Izutsu, T.; Goetzke, K.; Thornicroft, G. Comprehensive SDG goal and targets for non-communicable diseases and mental health. Int. J. Ment. Health Syst. 2015, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Salvia, A.L.; Leal Filho, W.; Brandli, L.L.; Griebeler, J.S. Assessing research trends related to Sustainable Development Goals: Local and global issues. J. Clean. Prod. 2019, 208, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Eisenmenger, N.; Pichler, M.; Krenmayr, N.; Noll, D.; Plank, B.; Schalmann, E.; Wandl, M.-T.; Gingrich, S. The Sustainable Development Goals prioritize economic growth over sustainable resource use: A critical reflection on the SDGs from a socio-ecological perspective. Sustain. Sci. 2020, 15, 1101–1110. [Google Scholar] [CrossRef]
- Alaqeel, T.A.; Suryanarayanan, S. A comprehensive cost-benefit analysis of the penetration of Smart Grid technologies in the Saudi Arabian electricity infrastructure. Util. Policy 2019, 60, 100933. [Google Scholar] [CrossRef]
- Boardman, E. Advanced Applications in an Advanced Distribution Management System: Essentials for Implementation and Integration. IEEE Power Energy Mag. 2020, 18, 43–54. [Google Scholar] [CrossRef]
- Zhou, S.; Zou, F.; Wu, Z.; Gu, W.; Hong, Q.; Booth, C. A smart community energy management scheme considering user dominated demand side response and P2P trading. Int. J. Electr. Power Energy Syst. 2020, 114, 105378. [Google Scholar] [CrossRef]
- Puttamadappa, C.; Parameshachari, B.D. Demand side management of small scale loads in a smart grid using glow-worm swarm optimization technique. Microprocess Microsyst. 2019, 71, 102886. [Google Scholar] [CrossRef]
- Giourka, P.; Sanders, M.W.J.L.; Angelakoglou, K.; Pramangioulis, D.; Nikolopoulos, N.; Rakopoulos, D.; Tryferidis, A.; Tzovaras, D. The Smart City Business Model Canvas—A Smart City Business Modeling Framework and Practical Tool. Energies 2019, 12, 4798. [Google Scholar] [CrossRef] [Green Version]
- Radenković, M.; Bogdanović, Z.; Despotović-Zrakić, M.; Labus, A.; Lazarević, S. Assessing consumer readiness for participation in IoT-based demand response business models. Technol. Forecast Soc. Change 2020, 150, 119715. [Google Scholar] [CrossRef]
- Chakraborty, R.; Samanta, A.; Agrawal, K.M.; Dutta, A. Towards smarter grid: Policy and its impact assessment through a case study. Sustain Energy. Grids Networks 2021, 26, 100436. [Google Scholar] [CrossRef]
- Canha, L.N.; Adeyanju, O.M.; Ney, R.C.; Arend, G.; Zancan, D.N. The Roles of Customers, Utilities and Companies in Accelerating Smart Grid Implementation. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America 2019), Gramado, Brazil, 15–18 September 2019; pp. 593–599. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Syed, D.; Zainab, A.; Ghrayeb, A.; Refaat, S.S.; Abu-Rub, H.; Bouhali, O. Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications. IEEE Access 2021, 9, 59564–59585. [Google Scholar] [CrossRef]
- Bhattarai, B.P.; Paudyal, S.; Luo, Y.; Mohanpurkar, M.; Cheung, K.; Tonkoski, R.; Hovsapian, R.; Myers, K.S.; Zhang, R.; Zhao, P.; et al. Big data analytics in smart grids: State-of-the-art, challenges, opportunities, and future directions. IET Smart Grid 2019, 2, 141–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, T.; Bompard, E.F. Big data analytics in smart grids: A review. Energy Inform. 2018, 1, 8. [Google Scholar] [CrossRef]
- Ghorbanian, M.; Dolatabadi, S.H.; Siano, P. Big Data Issues in Smart Grids: A Survey. IEEE Syst. J. 2019, 13, 4158–4168. [Google Scholar] [CrossRef]
- Daki, H.; El Hannani, A.; Aqqal, A.; Haidine, A.; Dahbi, A. Big Data management in smart grid: Concepts, requirements and implementation. J. Big Data 2017, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M.; Amaris, H.; Alcala, D.; Florez, R.D.M. Smart Sensors for Smart Grid Reliability. Sensors 2020, 20, 2187. [Google Scholar] [CrossRef]
- Veichtlbauer, A.; Heinisch, A.; von Tüllenburg, F.; Dorfinger, P.; Langthaler, O.; Pache, U. Smart Grid Virtualisation for Grid-Based Routing. Electronics 2020, 9, 1879. [Google Scholar] [CrossRef]
- Ananthavijayan, R.; Karthikeyan Shanmugam, P.; Padmanaban, S.; Holm-Nielsen, J.; Blaabjerg, F.; Fedak, V. Software Architectures for Smart Grid System—A Bibliographical Survey. Energies 2019, 12, 1183. [Google Scholar] [CrossRef] [Green Version]
- Qadir, Z.; Khan, S.I.; Khalaji, E.; Munawar, H.S.; Al-Turjman, F.; Mahmud, M.P.; Kouzani, A.Z.; Le, K. Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids. Energy Rep. 2021, 7, 8465–8475. [Google Scholar] [CrossRef]
- Ul Hassan, M.; Rehmani, M.H.; Kotagiri, R.; Zhang, J.; Chen, J. Differential privacy for renewable energy resources based smart metering. J. Parallel. Distrib. Comput. 2019, 131, 69–80. [Google Scholar] [CrossRef]
- Sutherland, B.R. Securing Smart Grids with Machine Learning. Joule 2020, 4, 521–522. [Google Scholar] [CrossRef]
- Kong, Q.; Fowler, M.; Entchev, E.; Ribberink, H.; McCallum, R. The Role of Charging Infrastructure in Electric Vehicle Implementation within Smart Grids. Energies 2018, 11, 3362. [Google Scholar] [CrossRef] [Green Version]
- Stanelyte, D.; Radziukynas, V. Review of Voltage and Reactive Power Control Algorithms in Electrical Distribution Networks. Energies 2019, 13, 58. [Google Scholar] [CrossRef] [Green Version]
- Bayer, B.; Marian, A. Innovative measures for integrating renewable energy in the German medium-voltage grids. Energy Rep. 2020, 6, 336–342. [Google Scholar] [CrossRef]
- Hasan, A.N.; Tshivhase, N. Voltage regulation system for OLTC in distribution power systems with high penetration level of embedded generation. Int. Trans. Electr. Energy Syst. 2019, 29, e12111. [Google Scholar] [CrossRef]
- Motyka, D.; Kajanová, M.; Braciník, P. The Impact of Embedded Generation on Distribution Grid Operation. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 360–364. [Google Scholar] [CrossRef]
- Ma, K.; Fang, L.; Kong, W. Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research directions. CSEE J. Power Energy Syst. 2020, 6, 479–488. [Google Scholar] [CrossRef]
- Islam, M.; Nadarajah, M.; Hossain, M.J. Dynamic voltage stability of unbalanced DNs with high penetration of roof-top PV units. Int. Trans. Electr. Energy Syst. 2020, 30, e12631. [Google Scholar] [CrossRef]
- Joseph, T.; Ugalde-Loo, C.E.; Liang, J.; Coventry, P.F. Asset Management Strategies for Power Electronic Converters in Transmission Networks: Application to Hvdc and FACTS Devices. IEEE Access 2018, 6, 21084–21102. [Google Scholar] [CrossRef]
- Weber, S.; Peters, J.F.; Baumann, M.; Weil, M.R. Life Cycle Assessment of a Vanadium Redox Flow Battery. Environ. Sci. Technol. 2018, 52, 10864–10873. [Google Scholar] [CrossRef]
- Zheng, Y.; Niu, S.; Shang, Y.; Shao, Z.; Jian, L. Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation. Renew. Sustain. Energy Rev. 2019, 112, 424–439. [Google Scholar] [CrossRef]
- Hossain, E.; Tür, M.R.; Padmanaban, S.; Ay, S.; Khan, I. Analysis and Mitigation of Power Quality Issues in Distributed Generation Systems Using Custom Power Devices. IEEE Access 2018, 6, 16816–16833. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, Y.; Liu, Y.; Sakao, T.; Huisingh, D.; Almeida, C.M.V.B. A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. J. Clean. Prod. 2019, 210, 1343–1365. [Google Scholar] [CrossRef] [Green Version]
- Van den Broek, T.; van Veenstra, A.F. Governance of big data collaborations: How to balance regulatory compliance and disruptive innovation. Technol. Forecast. Soc. Change 2018, 129, 330–338. [Google Scholar] [CrossRef]
- Wilcox, T.; Jin, N.; Flach, P.; Thumim, J. A Big Data platform for smart meter data analytics. Comput. Ind. 2019, 105, 250–259. [Google Scholar] [CrossRef]
- Asaad, M.; Ahmad, F.; Alam, M.S.; Sarfraz, M. Smart grid and Indian experience: A review. Resour. Policy 2019, 101499. [Google Scholar] [CrossRef]
- Khuntia, S.R.; Rueda, J.L.; van der Meijden, M.A.M.M. Smart Asset Management for Electric Utilities: Big Data and Future BT—Asset Intelligence through Integration and Interoperability and Contemporary Vibration Engineering Technologies; Mathew, J., Lim, C.W., Ma, L., Sands, D., Cholette, M.E., Borghesani, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–322. [Google Scholar]
- Hoffmann, M.W.; Wildermuth, S.; Gitzel, R.; Boyaci, A.; Gebhardt, J.; Kaul, H.; Amihai, I.; Forg, B.; Suriyah, M.; Leibfried, T.; et al. Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions. Sensors 2020, 20, 2099. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.; Kim, S. Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings. Energies 2019, 12, 1149. [Google Scholar] [CrossRef] [Green Version]
- Talaat, M.; Alsayyari, A.S.; Alblawi, A.; Hatata, A.Y. Hybrid-cloud-based data processing for power system monitoring in smart grids. Sustain. Cities Soc. 2020, 55, 102049. [Google Scholar] [CrossRef]
- Musleh, A.S.; Chen, G.; Dong, Z.Y. A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids. IEEE Trans. Smart Grid 2020, 11, 2218–2234. [Google Scholar] [CrossRef]
- Bos, K.; Gupta, J. Stranded assets and stranded resources: Implications for climate change mitigation and global sustainable development. Energy Res. Soc. Sci. 2019, 56, 101215. [Google Scholar] [CrossRef]
- Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [Google Scholar] [CrossRef]
- Zame, K.K.; Brehm, C.A.; Nitica, A.T.; Richard, C.L.; Schweitzer, G.D. Smart grid and energy storage: Policy recommendations. Renew. Sustain. Energy Rev. 2018, 82, 1646–1654. [Google Scholar] [CrossRef]
- Yao, D.; Wen, M.; Liang, X.; Fu, Z.; Zhang, K.; Yang, B. Energy Theft Detection With Energy Privacy Preservation in the Smart Grid. IEEE Internet Things J. 2019, 6, 7659–7669. [Google Scholar] [CrossRef]
- Singh Aujla, G.; Garg, S.; Batra, S.; Kumar, N.; You, I.; Sharma, V. DROpS: A demand response optimization scheme in SDN-enabled smart energy ecosystem. Inf. Sci. 2019, 476, 453–473. [Google Scholar] [CrossRef]
- Shewale, A.; Mokhade, A.; Funde, N.; Bokde, N.D. An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem. Energies 2020, 13, 4266. [Google Scholar] [CrossRef]
- Kamalaldin, A.; Linde, L.; Sjödin, D.; Parida, V. Transforming provider-customer relationships in digital servitization: A relational view on digitalization. Ind. Mark. Manag. 2020, 89, 306–325. [Google Scholar] [CrossRef]
- Bedi, G.; Venayagamoorthy, G.K.; Singh, R.; Brooks, R.R.; Wang, K.-C. Review of Internet of Things (IoT) in Electric Power and Energy Systems. IEEE Internet Things J. 2018, 5, 847–870. [Google Scholar] [CrossRef]
- Kabalci, Y.; Kabalci, E.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Internet of Things Applications as Energy Internet in Smart Grids and Smart Environments. Electronics 2019, 8, 972. [Google Scholar] [CrossRef] [Green Version]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Rodrigues, J.J.P.C.; Kozlov, S.A. Blockchain in Smart Grids: A Review on Different Use Cases. Sensors 2019, 19, 4862. [Google Scholar] [CrossRef] [Green Version]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids. Sensors 2018, 18, 162. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, K.; Khan, B.; Ravishankar, J.; Ahmadi, A.; Siano, P. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renew. Sustain. Energy Rev. 2020, 127, 109840. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef] [Green Version]
- Farmanbar, M.; Parham, K.; Arild, Ø.; Rong, C. A Widespread Review of Smart Grids Towards Smart Cities. Energies 2019, 12, 4484. [Google Scholar] [CrossRef] [Green Version]
- Espe, E.; Potdar, V.; Chang, E. Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions. Energies 2018, 11, 2528. [Google Scholar] [CrossRef] [Green Version]
- Marinakis, V. Big Data for Energy Management and Energy-Efficient Buildings. Energies 2020, 13, 1555. [Google Scholar] [CrossRef] [Green Version]
- Campagna, N.; Caruso, M.; Castiglia, V.; Miceli, R.; Viola, F. Energy Management Concepts for the Evolution of Smart Grids. In Proceedings of the 2020 8th International Conference on Smart Grid (icSmartGrid), Paris, France, 17–19 June 2020; pp. 208–213. [Google Scholar] [CrossRef]
- Marino, C.A.; Marufuzzaman, M. A microgrid energy management system based on chance-constrained stochastic optimization and big data analytics. Comput. Ind. Eng. 2020, 143, 106392. [Google Scholar] [CrossRef]
- Lü, X.; Wu, Y.; Lian, J.; Zhang, Y.; Chen, C.; Wang, P.; Meng, L. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers. Manag. 2020, 205, 112474. [Google Scholar] [CrossRef]
- Ahmadi, S.; Fakehi, A.H.; Vakili, A.; Moeini-Aghtaie, M. An optimization model for the long-term energy planning based on useful energy, economic and environmental pollution reduction in residential sector: A case of Iran. J. Build. Eng. 2020, 30, 101247. [Google Scholar] [CrossRef]
- Mangla, S.K.; Luthra, S.; Jakhar, S.; Gandhi, S.; Muduli, K.; Kumar, A. A step to clean energy—Sustainability in energy system management in an emerging economy context. J. Clean. Prod. 2020, 242, 118462. [Google Scholar] [CrossRef]
- Ponce-Jara, M.A.; Ruiz, E.; Gil, R.; Sancristóbal, E.; Pérez-Molina, C.; Castro, M. Smart Grid: Assessment of the past and present in developed and developing countries. Energy Strateg. Rev. 2017, 18, 38–52. [Google Scholar] [CrossRef]
- Al-Nory, M.T. Optimal Decision Guidance for the Electricity Supply Chain Integration With Renewable Energy: Aligning Smart Cities Research With Sustainable Development Goals. IEEE Access 2019, 7, 74996–75006. [Google Scholar] [CrossRef]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Arabatzis, G. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 2016, 56, 1044–1067. [Google Scholar] [CrossRef]
- Bastida, M.; Vaquero García, A.; Cancelo Márquez, M.; Olveira Blanco, A. Fostering the Sustainable Development Goals from an Ecosystem Conducive to the SE: The Galician’s Case. Sustainability 2020, 12, 500. [Google Scholar] [CrossRef] [Green Version]
- Nurunnabi, M.; Esquer, J.; Munguia, N.; Zepeda, D.; Perez, R.; Velazquez, L. Reaching the sustainable development goals 2030, energy efficiency as an approach to corporate social responsibility (CSR). GeoJournal 2020, 85, 363–374. [Google Scholar] [CrossRef]
- Cerf, M.E. Sustainable Development Goal Integration, Interdependence, and Implementation: The Environment–Economic–Health Nexus and Universal Health Coverage. Glob. Chall. 2019, 3, 1900021. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Callejo, L. A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids. Energies 2019, 12, 1630. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.K.; Ahmed, M.M.; Hashim, A.H.A.; Razzaque, A.; Islam, S.; Pandey, B. A Novel Artificial Intelligence Based Timing Synchronization Scheme for Smart Grid Applications. Wirel. Pers. Commun. 2020, 114, 1067–1084. [Google Scholar] [CrossRef]
- Padmanathan, K.; Govindarajan, U.; Ramachandaramurthy, V.K.; Rajagopalan, A.; Pachaivannan, N.; Sowmmiya, U.; Padmanaban, S.; Holm-Nielsen, J.B.; Xavier, S.; Periasamy, S.K. A sociocultural study on solar photovoltaic energy system in India: Stratification and policy implication. J. Clean. Prod. 2019, 216, 461–481. [Google Scholar] [CrossRef]
- Dhupia, B.; Usha Rani, M.; Alameen, A. The Role of Big Data Analytics in Smart Grid Management BT—Emerging Research in Data Engineering Systems and Computer Communications; Venkata Krishna, P., Obaidat, M.S., Eds.; Springer: Singapore, 2020; Volume 1054, pp. 403–412. [Google Scholar]
- Celvakumaran, P.; Ramachandaramurthy, V.K.; Padmanaban, S.; Padmanathan, K.; Pouryekta, A.; Pasupuleti, J. Technical Constraints of Integrating Net Energy Metering from the Malaysian Perspective. In Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Sabah, Malaysia, 7–10 October 2018; pp. 757–762. [Google Scholar] [CrossRef]
- Padmanathan, K.; Govindarajan, U.; Ramachandaramurthy, V.K.; Selvi T., S.O. Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market. Sustainability 2017, 9, 820. [Google Scholar] [CrossRef] [Green Version]
- Khatua, P.K.; Ramachandaramurthy, V.K.; Kasinathan, P.; Yong, J.Y.; Pasupuleti, J.; Rajagopalan, A. Application and assessment of internet of things toward the sustainability of energy systems: Challenges and issues. Sustain. Cities Soc. 2020, 53, 101957. [Google Scholar] [CrossRef]
- Kim, T.H.; Ramos, C.; Mohammed, S. Smart City and IoT. Futur. Gener. Comput. Syst. 2017, 76, 159–162. [Google Scholar] [CrossRef]
- Avancini, D.B.; Rodrigues, J.J.P.C.; Martins, S.G.B.; Rabêlo, R.A.L.; Al-Muhtadi, J.; Solic, P. Energy meters evolution in smart grids: A review. J. Clean. Prod. 2019, 217, 702–715. [Google Scholar] [CrossRef]
- Pau, M.; Patti, E.; Barbierato, L.; Estebsari, A.; Pons, E.; Ponci, F.; Monti, A. A cloud-based smart metering infrastructure for distribution grid services and automation. Sustain. Energy Grids Netw. 2018, 15, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Elavarasan, R.M.; Shafuullah, G.M.; Sanjeevikumar Padmanaban Kumar, N.M.; Annam, A.; Vetrichelvan, A.M.; Mihet-popa, L.; Holm-Nielson, J.B. A Comprehensive Review on Renewable Energy Development, Challenges, and Policies of Leading Indian States with an International Perspective. IEEE Access 2020, 8, 74432–74457. [Google Scholar] [CrossRef]
- Lawer, E.T.; Herbeck, J.; Flitner, M. Selective Adoption: How Port Authorities in Europe and West Africa Engage with the Globalizing ‘Green Port’ Idea. Sustainability 2019, 11, 5119. [Google Scholar] [CrossRef] [Green Version]
- Corbett, J.; Wardle, K.; Chen, C. Toward a sustainable modern electricity grid: The effects of smart metering and program investments on demand-side management performance in the US electricity sector 2009–2012. IEEE Trans. Eng. Manag. 2018, 65, 252–263. [Google Scholar] [CrossRef]
- Anthony Jnr, B.; Abbas Petersen, S.; Ahlers, D.; Krogstie, J. API deployment for big data management towards sustainable energy prosumption in smart cities-a layered architecture perspective. Int. J. Sustain. Energy 2020, 39, 263–289. [Google Scholar] [CrossRef]
- Renugadevi, N.; Saravanan, S.; Naga Sudha, C.M. IoT based smart energy grid for sustainable cites. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Safhi, H.M.; Frikh, B.; Ouhbi, B. Energy load forecasting in big data context. In Proceedings of the 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 24–26 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mujeeb, S.; Javaid, N.; Ilahi, M.; Wadud, Z.; Ishmanov, F.; Afzal, M. Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities. Sustainability 2019, 11, 987. [Google Scholar] [CrossRef] [Green Version]
- Adil, M.; Javaid, N.; Daood, N.; Asim, M.; Ullah, I.; Bilal, M. Big Data Based Electricity Price Forecasting Using Enhanced Convolutional Neural Network in the Smart Grid BT—Web, Artificial Intelligence and Network Applications; Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1189–1201. [Google Scholar]
- Bisaga, I.; Parikh, P.; Tomei, J.; To, L.S. Mapping synergies and trade-offs between energy and the sustainable development goals: A case study of off-grid solar energy in Rwanda. Energy Policy 2021, 149, 112028. [Google Scholar] [CrossRef]
- Mainali, B.; Luukkanen, J.; Silveira, S.; Kaivo-oja, J. Evaluating Synergies and Trade-Offs among Sustainable Development Goals (SDGs): Explorative Analyses of Development Paths in South Asia and Sub-Saharan Africa. Sustainability 2018, 10, 815. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.M.; Chopra, S.S.; Chand, A.A.; Elavarasan, R.M.; Shafiullah, G.M. Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7. Sustainability 2020, 12, 3944. [Google Scholar] [CrossRef]
- Mwasilu, F.; Justo, J.J.; Kim, E.-K.; Do, T.D.; Jung, J.-W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516. [Google Scholar] [CrossRef]
- Kimani, K.; Oduol, V.; Langat, K. Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 2019, 25, 36–49. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Kang, C. Overview of Smart Meter Data Analytics BT—Smart Meter Data Analytics: Electricity Consumer Behavior Modeling, Aggregation, and Forecasting; Wang, Y., Chen, Q., Kang, C., Eds.; Springer: Singapore, 2020; pp. 1–35. [Google Scholar] [CrossRef]
- Saleem, Y.; Crespi, N.; Rehmani, M.H.; Copeland, R. Internet of Things-Aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. IEEE Access 2019, 7, 62962–63003. [Google Scholar] [CrossRef]
- Vinoth Kumar, P.; Venkata Ravindra, K.; Kumar, T.N.V.L. Smart Grid on Issues and Challenges. Int. J. Recent. Technol. Eng. 2019, 8, 4628–4632. [Google Scholar]
- Hameed, Z.; Ahmad, F.; ur Rehman, S.; Ghafoor, Z. IoT Based Communication Technologies to Integrate and Maximize the Efficiency of Renewable Energy Resources with Smart Grid. In Proceedings of the 2020 International Conference on Computing and Information Technology (ICCIT-1441), Pattaya, Thailand, 14–15 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Wu, J.; Ota, K.; Dong, M.; Li, J.; Wang, H. Big Data Analysis-Based Security Situational Awareness for Smart Grid. IEEE Trans. Big Data 2016, 4, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Colmenar-Santos, A.; Muñoz-Gómez, A.M.; Rosales-Asensio, E.; López-Rey, Á. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. Energy 2019, 183, 61–74. [Google Scholar] [CrossRef]
- Sharma, T.; Pandey, K.K.; Punia, D.K.; Rao, J. Of pilferers and poachers: Combating electricity theft in India. Energy Res. Soc. Sci. 2016, 11, 40–52. [Google Scholar] [CrossRef]
- Chen, J.; Mohamed, M.A.; Dampage, U.; Rezaei, M.; Salmen, S.H.; Obaid, S.A.; Annuk, A. A Multi-Layer Security Scheme for Mitigating Smart Grid Vulnerability against Faults and Cyber-Attacks. Appl. Sci. 2021, 11, 9972. [Google Scholar] [CrossRef]
- He, X.; Chu, L.; Qiu, R.C.; Ai, Q.; Ling, Z. A Novel Data-Driven Situation Awareness Approach for Future Grids—Using Large Random Matrices for Big Data Modeling. IEEE Access 2018, 6, 13855–13865. [Google Scholar] [CrossRef]
- He, X.; Ai, Q.; Qiu, R.C.; Huang, W.; Piao, L.; Liu, H. A Big Data Architecture Design for Smart Grids Based on Random Matrix Theory. IEEE Trans. Smart Grid 2017, 8, 674–686. [Google Scholar] [CrossRef]
- Mohr, M.; Peters, J.F.; Baumann, M.; Weil, M. Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J. Ind. Ecol. 2020, 24, 1310–1322. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Baumann, M.; Peters, J.F.; Weil, M.; Grunwald, A. CO2 Footprint and Life-Cycle Costs of Electrochemical Energy Storage for Stationary Grid Applications. Energy Technol. 2017, 5, 1071. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium ion batteries. Energy Environ. Sci 2016, 9, 1744–1751. [Google Scholar] [CrossRef] [Green Version]
- Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017, 70, 263–286. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.A.; Mirjalili, S.; Dampage, U.; Salmen, S.H.; Obaid, S.A.; Annuk, A. A Cost-Efficient-Based Cooperative Allocation of Mining Devices and Renewable Resources Enhancing Blockchain Architecture. Sustainability 2021, 13, 10382. [Google Scholar] [CrossRef]
- Kauffmann, E.; Peral, J.; Gil, D.; Ferrández, A.; Sellers, R.; Mora, H. A framework for big data analytics in commercial social networks: A case study on sentiment analysis and fake review detection for marketing decision-making. Ind. Mark. Manag. 2020, 90, 523–537. [Google Scholar] [CrossRef]
- Kang, C.; Wang, Y.; Xue, Y.; Mu, G.; Liao, R. Big Data Analytics in China’s Electric Power Industry: Modern Information, Communication Technologies, and Millions of Smart Meters. IEEE Power Energy Mag. 2018, 16, 54–65. [Google Scholar] [CrossRef]
- Chehri, A.; Fofana, I.; Yang, X. Security Risk Modeling in Smart Grid Critical Infrastructures in the Era of Big Data and Artificial Intelligence. Sustainability 2021, 13, 3196. [Google Scholar] [CrossRef]
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm. Comput Sci. Rev. 2021, 40, 100341. [Google Scholar] [CrossRef]
- Li, J.; Li, T.; Han, L. Research on the Evaluation Model of a Smart Grid Development Level Based on Differentiation of Development Demand. Sustainability 2018, 10, 4047. [Google Scholar] [CrossRef] [Green Version]
- Hossain, E.; Khan, I.; Un-Noor, F.; Sikander, S.S.; Sunny, M.S.H. Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review. IEEE Access 2019, 7, 13960–13988. [Google Scholar] [CrossRef]
- Kanase-Patil, A.B.; Kaldate, A.P.; Lokhande, S.D.; Panchal, H.; Suresh, M.; Priya, V. A review of artificial intelligence-based optimization techniques for the sizing of integrated renewable energy systems in smart cities. Environ. Technol. Rev. 2020, 9, 111–136. [Google Scholar] [CrossRef]
- Zekić-Sušac, M.; Mitrović, S.; Has, A. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. Int. J. Inf. Manag. 2021, 58, 102074. [Google Scholar] [CrossRef]
- Daniel Rangel-Martinez KDPNigam Luis, A. Ricardez-Sandoval, Machine learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage. Chem. Eng. Res. Des. 2021, 174, 414–441. [Google Scholar]
- Jamil, F.; Iqbal, N.; Ahmad, S.; Kim, D. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access 2021, 9, 39193–39217. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Das, S.; Sidhu, T.; Siva, A.K. Smart meters for enhancing protection and monitoring functions in emerging distribution systems. Int. J. Electr. Power Energy Syst. 2021, 127, 106626. [Google Scholar] [CrossRef]
- Ayadi, F.; Colak, I.; Bayindir, R. Interoperability in Smart Grid. In Proceedings of the 2019 7th International Conference on Smart Grid (icSmartGrid), Newcastle, Australia, 9–11 December 2019; pp. 165–169. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Jolfaei, A.; Kant, K. A lightweight integrity protection scheme for low latency smart grid applications. Comput. Secur 2019, 86, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Leszczyna, R. Standards on cyber security assessment of smart grid. Int. J. Crit. Infrastruct. Prot. 2018, 22, 70–89. [Google Scholar] [CrossRef]
- Gifty, R.; Bharathi, R.; Krishnakumar, P. Privacy and security of big data in cyber physical systems using Weibull distribution-based intrusion detection. Neural Comput. Appl. 2019, 31, 23–34. [Google Scholar] [CrossRef]
- Bansal, G.; Dua, A.; Aujla, G.S.; Singh, M.; Kumar, N. SmartChain: A Smart and Scalable Blockchain Consortium for Smart Grid Systems. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 22–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
Motivation | Outlining of Work |
---|---|
Enhance large-scale renewable energy production and the integration of electric vehicles with smart grid [4,10,11] | Economic: New infrastructure for the integration of renewable and electric vehicle-based energy storage. Social: Offers diversified energy supply and lessen the dependence on fossil fuels. Technical: Suitable converters for the integration of different renewable sources with the existing grid and monitoring. Policy: Novel regulatory systems and market designs are needed to encourage energy storage options. Environmental: Decrease the emission of greenhouse gas and prevent the pollution of land and water. |
Improvement of distributed generation [12,13] | Economic: Reduction in electricity cost and revenue generation for consumers who use smart metering. Social: Reduction in electricity losses along transmission and distribution lines and less dependency upon public utilities. Technical: Allow the incorporation of smart metering and communication to manage power flow and reduce power outages. Policy: Regulations to access energy and assets connected with the distribution grid. Environmental: Deliver clean, reliable power to additional customers. |
Enhance the efficiency through demand-side response and energy management [14,15] | Economic: Improve the efficiency of renewable energy. Social: Equalize energy consumption and balance power generation. Technical: Implementation of data feedback systems and monitoring devices to reduce grid vulnerabilities. Policy: Standards and regulatory frameworks to access smart metering information and sensor data. Environmental: Reduce the consumption of fuel in energy production by load shifting and pollution reduction. |
Increase the involvement of better practices; innovate novel tools and business models for efficient power utilization [16,17] | Economic: Usage of real-time pricing reduces the cost incurred upon electricity utilization. Social: Improved energy efficiency to offer better services to consumers so as to provide comfort and wellbeing. Technical: Implementation of demand-side management and energy management related tools to ensure better communication between utilities and consumers. Policy: Network visualization and support guidelines coupled with best practices. Environmental: Optimized asset utilization and efficient operation to reduce emissions. |
Enhancement of Quality of Life for all stakeholders [18,19] | Economic: Creation of new jobs and improvement in the quality of people’s lives. Social: Revolution in industrial and energy sectors leading to the modernization of equipment for efficient grid usage. Technical: Enhancement in transmission and distribution protection, access to quality power with power quality monitoring, sufficient and continuous power. Policy: Enforcement of standards and smart living regulations. Environmental: Minimal impact upon land, air and water |
Authors | Topics Discussed | |||||||
---|---|---|---|---|---|---|---|---|
Grid Data Sources and Data Communication Technologies | Tools for Big Data Analytics Method | Software and Hardware Requirements for Big Data Analytics in Smart Grid | Challenges and Opportunities | Role of Big Data Analytics in Energy Management | Motivation to Achieve Sustainable Goals | Is the Work Reviewed with Technical, Economic, Social and Environmental Factors? | Forecasting, Renewable, Load and Non-Technical Loss | |
Zhou et al. [20] | No | Yes | Yes | No | Yes | No | No | No |
Syed et al. [21] | No | Yes | Yes | No | No | No | No | No |
Bhattari et al. [22] | No | No | No | Yes | Yes | No | No | No |
Zhang et al. [23] | Yes | No | Yes | No | No | No | No | Yes |
Ghorbanian et al. [24] | No | Yes | No | Yes | No | No | No | No |
Daki et al. [25] | Yes | No | Yes | No | No | No | No | No |
Q.No | Question | Task | Process |
---|---|---|---|
Q1 | What action is taken? | Supervision and execution | According to the demand response, power generation and peak load management offers incentives to the consumers |
Q2 | What is occurring? | Innovation and Investigation | Monitoring the grid status, analysing customer usage, detecting energy theft and directing the data across the enterprise. |
Q3 | What could occur? | Forecasting | Forecast equipment failure and avoid outage, excess loads on the grid before they occur and customers suitable for demand response offerings. |
Q4 | Why did it occur? | Monitoring and Analysis | Monitor the performance and status of the smart grid components data and analyse the assets during operations through reports. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponnusamy, V.K.; Kasinathan, P.; Madurai Elavarasan, R.; Ramanathan, V.; Anandan, R.K.; Subramaniam, U.; Ghosh, A.; Hossain, E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability 2021, 13, 13322. https://doi.org/10.3390/su132313322
Ponnusamy VK, Kasinathan P, Madurai Elavarasan R, Ramanathan V, Anandan RK, Subramaniam U, Ghosh A, Hossain E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability. 2021; 13(23):13322. https://doi.org/10.3390/su132313322
Chicago/Turabian StylePonnusamy, Vinoth Kumar, Padmanathan Kasinathan, Rajvikram Madurai Elavarasan, Vinoth Ramanathan, Ranjith Kumar Anandan, Umashankar Subramaniam, Aritra Ghosh, and Eklas Hossain. 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid" Sustainability 13, no. 23: 13322. https://doi.org/10.3390/su132313322
APA StylePonnusamy, V. K., Kasinathan, P., Madurai Elavarasan, R., Ramanathan, V., Anandan, R. K., Subramaniam, U., Ghosh, A., & Hossain, E. (2021). A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability, 13(23), 13322. https://doi.org/10.3390/su132313322