Which Residential Clusters of Walkability Affect Future Population from the Perspective of Real Estate Prices in the Osaka Metropolitan Area?
Abstract
:1. Introduction
1.1. Background
1.2. Purpose
1.3. Literature Review
1.4. Article Structure
2. Materials and Methods
2.1. Urban Ecological Analysis
2.2. Walkability Index
2.3. Real Estate Big Data
2.4. Future Population Change Ratio
2.5. Structural Equation Modeling
3. Results
3.1. Map of Each Score
3.2. Score of Residential Clusters
3.3. Structural Equation Modeling of Residential Clusters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Heading | Inner City Cluster | Business Center Cluster | Mining Industry Cluster | Dense Cluster | Public Housing Cluster | Non-Residential Cluster | Agriculture Cluster | Sprawl Cluster | High-Rise Residential Cluster | Mountain Cluster | Old NT Cluster | Suburban Agriculture Cluster | Rural Cluster | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of NA in the cluster (N) | 1937 | 5472 | 728 | 672 | 889 | 7403 | 297 | 4998 | 628 | 7251 | 2546 | 2914 | 1033 | |
Location data by GIS analysis | Urbanized area ratio (%) | 84.5 | 86.2 | 45.1 | 77.1 | 72.4 | 55.2 | 23.6 | 66.2 | 61.8 | 40.7 | 59.1 | 21.3 | 24.9 |
Average distance from the center (km) | 19.3 | 34.5 | 59.9 | 31.2 | 26.7 | 43.9 | 71.6 | 38.2 | 25.9 | 56.1 | 26.7 | 63.1 | 52.1 | |
Census data of 2015 Japanese census | Population under 15 years old (%) | 0.06 | 0.01 | 0.03 | 0.06 | 0.05 | 0.00 | 0.04 | 0.02 | 0.09 | 0.01 | 0.03 | 0.01 | 0.10 |
Population between 16 and 64 years old (%) | 0.09 | 0.02 | 0.04 | 0.09 | 0.08 | 0.00 | 0.06 | 0.03 | 0.12 | 0.01 | 0.05 | 0.02 | 0.14 | |
Population over 65 years old (%) | 0.10 | 0.02 | 0.04 | 0.07 | 0.12 | 0.00 | 0.09 | 0.04 | 0.11 | 0.01 | 0.05 | 0.03 | 0.15 | |
Population of foreigners (%) | 0.09 | 0.02 | 0.02 | 0.04 | 0.07 | 0.00 | 0.01 | 0.02 | 0.03 | 0.00 | 0.01 | 0.00 | 0.05 | |
Population who live in their own houses (%) | 0.09 | 0.02 | 0.04 | 0.07 | 0.05 | 0.00 | 0.07 | 0.03 | 0.13 | 0.01 | 0.05 | 0.02 | 0.15 | |
Population who live in public housing (%) | 0.01 | 0.00 | 0.00 | 0.01 | 0.12 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | |
Population who live in private rented houses (%) | 0.10 | 0.02 | 0.02 | 0.10 | 0.02 | 0.00 | 0.02 | 0.03 | 0.05 | 0.00 | 0.02 | 0.00 | 0.07 | |
Population who live in houses for employees (%) | 0.02 | 0.00 | 0.01 | 0.08 | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.02 | |
Population who live in shared houses (%) | 0.08 | 0.02 | 0.02 | 0.05 | 0.03 | 0.00 | 0.04 | 0.03 | 0.06 | 0.01 | 0.03 | 0.01 | 0.09 | |
Households who live outside of houses (%) | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | |
Households who live in detached houses (%) | 0.07 | 0.02 | 0.05 | 0.05 | 0.03 | 0.00 | 0.10 | 0.04 | 0.09 | 0.02 | 0.06 | 0.03 | 0.19 | |
Households who live in traditional nagaya houses (%) | 0.08 | 0.01 | 0.02 | 0.03 | 0.02 | 0.00 | 0.02 | 0.03 | 0.02 | 0.00 | 0.01 | 0.00 | 0.07 | |
Households who live in apartments (%) | 0.08 | 0.02 | 0.02 | 0.08 | 0.10 | 0.00 | 0.01 | 0.02 | 0.08 | 0.00 | 0.02 | 0.00 | 0.04 | |
Households who live in 1- or 2-story buildings (%) | 0.05 | 0.02 | 0.04 | 0.07 | 0.02 | 0.00 | 0.04 | 0.05 | 0.05 | 0.00 | 0.03 | 0.01 | 0.16 | |
Households who live in 3- to 5-story buildings (%) | 0.05 | 0.01 | 0.01 | 0.07 | 0.11 | 0.00 | 0.01 | 0.02 | 0.05 | 0.00 | 0.01 | 0.00 | 0.03 | |
Households who live in 6- to 10-story buildings (%) | 0.06 | 0.01 | 0.01 | 0.06 | 0.04 | 0.00 | 0.00 | 0.01 | 0.05 | 0.00 | 0.01 | 0.00 | 0.02 | |
Households who live in 11 (or more)-story buildings (%) | 0.03 | 0.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | |
Population who work in agriculture and forestry (%) | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.01 | 0.01 | 0.00 | 0.03 | 0.03 | |
Population who work in a fishery (%) | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Population who work in the mining industry (%) | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | |
Population who work in the construction industry (%) | 0.08 | 0.01 | 0.04 | 0.06 | 0.07 | 0.00 | 0.07 | 0.04 | 0.09 | 0.01 | 0.04 | 0.02 | 0.15 | |
Population who work in the manufacturing industry (%) | 0.05 | 0.01 | 0.03 | 0.07 | 0.05 | 0.00 | 0.05 | 0.03 | 0.08 | 0.01 | 0.03 | 0.02 | 0.12 | |
Population who work in the electricity, gas, and water supply industries (%) | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.00 | 0.01 | 0.01 | 0.03 | 0.00 | 0.01 | 0.00 | 0.03 | |
Population who work in the information industry (%) | 0.08 | 0.01 | 0.02 | 0.08 | 0.04 | 0.00 | 0.01 | 0.02 | 0.12 | 0.00 | 0.04 | 0.00 | 0.06 | |
Population who work in the transport industry (%) | 0.08 | 0.02 | 0.03 | 0.07 | 0.10 | 0.00 | 0.05 | 0.04 | 0.09 | 0.01 | 0.04 | 0.02 | 0.14 | |
Population who work in the retail industry (%) | 0.09 | 0.02 | 0.03 | 0.08 | 0.07 | 0.00 | 0.06 | 0.03 | 0.12 | 0.01 | 0.04 | 0.02 | 0.13 | |
Population who work in the financial industry (%) | 0.06 | 0.01 | 0.02 | 0.08 | 0.04 | 0.00 | 0.03 | 0.02 | 0.12 | 0.00 | 0.04 | 0.01 | 0.08 | |
Population who work in the real estate business (%) | 0.09 | 0.02 | 0.03 | 0.08 | 0.06 | 0.00 | 0.02 | 0.03 | 0.12 | 0.01 | 0.04 | 0.01 | 0.08 | |
Population who work as researchers or professionals (%) | 0.06 | 0.01 | 0.02 | 0.07 | 0.04 | 0.00 | 0.03 | 0.02 | 0.11 | 0.01 | 0.04 | 0.01 | 0.07 | |
Population who work in the service industry (%) | 0.09 | 0.02 | 0.03 | 0.07 | 0.07 | 0.00 | 0.06 | 0.03 | 0.09 | 0.01 | 0.04 | 0.01 | 0.12 | |
Population who work in the entertainment industry (%) | 0.06 | 0.01 | 0.02 | 0.05 | 0.05 | 0.00 | 0.04 | 0.02 | 0.07 | 0.01 | 0.03 | 0.01 | 0.09 | |
Population who work in education (%) | 0.06 | 0.02 | 0.03 | 0.08 | 0.04 | 0.00 | 0.05 | 0.02 | 0.13 | 0.01 | 0.05 | 0.02 | 0.10 | |
Population who work in the medical/welfare industry (%) | 0.07 | 0.02 | 0.03 | 0.07 | 0.07 | 0.00 | 0.06 | 0.03 | 0.11 | 0.01 | 0.04 | 0.02 | 0.13 | |
Population who work in a joint service industry (%) | 0.05 | 0.01 | 0.05 | 0.06 | 0.05 | 0.00 | 0.18 | 0.03 | 0.09 | 0.02 | 0.04 | 0.05 | 0.18 | |
Population who work in another service industry (%) | 0.09 | 0.02 | 0.04 | 0.08 | 0.10 | 0.00 | 0.06 | 0.04 | 0.11 | 0.01 | 0.04 | 0.02 | 0.14 | |
Population who work as civil servants (%) | 0.02 | 0.00 | 0.01 | 0.05 | 0.01 | 0.00 | 0.02 | 0.01 | 0.04 | 0.00 | 0.01 | 0.01 | 0.04 | |
Population who work at home (%) | 0.08 | 0.02 | 0.04 | 0.06 | 0.04 | 0.00 | 0.18 | 0.03 | 0.07 | 0.01 | 0.03 | 0.05 | 0.13 | |
Population who work in their own city (%) | 0.06 | 0.01 | 0.04 | 0.07 | 0.06 | 0.00 | 0.07 | 0.03 | 0.07 | 0.01 | 0.03 | 0.02 | 0.14 | |
Population who work in other cities (%) | 0.07 | 0.01 | 0.03 | 0.07 | 0.06 | 0.00 | 0.04 | 0.02 | 0.11 | 0.01 | 0.04 | 0.01 | 0.10 | |
Population who work in other wards of their own cities (%) | 0.07 | 0.01 | 0.01 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
Population who work in other cities of their own prefectures (%) | 0.03 | 0.00 | 0.02 | 0.07 | 0.05 | 0.00 | 0.05 | 0.03 | 0.09 | 0.01 | 0.04 | 0.01 | 0.12 | |
Population who work in other prefectures (%) | 0.03 | 0.01 | 0.02 | 0.07 | 0.03 | 0.00 | 0.01 | 0.01 | 0.15 | 0.00 | 0.05 | 0.01 | 0.05 | |
Population who go to school in their own city (%) | 0.04 | 0.01 | 0.02 | 0.06 | 0.04 | 0.00 | 0.04 | 0.02 | 0.07 | 0.01 | 0.03 | 0.01 | 0.09 | |
Population who go to school in other cities (%) | 0.07 | 0.01 | 0.03 | 0.06 | 0.06 | 0.00 | 0.04 | 0.03 | 0.14 | 0.01 | 0.05 | 0.01 | 0.11 | |
Population who go to school in other wards of their own cities (%) | 0.07 | 0.02 | 0.01 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
Population who go to school in other cities of their own prefectures (%) | 0.04 | 0.01 | 0.03 | 0.06 | 0.06 | 0.00 | 0.06 | 0.03 | 0.13 | 0.01 | 0.05 | 0.02 | 0.13 | |
Population who go to school in other prefectures (%) | 0.04 | 0.01 | 0.02 | 0.06 | 0.03 | 0.00 | 0.03 | 0.02 | 0.16 | 0.01 | 0.05 | 0.01 | 0.08 | |
Population who have lived in the area since birth (%) | 0.07 | 0.02 | 0.05 | 0.06 | 0.05 | 0.00 | 0.13 | 0.04 | 0.10 | 0.02 | 0.04 | 0.05 | 0.17 | |
Population who have lived in the area for 1 year (%) | 0.06 | 0.02 | 0.02 | 0.10 | 0.05 | 0.00 | 0.03 | 0.03 | 0.07 | 0.00 | 0.03 | 0.01 | 0.08 | |
Population who have lived in the area for the past 5 years (%) | 0.06 | 0.01 | 0.02 | 0.08 | 0.06 | 0.00 | 0.03 | 0.02 | 0.08 | 0.00 | 0.03 | 0.01 | 0.09 | |
Population who have lived in the area for the past 10 years (%) | 0.07 | 0.01 | 0.03 | 0.07 | 0.07 | 0.00 | 0.04 | 0.03 | 0.12 | 0.01 | 0.04 | 0.01 | 0.11 | |
Population who have lived in the area for the past 20 years (%) | 0.08 | 0.02 | 0.03 | 0.07 | 0.08 | 0.00 | 0.05 | 0.03 | 0.15 | 0.01 | 0.05 | 0.01 | 0.13 | |
Population who have lived in the area for over 20 years (%) | 0.07 | 0.02 | 0.04 | 0.05 | 0.08 | 0.00 | 0.08 | 0.03 | 0.09 | 0.01 | 0.05 | 0.02 | 0.15 | |
Land use data of Numerical Map 5000 in Japan | Public facilities land (m2) | 39,637 | 18,936 | 24,393 | 65,205 | 32,639 | 40,830 | 32,143 | 33,208 | 41,080 | 17,951 | 23,897 | 19,784 | 34,391 |
Low-rise residential land (m2) | 32,789 | 13,485 | 35,363 | 28,848 | 19,301 | 3504 | 111,001 | 26,419 | 48,553 | 17,373 | 39,973 | 41,492 | 72,239 | |
High-rise residential land (m2) | 9053 | 1632 | 4380 | 14,971 | 39,734 | 583 | 525 | 3654 | 21,313 | 807 | 4928 | 701 | 6887 | |
Park green land (m2) | 11,649 | 5947 | 9426 | 10,631 | 14,580 | 13,580 | 41,421 | 7421 | 14,513 | 7716 | 7405 | 15,447 | 17,434 | |
Commercial facilities land (m2) | 17,635 | 7810 | 10,736 | 20,405 | 10,950 | 11,914 | 31,938 | 11,282 | 13,067 | 6388 | 7436 | 14,571 | 24,132 | |
Dense residential land (m2) | 5531 | 1619 | 5025 | 3073 | 2458 | 265 | 4379 | 4163 | 2633 | 1325 | 3540 | 933 | 11,780 | |
Mountain forest land (m2) | 109,634 | 205,136 | 419,545 | 196,341 | 56,359 | 652,836 | 2,742,099 | 66,609 | 216,845 | 676,535 | 272,460 | 2,120,660 | 628,045 | |
Industrial land (m2) | 6192 | 3303 | 7430 | 8553 | 5245 | 18,729 | 34,147 | 7846 | 5047 | 5513 | 3327 | 12,189 | 15,315 | |
Rice field (m2) | 4655 | 3102 | 11,091 | 5342 | 3631 | 10,420 | 248,038 | 5034 | 3573 | 14,977 | 3650 | 107,506 | 46,223 | |
Farm land (m2) | 3541 | 1619 | 7553 | 2688 | 3490 | 3963 | 175,850 | 4020 | 3076 | 9034 | 2929 | 73,126 | 35,252 | |
Vacant land (m2) | 7493 | 3565 | 9145 | 11,319 | 7761 | 7413 | 60,975 | 6932 | 12,634 | 6345 | 9059 | 23,757 | 23,063 | |
developing land (m2) | 275 | 745 | 3244 | 283 | 64 | 5920 | 3203 | 1890 | 355 | 1699 | 2028 | 5318 | 2704 |
References
- Japan National Institute of Population and Social Security Research. Population and Social Security in Japan 2019. In IPSS Research Report; Japan National Institute of Population and Social Security Research: Tokyo, Japan, 2019; p. 85. [Google Scholar]
- Kato, H.; Kanki, K. Development of walkability indicator for visualising smart shrinking—A case study of sprawl areas in North Osaka Metropolitan Region. Int. Rev. Spat. Plan. Sustain. Dev. 2020, 8, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Cerin, E.; Saelens, B.E.; Sallis, J.F.; Frank, L.D. Neighborhood environment walkability scale: Validity and development of a short form. Med. Sci. Sports Exerc. 2006, 38, 1682–1691. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Murase, N.; Shimomitsu, T.; Ohya, Y.; Odagiri, Y.; Takamiya, T.; Ishii, K.; Katsumura, T.; Sallis, J.F. Association of physical activity and neighborhood environment among Japanese adults. Prev. Med. 2009, 48, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Kato, H. Effect of Walkability on Urban Sustainability in the Osaka Metropolitan Fringe Area. Sustainability 2020, 12, 9248. [Google Scholar] [CrossRef]
- Japanese MILT (Ministry of Land, Infrastructure, Transport and Tourism). Basic Plan on Transport Policy. Available online: https://www.mlit.go.jp/common/001096409.pdf (accessed on 15 September 2020).
- Kato, H. Development of a Spatio-temporal Analysis Method to Support the Prevention of COVID-19 Infection: Space-Time Kernel Density Estimation Using GPS Location History Data. In Urban Informatics for Future Cities; Geertman, S., Pettit, C., Goodspeed, R., Staffans, A., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 51–67. ISBN 978-3-030-76058-8. [Google Scholar] [CrossRef]
- Kato, H.; Matsushita, D. Changes in Walkable Streets during the COVID-19 Pandemic in a Suburban City in the Osaka Metropolitan Area. Sustainability 2021, 13, 7442. [Google Scholar] [CrossRef]
- Kato, H.; Takizawa, A.; Matsushita, D. Impact of COVID-19 Pandemic on Home Range in a Suburban City in the Osaka Metropolitan Area. Sustainability 2021, 13, 8974. [Google Scholar] [CrossRef]
- Kato, H. How Does the Location of Urban Facilities Affect the Forecasted Population Change in the Osaka Metropolitan Fringe Area? Sustainability 2021, 13, 110. [Google Scholar] [CrossRef]
- OECD Stat. Metropolitan Areas (Database). Available online: https://stats.oecd.org/Index.aspx?DataSetCode=CITIES (accessed on 16 September 2021).
- Japanese Law Translation. Local Autonomy Act. Available online: http://www.japaneselawtranslation.go.jp/law/detail/?id=281&vm=&re=01 (accessed on 26 July 2021).
- Renne, J.L.; Tolford, T.; Hamidi, S.; Ewing, R. The Cost and Affordability Paradox of Transit-Oriented Development: A Comparison of Housing and Transportation Costs across Transit-Oriented Development, Hybrid and Transit-Adjacent Development Station Typologies. Hous. Policy Debate 2016, 26, 819–834. [Google Scholar] [CrossRef]
- Xia, Z.L.; Li, H.; Chen, Y.H. Assessing Neighborhood Walkability Based on Usage Characteristics of Amenities under Chinese Metropolises Context. Sustainability 2018, 10, 3879. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tan, P.Y.; Zeng, H.; Zhang, Y. Walkability Assessment in a Rapidly Urbanizing City and Its Relationship with Residential Estate Value. Sustainability 2019, 11, 2205. [Google Scholar] [CrossRef] [Green Version]
- Boyle, A.; Barrilleaux, C.; Scheller, D. Does Walkability Influence Housing Prices? Soc. Sci. Q. 2014, 95, 852–867. [Google Scholar] [CrossRef]
- Li, W.; Joh, K.; Lee, C.; Kim, J.H.; Park, H.; Woo, A. Assessing Benefits of Neighborhood Walkability to Single-Family Property Values: A Spatial Hedonic Study in Austin, Texas. J. Plan. Educ. Res. 2015, 35, 471–488. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, H. Neighborhood Walkability and Housing Prices: A Correlation Study. Sustainability 2020, 12, 593. [Google Scholar] [CrossRef] [Green Version]
- Saita, Y.; Shimizu, C.; Watanabe, T. Aging and real estate prices: Evidence from Japanese and US regional data. Int. J. Hous. Mark. Anal. 2016, 9, 66–87. [Google Scholar] [CrossRef]
- Maennig, W.; Dust, L. Shrinking and growing metropolitan areas asymmetric real estate price reactions? The case of German single-family houses. Reg. Sci. Urban Econ. 2008, 38, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.; LeFaivre, M. A class analysis of gentrification. In Gentrification, Displacement, and Neighborhood Revitalization; Palen, J., London, B., Eds.; State University of New York Press: Albany, NY, USA, 1984; pp. 43–63. [Google Scholar]
- Kato, H. Residents’ evaluations of the tourism gentrification caused by guesthouses in the central area of Kyoto City: A case study of Shutoku District in Kyoto City. IOP Conf. Ser. Mater. Sci. Eng. 2020, 960, 032063. [Google Scholar] [CrossRef]
- Paul, K.; Steven, P. Difference and inequality: Socioeconomic and sociocultural patterns. In Urban Social Geography—An Introduction, 6th ed.; Prentice Hall: Harlow, UK, 2010; pp. 67–83. [Google Scholar]
- Brownson, R.C.; Hoehner, C.M.; Day, K.; Forsyth, A.; Sallis, J.F. Measuring the built environment for physical activity, state of the science. Am. J. Prev. Med. 2009, 36, 99–123. [Google Scholar] [CrossRef] [Green Version]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J.; Gortmaker, S.L. Validation of Walk Score® for estimating neighborhood walkability: An analysis of four US metropolitan areas. Int. J. Environ. Res. Public Health 2011, 8, 4160–4179. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the neighborhood quality of life study. Br. J. Sports Med. 2009, 44, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Cerin, E.; Leslie, E.; duToit, L.; Coffee, N.; Frank, L.D.; Bauman, A.E.; Hugo, G.; Sealens, B.E.; Sallis, J.F. Neighborhood walkability and the walking behavior of Australian adults. Am. J. Prev. Med. 2007, 33, 387–395. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Sugiyama, T.; Hanibuchi, T.; Shibata, A.; Ishii, K.; Liao, Y.; Oka, K. Validity of Walk Score® as a measure of neighborhood walkability in Japan. Prev. Med. Rep. 2018, 9, 114–117. [Google Scholar] [CrossRef] [PubMed]
- E-Stat. Japanese Census Data in 2015. Available online: https://www.e-stat.go.jp/ (accessed on 14 June 2020). (In Japanese)
- Conservation GIS-Consortium Japan. GIS Data. Available online: http://cgisj.jp/download_type_list.php (accessed on 14 April 2020). (In Japanese).
- Geospatial Information Authority of Japan. The Numerical Map 5000 in Japan. Available online: https://www.gsi.go.jp/kankyochiri/lum-5k.html (accessed on 1 April 2020). (In Japanese)
- At Home Co., Ltd. At Home Dataset. Informatics Research Data Repository, National Institute of Informatics (Dataset). 2020. Available online: https://dsc.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=4333&item_no=1&page_id=13&block_id=21 (accessed on 3 October 2021). [CrossRef]
- G-Spatial Information Center, Japanese MILT (Ministry of Land, Infrastructure, Transport and Tourism). Future Population and Household Forecast Tool V. 2 (2015 National Census Edition Download Webpage). Available online: https://www.geospatial.jp/ckan/dataset/cohort-v2 (accessed on 14 March 2020).
- Pivo, G.; Fisher, J.D. The Walkability Premium in Commercial Real Estate Investments. Real Estate Econ. 2011, 39, 185–219. [Google Scholar] [CrossRef]
- Lucchesi, S.T.; Larranaga, A.M.; Cybis, H.B.B.; Silva, J.; Arellana, J.A. Are people willing to pay more to live in a walking environment? A multigroup analysis of the impact of walkability on real estate values and their moderation effects in two Global South cities. Res. Transp. Econ. 2021, 86, 14. [Google Scholar] [CrossRef]
- Kemeny, J. From Public Housing to the Social Market. In Rental Policy Strategies in Comparative Perspective; Routledge: London, UK, 1995; ISBN 0-415-08365-6. [Google Scholar]
- Balletto, G.; Ladu, M.; Milesi, A.; Borruso, G. A Methodological Approach on Disused Public Properties in the 15-Minute City Perspective. Sustainability 2021, 13, 593. [Google Scholar] [CrossRef]
- Osaka City. Midosuji Future Vision (Summary Version). Available online: https://www.city.osaka.lg.jp/kensetsu/cmsfiles/contents/0000464/464479/gaiyou.pdf (accessed on 31 July 2021). (In Japanese).
- Kyoto City. Kyoto City Urban Planning Master Plan (Draft). Available online: https://www.city.kyoto.lg.jp/templates/pubcomment/cmsfiles/contents/0000285/285150/toshimasu_soan.pdf (accessed on 31 July 2021). (In Japanese).
- Ministry of Land, Infrastructure, Transport and Tourism of Japan. National Land Information Download Service. Available online: http://nlftp.mlit.go.jp/ksj/index.html (accessed on 14 March 2020).
GFI | AGFI | RMSEA | |
---|---|---|---|
Inner City Cluster | 0.931 | 0.844 | 0.128 |
Business Center Cluster | 0.966 | 0.924 | 0.094 |
Mining Industry Cluster | 0.841 | 0.641 | 0.188 |
Dense Cluster | 0.848 | 0.657 | 0.186 |
Public Housing Cluster | 0.909 | 0.796 | 0.145 |
Non-Residential Cluster | 0.905 | 0.787 | 0.155 |
Agriculture Cluster | 0.603 | 0.107 | 0.337 |
Sprawl Cluster | 0.961 | 0.912 | 0.092 |
High-Rise Residential Cluster | 0.788 | 0.522 | 0.239 |
Mountain Cluster | 0.941 | 0.867 | 0.117 |
Old NT Cluster | 0.870 | 0.707 | 0.176 |
Suburban Agriculture Cluster | 0.689 | 0.301 | 0.286 |
Rural Cluster | 0.764 | 0.470 | 0.233 |
WI Has Positive Impacts on the Real Estate Price. | Real Estate Price Has Positive Impacts on FPCR2040. | WI Positively Impacts on FPCR2040. | |
---|---|---|---|
Business Center Cluster | Apartments for sale (P.C. = 1.88) Stores for rent (P.C. = 0.44). | Detached houses for rent (P.C. = 0.06) Detached houses for rent (P.C. = 10.92) Apartments for sale (P.C. = 0.25) Apartments for rent (P.C. = 48.39) Vacant lots for sale (P.C. = 0.07). | Apartments for sale |
Sprawl Cluster | Detached houses for rent (P.C. = 1.25) Detached houses for rent (P.C. = 0.00) Apartments for sale (P.C. = 4.01) Apartments for rent (P.C. = 0.02) Stores for rent (P.C. = 0.75). Vacant lots for sale (P.C. = 0.66). | Apartments for sale (P.C. = 0.08) | Apartments for sale |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, H.; Takizawa, A. Which Residential Clusters of Walkability Affect Future Population from the Perspective of Real Estate Prices in the Osaka Metropolitan Area? Sustainability 2021, 13, 13413. https://doi.org/10.3390/su132313413
Kato H, Takizawa A. Which Residential Clusters of Walkability Affect Future Population from the Perspective of Real Estate Prices in the Osaka Metropolitan Area? Sustainability. 2021; 13(23):13413. https://doi.org/10.3390/su132313413
Chicago/Turabian StyleKato, Haruka, and Atsushi Takizawa. 2021. "Which Residential Clusters of Walkability Affect Future Population from the Perspective of Real Estate Prices in the Osaka Metropolitan Area?" Sustainability 13, no. 23: 13413. https://doi.org/10.3390/su132313413
APA StyleKato, H., & Takizawa, A. (2021). Which Residential Clusters of Walkability Affect Future Population from the Perspective of Real Estate Prices in the Osaka Metropolitan Area? Sustainability, 13(23), 13413. https://doi.org/10.3390/su132313413