Efficiency of Different Moringa oleifera (Lam.) Varieties as Natural Coagulants for Urban Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Wastewater Sampling
2.2. Wastewater Sampling
2.3. Seed Processing, Wastewater Treatment, and Analyses
2.4. Statistical Analyses
3. Results and Discussion
3.1. Urban Wastewater Treatment
3.1.1. pH Change
3.1.2. EC Change
3.1.3. COD and BOD5 Removal
3.1.4. Influence of the Treatments on TSS Contents
3.1.5. Removal of Ion-Forming Salts
3.1.6. Influence of Treatment on TKN Concentration
3.1.7. Metallic Trace Element (MTE) Removal
3.2. Clustering of Moringa oleifera Varieties
- The first group was represented by the negative aspects of PCA1 and PCA2. It constituted the RUW that had been treated with the Mornag variety at 50, 100, and 150 mg·L−1. This treatment exhibited the lowest EC removal efficiencies (2.2–3.3%) and the highest amount of COD removal (75.9–86.2%);
- The second, with the positive aspects of PCA1, included the RUW that had been treated with the Egyptian variety at different doses. These treatments corresponded with the best treatment of BOD5 (56.4–62.5%), EC (20.2–22.0%), TSS (21.7–69.6%), Ca (33.3–46.7%), Na (4.8–8.3%), Cl (25.0%), SO4 (46.9–54.9%), Cd (100%), and Fe (30.5–65.2%);
- The third group, with the negative aspects of PCA1 and the positive aspects of PCA2, included the RUW that had been treated with the Indian variety at different added concentrations. It was characterized by the lowest removal efficiencies for BOD5 (40.6–46.8%), and the highest for K (23.4–24.6%), Pb (2.2–24.5%), Zn (0.6–22.7%), and Ni (2.2–24.4%).
- The first group had the positive aspects of PCA1 and PCA2. It contained the TUW that had been treated with the Mornag variety at different added concentrations. These treatments resulted in the highest amount of COD removal (75.9–86.2%), and a chloride removal efficiency of 18.2% and the lowest removal efficiency for EC (3.9–5.2%);
- The second group, with the positive aspects of PCA1 and the negative aspects of PCA2, was formed by the TUW that was treated with the Egyptian variety at doses of 50 and 100 mg·L−1. These treatments resulted in the highest removal efficiency for SO4 (70.0–71.6%);
- The third group, with the negative aspects of PCA1 and PCA2, included the TUW that was treated with the Egyptian variety at 150 mg·L−1, which had the highest removal efficiency for BOD5 (86.6%), EC (29.7%), Cl (45.5%), Mg (18.2%), Na (23.7%), and Cd (100%);
- The fourth group, with the negative aspects of PCA1 and the positive aspects of PCA2, was represented by the TUW that had been treated with the Indian variety for all added concentrations. These treatments displayed the highest Fe removal efficiency (45.2–58.1%).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations World Water Assessment Programme. The United Nations World Water Development Report: Water and Jobs; UNESCO: Paris, France, 2016. [Google Scholar]
- United Nations World Water Assessment Programme. The United Nations World Water Development Report: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018. [Google Scholar]
- United Nations World Water Assessment Programme. The United Nations World Water Development Report: Wastewater: The Untapped Resource; UNESCO: Paris, France, 2017. [Google Scholar]
- Jobin, L.; Namour, P. Bioremediation in Water Environment: Controlled Electro-Stimulation of Organic Matter Self-Purification in Aquatic Environments. Adv. Microbiol. 2017, 7, 813–852. [Google Scholar] [CrossRef] [Green Version]
- Ince, M.; Kaplan Ince, O. Heavy Metal Removal Techniques Using Response Surface Methodology: Water/Wastewater Treatment. In Biochemical Toxicology—Heavy Metals and Nanomaterials; Ince, M., Kaplan Ince, O., Ondrasek, G., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Mamais, D.; Noutsopoulos, C.; Dimopoulou, A.; Stasinakis, A.; Lekkas, T.D. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci. Technol. 2015, 71, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour. Efficient Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, M. Lessons from rhizosphere and gastrointestinal ecosystems for inventive design of sustainable wastes recycling bioreactors. Biochem. Eng. J. 2016, 105, 62–70. [Google Scholar] [CrossRef]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor-Basulto, D.L.; Astudillo-Sánchez, P.D.; del Real-Olvera, J.; Bandala, E.R. Wastewater treatment using Moringa oleifera Lam seeds: A review. J. Water Process Eng. 2018, 23, 151–164. [Google Scholar] [CrossRef]
- Vogelmann, E.S.; Awe, G.O.; Prevedello, J. Selection of plant species used in wastewater treatment. In Wastewater Treatment and Reuse for Metropolitan Regions and Small Cities in Developing Countries; de Lima, E.S., Ed.; Cuvillier: Recife, Brazil, 2016; pp. 9–18. [Google Scholar]
- Marzougui, N.; Hammami, A.; Guasmi, F.; Rejeb, S. Effects of temperature and treated urban wastewater on seed germination and seedling growth in different populations of Moringa oleifera (Lam.). Indian J. Exp. Biol. 2021, 59, 349–356. [Google Scholar]
- Goja, A.M.; Osman, M.S. Preliminary study on efficacy of leaves, seeds and bark extracts of Moringa oleifera in reducing bacterial load in water. Int. J. Adv. Res. 2013, 1, 124–130. [Google Scholar]
- Shan, T.C.; Al Matar, M.; Makky, E.A.; Ali, E.N. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Appl. Water Sci. 2017, 7, 1369–1376. [Google Scholar] [CrossRef]
- ONAS (National Sanitation Utility, Tunisia). Annual Operating Report for Wastewater Treatment Plants; Ministry of the Environment and Sustainable Development: Tunis, Tunisia, 2019. (In French)
- Rajeswari, M.; Agrawal, P.; Pavithra, S.; Priya Sandhya, G.R.; Pavithra, G.M. Continuous biosorption of cadmium by Moringa oleifera in a packed column. Biotechnol. Bioprocess Eng. 2013, 18, 321–325. [Google Scholar] [CrossRef]
- Mangale Sapana, M.; Chonde, S.G.; Raut, P.D. Use of Moringa oleifera (Drumstick) seed as natural absorbent and an antimicrobial agent for ground water treatment. Res. J. Recent Sci. 2012, 1, 31–40. [Google Scholar]
- INNORPI (National Institute for Standardization and Industrial Property, Tunisia). Environmental Protection—Effluent Discharge into the Water Environment; Tunisian Standard NT 106.02; Ministry of Industry, Energy and Mines: Tunis, Tunisia, 1989. (In French)
- INNORPI (National Institute for Standardization and Industrial Property, Tunisia). Environmental Protection—Use of Treated Wastewater for Agricultural Purposes—Physico-Chemical and Biological Specifications; Tunisian Standard NT 106.03; Ministry of Industry, Energy and Mines: Tunis, Tunisia, 1989. (In French)
- Baird, R.B.; Eaten, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; pp. 587–589. [Google Scholar]
- Rodier, J.; Legube, B.; Merlet, N. L’analyse de L’eau: Contrôle et Interprétation, 10th ed.; Dunod: Paris, France, 2016; pp. 69–73. [Google Scholar]
- Belcher, R.; Macdonald, A.M.G.; Parry, E. On Mohr’s method for the determination of chlorides. Anal. Chim. Acta 1957, 16, 524–529. [Google Scholar] [CrossRef]
- Rodier, J.; Legube, B.; Merlet, N. L’analyse de L’eau: Contrôle et Interprétation, 10th ed.; Dunod: Paris, France, 2016; pp. 162–185. [Google Scholar]
- Ringbom, A.; Pensar, G.; Wänninen, E. A complexometric titration method for determining calcium in the presence of magnesium. Anal. Chim. Acta 1958, 19, 525–531. [Google Scholar] [CrossRef]
- Rodier, J.; Legube, B.; Merlet, N. L’analyse de L’eau: Contrôle et Interprétation, 9th ed.; Dunod: Paris, France, 2009; pp. 995–996. [Google Scholar]
- Sleimi, N.; Kouki, R.; Hadj Ammar, M.; Ferreira, R.; Perez-Clemente, R. Barium effect on germination, plant growth, and antioxidant enzymes in Cucumis sativus L. plants. Food Sci. Nutr. 2021, 9, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- Nhut, H.T.; Hung, N.T.Q.; Lap, B.Q.; Han, L.T.N.; Tri, T.Q.; Bang, N.H.K.; Hiep, N.T.; Ky, N.M. Use of Moringa oleifera seeds powder as bio-coagulants for the surface water treatment. Int. J. Environ. Sci. Technol. 2020, 18, 2173–2180. [Google Scholar] [CrossRef]
- Sahu, O.P.; Chaudhari, P.K. Review on chemical treatment of industrial waste water. J. Appl. Sci. Environ. Manag. 2013, 17, 241–257. [Google Scholar] [CrossRef]
- Hendrawati; Yuliastri, I.R.; Nurhasni; Rohaeti, E.; Effendi, H.; Darusman, L.K. The use of Moringa oleifera seed powder as coagulant to improve the quality of wastewater and ground water. In IOP Conference Series: Earth and Environmental Science; In Proceedings of the Workshop and International Seminar on Science of Complex Natural Systems, Bogor, Indonesia, 9–10 October 2015; IOP Publishing: Philadelphia, PA, USA, 2016; Volume 31, p. 01203. [Google Scholar] [CrossRef]
- Naceradska, N.; Pivokonska, L.; Pivokonsky, M. On the importance of pH value in coagulation. J. Water Supply Res. T. 2019, 68, 222–230. [Google Scholar] [CrossRef]
- Amagloh, F.K.; Benang, A. Effectiveness of Moringa oleifera seed as coagulant for water purification. Afr. J. Agric. Res. 2009, 4, 119–123. [Google Scholar]
- Abdulsalam, S.; Gital, A.A.; Misau, I.M.; Suleiman, M.S. Water clarification using Moringa oleifera seed coagulant: Maiduguri raw water as a case study. J. Food Agric. Environ. 2007, 5, 302–306. [Google Scholar] [CrossRef]
- Belghyti, D.; El Guamri, Y.; Ztit, G.; Ouahidi, M.L.; Joti, B.; Harchrass, A.; Amghar, H.; Bouchouata, O.; El Kharrim, K.; Bounouira, H. Caractérisation physico-chimique des eaux usées d’abattoir en vue de la mise en œuvre d’un traitement adéquat: Cas de Kénitra au Maroc. Afr. Sci. Rev. Int. Sci. Technol. 2009, 5, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Adewole, S.T.; Kuku, A.; Okoya, A. Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon 2020, 6, e03335. [Google Scholar] [CrossRef] [Green Version]
- Nonfodji, O.M.; Fatombi, J.K.; Ahoyo, T.A.; Osseni, S.A.; Aminou, T. Performance of Moringa oleifera seeds protein and Moringa oleifera seeds protein-polyaluminum chloride composite coagulant in removing organic matter and antibiotic resistant bacteria from hospital wastewater. J. Water Process Eng. 2020, 33, 101103. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Kumar, V.; Othman, N.; Asharuddin, S. Applications of Natural Coagulants to Treat Wastewater—A Review. MATEC Web Conf. 2017, 103, 06016. [Google Scholar] [CrossRef] [Green Version]
- Adeniran, K.A.; Akpenpuun, T.D.; Akinyemi, B.A.; Wasiu, R.A. Effectiveness of Moringa oleifera seed as a coagulant in domestic wastewater treatment. African J. Sci. Technol. Innov. Dev. 2017, 9, 323–328. [Google Scholar] [CrossRef]
- Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment, 3rd ed.; IWA Publishing: London, UK, 2016; pp. 152–158. [Google Scholar]
- Vega Andrade, P.; Ferreira Palanca, C.; Alcion’eia Carvalho de Oliveira, M.; Ito, C.Y.K.; Gonçalves dos Reis, A. Use of Moringa oleifera seed as a natural coagulant in domestic wastewater tertiary treatment: Physicochemical, cytotoxicity and bacterial load evaluation. J. Water Process Eng. 2021, 40, 101859. [Google Scholar] [CrossRef]
- Aissaoui, M.; Benhamza, M.; Guettaf, M. Caractéristiques hydro-chimiques des eaux de l’oued Seybouse-Cas de la région de Guelma (Nord-est Algérien) (Hydro-chemical characteristics of the Seybouse river —Case study of the Guelma region (Northeast of Algeria)). Rev. Sci. Technol. Synthèse 2017, 35, 178–186. [Google Scholar]
- Formentini-Schmitt, D.M.; Alves, Á.C.D.; Veit, M.T.; Bergamasco, R.; Vieira, A.M.S.; Fagundes-Klen, M.R. Ultrafiltration combined with Coagulation/Flocculation/Sedimentation using Moringa oleifera as coagulant to treat dairy industry wastewater. Water Air Soil Pollut. 2013, 224, 1682. [Google Scholar] [CrossRef]
- Hidayat, N.; Suhartini, S.; Rosalina, E. Influence of powdered Moringa oleifera seeds and natural filter media on the characteristics of tapioca starch wastewater. Int. J. Recycl. Org. Waste Agric. 2013, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Garde, W.K.; Buchberger, S.G.; Wendell, D.; Kupferle, M.J. Application of Moringa oleifera seed extract to treat coffee fermentation wastewater. J. Hazard. Mater. 2017, 329, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, S.; Othman, Z.; Ahmad, A.L. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant. J. Hazard. Mater. 2007, 145, 120–126. [Google Scholar] [CrossRef]
- Bhatia, S.; Othman, Z.; Ahmad, A.L. Coagulation–flocculation process for POME treatment using Moringa oleifera seeds extract: Optimization studies. Optim. Stud. Chem. Eng. J. 2007, 133, 205–212. [Google Scholar] [CrossRef]
- Chee, V.L.; Chong, C.H.; Choo, C.M.; Chong, T.S.Y. Combined natural and chemical coagulants to remove fluoride from wastewater. In IOP Conference Series: Materials Science and Engineering; In Proceedings of the 26th Regional Symposium on Chemical Engineering (RSCE 2019), Kuala Lumpur, Malaysia, 30–31 October 2019; IOP Publishing: Philadelphia, PA, USA, 2020. [Google Scholar] [CrossRef]
- Madhavan, S.A.K.S.; Karpagam, S. Natural coagulants: An easy way to remove heavy metals from tannery effluents. J. Ind. Pollut.Control 2019, 35, 2266–2270. [Google Scholar]
- Ndabigengesere, A.; Narasiah, K.S. Use of Moringa oleifera seeds as a primary coagulant in wastewater treatment. Environ. Technol. 1998, 19, 789–800. [Google Scholar] [CrossRef]
- Mendieta-Araica, B.; Spörndly, E.; Reyes-Sánchez, N.; Salmerón-Miranda, F.; Halling, M. Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization. Agroforest. Syst. 2012, 87, 81–92. [Google Scholar] [CrossRef]
- Slinning Aarø, S. A review of selected natural coagulants in water and wastewater treatment. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, June 2020. [Google Scholar]
- Byrnes, B.H. Environmental effects of N fertilizer use—An overview. Fertil. Res. 1990, 26, 209–215. [Google Scholar] [CrossRef]
- Eman, N.A.; Tan, C.S.; Makky, E.A. Impact of Moringa oleifera cake residue application on wastewater treatment: A case study. J. Water Resource Prot. 2014, 6, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Mehdinejad, M.H.; Bina, B. Application of Moringa oleifera coagulant protein as natural coagulant aid with alum for removal of heavy metals from raw water. Desalin. Water Treat. 2018, 116, 187–194. [Google Scholar] [CrossRef]
- Ndabigengesere, A.; Narasiah, K.S.; Talbot, B.G. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 1995, 29, 703–710. [Google Scholar] [CrossRef]
- Ravikumar, K.; Sheeja, A.K. Heavy metal removal from water using Moringa oleifera seed coagulant and double filtration. Int. J. Sci. Eng. Res. 2013, 4, 10–13. [Google Scholar]
Variety | Mornag | Egyptian | Indian | |
---|---|---|---|---|
Parameter | ||||
Seed color | Dark brown | Light brown | Dark brown | |
Wing color | White | Light brown | Light brown | |
100 seeds weight (g) | 33.68 ± 0.2 | 31.12 ± 0.1 | 38.25 ± 0.3 | |
Seed length (mm) | 1.05 ± 0.1 | 0.92 ± 0.2 | 1.29 ± 0.1 | |
Seed diameter (mm) | 1.01 ± 0.2 | 0.89 ± 0.1 | 1.06 ± 0.1 | |
Wing length (cm) | 3.23 ± 0.1 | 2.98 ± 0.1 | 3.64 ± 0.2 | |
Seed-wing diameter (cm) | 1.95 ± 0.1 | 1.58 ± 0.09 | 2.02 ± 0.08 |
Parameter | Method of Analysis | Unit | Source |
---|---|---|---|
Conductivity (EC) | WTW LF330 conductometer (Germany) | (mS·cm−1) | |
Mean hydrogen ion concentration (pH) | Adwa 1000 pH meter (Romania) | - | |
Chemical oxygen demand (COD) | Method by oxidation with KMnO4 | (mg O2·L−1) | [20] |
Five-day biochemical oxygen demand (BOD5) | Instrumental method | (mg O2·L−1) | [20] |
Total suspended solids (TSS) | Filtration on filter paper | [21] | |
Chloride (Cl) | Mohr method | (mg·L−1) | [22] |
Sodium (Na), potassium (K) | Spectrometric method with flame photometer Jenway PFP7 (U.K.) | (mg·L−1) | [23] |
Calcium (Ca), magnesium (Mg) | Complexometric EDTA (Chem-Lab) titration with basic medium | (mg·L−1) | [24] |
Sulfate (SO4) | Manual spectrometric method | (mg·L−1) | [23] |
Bicarbonate (HCO3) | Volumetric titration | (mg·L−1) | [23] |
Total Kjeldahl nitrogen (TKN) | Manual spectrometric method | (mg·L−1) | [25] |
Metal trace elements (MTE): cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn), iron (Fe) | Atomic absorption spectroscopy with PerkinElmer PinAAcle 900 T, USA. | (mg·L−1) | [26] |
Before Treatment | Mornag Variety | Egyptian Variety | Indian Variety | NT 106.03 [19] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Quality | Parameter | 50 mg·L−1 | 100 mg·L−1 | 150 mg·L−1 | 50 mg·L−1 | 100 mg·L−1 | 150 mg·L−1 | 50 mg·L−1 | 100 mg·L−1 | 150 mg·L−1 | ||
Raw urban wastewater | EC (mS·cm−1) | 277± 0.38 a | 271 ± 0.15 a | 270 ± 0.18 a | 268 ± 0.25 a | 221 ± 0.02 a | 217 ± 0.39 a | 216 ± 0.02 a | 223 ± 0.19 a | 213 ± 0.01 a | 222 ± 0.3 a | 700 |
pH | 7.2 ± 0.25 b | 7.5 ± 0.01 a | 7.6 ± 0.09 a, b | 7.6 ± 0.28 a | 7.7 ± 0.5 a | 7.4 ± 0.37 a, b | 7.4 ± 0.29 a | 7.3 ± 0.01 a | 7.3 ± 0.07 a, b | 7.4 ± 0.01 a | 6.5–8.5 | |
COD (mgO2·L−1) | 556.8 ± 32.97 d | 134.4 ± 2.29 c | 124.8 ± 2.2 b | 76.8 ± 3.25 a | 268.8 ± 4.8 c | 172.8 ± 1 b | 144 ± 1 a | 307.2 ± 3.6 c | 249.6 ± 2.43 b | 115.2 ± 23 a | 90 | |
BOD5 (mgO2·L−1) | 32 ± 1.53 c | 16 ± 1 b | 14 ± 0.76 a | 13 ± 0.5 a | 14 ± 0.76 b | 13 ± 0.52 a | 12 ± 0.25 a | 19 ± 2.65 b | 17 ± 1.53 a | 17 ± 2 a | 30 | |
TSS (mg·L−1) | 1150 ± 125 c | 850 ± 333 b | 796 ± 61 b | 759 ± 50.54 a | 900 ± 97.4 b | 447 ± 28.36 b | 350 ± 25.24 a | 900 ± 15.6 b | 569 ± 48.2 b | 452 ± 75.6 a | 30 | |
Cl (mg·L−1) | 11.2 ± 0.41 c | 12.69 ± 0.16 a, b | 15.5 ± 0.05 a, b | 16.9 ± 0.25 a | 8.46 ± 0.02 a, b | 8.46 ± 0.29 a, b | 8.46 ± 0.13 a | 9.87 ± 0.09 a, b | 12.7 ± 0.16 a, b | 12.7 ± 0.12 a | 2000 | |
HCO3 (mg·L−1) | 3.5 ± 0.6 c | 4.5 ± 0.25 a | 4 ± 1 b | 3 ± 0.76 b | 12.5 ± 0.26 a | 10 ± 1 b | 14 ± 0.5 b | 5 ± 1 a | 5 ± 0.57 b | 5 ± 1.52 b | - | |
SO4 (mg·L−1) | 10.43 ± 0.59 c | 10.54 ± 0.25 a | 10.1 ± 0.3 b | 11.36 ± 0.33 b | 5.53 ± 0.25 a | 4.75 ± 0.25 b | 4.7 ± 0.1 b | 10.5 ± 0.26 a | 10.15 ± 0.207 b | 10.11 ± 0.13 b | - | |
Ca (mg·L−1) | 7.5 ± 0.25 c | 7.5 ± 0.76 a | 6 ± 0.76 a | 11 ± 0.25 b | 4 ± 0.25 a | 5 ± 0.66 a | 5 ± 0.58 b | 4.5 ± 0.17 a | 4.5 ± 0.25 a | 4.5 ± 0.29 b | - | |
Mg (mg·L−1) | 9.5 ± 0.5 b | 9 ± 0.29 c | 7.5 ± 2 b | 5 ± 0.47 a | 8.5 ± 0.14 c | 7.5 ± 0.29 b | 7 ± 0.29 a | 9.5 ± 1.04 c | 9.5 ± 1.06 b | 9 ± 1.37 a | - | |
K (mg·L−1) | 1.09 ± 0.005 b | 1.01 ± 0.01 a | 1.05 ± 0.02 a | 0.99 ± 0.5 b | 1.06 ± 0.01 a | 1.08 ± 0.02 a | 0.86 ± 0.01 b | 0.84 ± 0.01 a | 0.82 ± 0.01 a | 0.84 ± 0.03 b | - | |
Na (mg·L−1) | 8.94 ± 0.53 a | 12.5 ± 0.27 b | 13.57 ± 0.26 c | 13.25 ± 0.38 b | 8.2 ± 0.06 b | 8.41 ± 0.24 c | 8.51 ± 0.27 b | 10.36 ± 0.27 b | 10.51 ± 0.04 c | 10.2 ± 0.2 b | - | |
TKN (mg·L−1) | 141.60 ± 1.03 d | 145.67 ± 0.18 c | 147.31 ± 0.25 b | 152.88 ± 0.54 a | 154.67 ± 0.03 c | 150.31 ± 0.1 b | 162.9 ± 0.19 a | 158.8 ± 0.11 c | 169.71 ± 0.3 b | 161 ± 0.2 a | - | |
Cd (mg·L−1) | 0.006 ± 0.001 a | 0.017 ± 0.001 a | 0.015 ± 0.004 a | 0.014 ± 0.003 a | 0.028 ± 0.003 a | 0.025 ± 0.04 a | 0 ± 0.005 a | 0.029 ± 0.01 a | 0.032 ± 0.002 a | 0.028 ± 0 a | 0.01 | |
Zn (mg·L−1) | 0.181 ± 0.01 a | 0.3 ± 0.11 c | 0.18 ± 0.01 b | 14.44 ± 0.06 d | 1.66 ± 0.53 c | 2.12 ± 0.07 b | 0.54 ± 0.01 d | 0.3 ± 0.06 c | 0.18 ± 0.01 b | 0.14 ± 0.06 d | 1 | |
Fe (mg·L−1) | 1.546 ± 0.038 a | 0.862 ± 0.017 b | 0.658 ± 0.024 c | 0.703 ± 0.005 b | 1.074 ± 0.003 b | 1.006 ± 0.009 c | 0.538 ± 0.013 b | 0.603 ± 0.03 b | 0.756 ± 0.002 c | 0.549 ± 0 b | 5 | |
Pb (mg·L−1) | 0.045 ± 0 a | 0.163 ± 0 a | 0.106 ± 0.05 a | 0.114 ± 0 a | 0.154 ± 0.02 a | 0.177 ± 0.02 a | 0.077 ± 0.01 a | 0.034 ± 0 a | 0.044 ± 0 a | 0.042 ± 0 a | 1 | |
Ni (mg·L−1) | 0.031 ± 0.02 a | 0.098 ± 0.04 a | 0.103 ± 0.021 a | 0.084 ± 0.002 a | 0.14 ± 0.03 a | 0.134 ± 0.01 a | 0.081 ± 0.002 a | 0.05 ± 0.007 a | 0.04 ± 0.005 a | 0.037 ± 0 a | 1 | |
Treated urban wastewater | EC (mS·cm−1) | 229 ± 0.15 a | 220 ± 0.15 a | 219 ± 0.06 a | 217 ± 0.42 a | 190 ± 0.21 a | 189 ± 0.06 a | 161 ± 0.14 a | 210 ± 0.1 a | 214 ± 0.03 a | 207 ± 0.02 a | |
pH | 7.7 ± 0.12 b | 7.4 ± 0.06 a | 7.3 ± 0.11 a, b | 7.19 ± 0.11 a | 7.4 ± 0.22 a | 7.4 ± 0.27 a, b | 7.4 ± 0.23 a | 7.4 ± 0.2 a | 7.4 ± 0.06 a, b | 7.4 ± 0.2 a | ||
COD (mgO2·L−1) | 105.6 ± 0.11 d | 96 ± 0.57 c | 67.2 ± 0.9 b | 38.6 ± 0.35 a | 163.2 ± 0.15 c | 144 ± 0.57 b | 76.8 ± 0.69 a | 105.6 ± 0.3 c | 96 ± 0.57 b | 86.4 ± 0.83 a | ||
BOD5 (mgO2·L−1) | 15 ± 1 c | 7 ± 0.28 b | 6 ± 0.5 a | 5 ± 1 b | 4 ± 1 b | 3 ± 0 a | 2 ± 0.58 b | 7 ± 1 b | 6 ± 0.58 a | 5 ± 0.58 b | ||
TSS (mg·L−1) | 23 ± 5.56 c | 30 ± 1 b | 25 ± 1 b | 18 ± 2.51 a | 21 ± 1 b | 19 ± 0.76 b | 18 ± 0.5 a | 20 ± 0.68 b | 19 ± 1 b | 17 ± 1 a | ||
Cl (mg·L−1) | 15.51 ± 0.02 c | 12.69 ± 0.18 a, b | 12.69 ± 0.05 b | 12.69 ± 0.18 a | 9.87 ± 0.07 a, b | 8.46 ± 0.3 b | 8.46 ± 0.28 a | 12.69 ± 0.78 a, b | 12.69 ± 1.25 b | 12.69 ± 0.39 a | ||
HCO3 (mg·L−1) | 5 ± 0.5 a | 9 ± 0.32 b | 7.5 ± 0.36 b | 8 ± 0.52 b | 9 ± 0.58 b | 10 ± 0.45 b | 7.5 ± 0.25 b | 6 ± 0.57 b | 6 ± 0.63 b | 6 ± 0.5 b | ||
SO4 (mg·L−1) | 7.53 ± 0.029 c | 3.96 ± 0.33 c | 7.08 ± 0.02 b | 5.00 ± 0.89 b | 2.14 ± 0.12 a | 2.26 ± 0.03 b | 3.82 ± 0.042 b | 10.41 ± 0.11 a | 10.76 ± 0.33 b | 10.72 ± 0.12 b | ||
Ca (mg·L−1) | 7.5 ± 0.25 c | 5 ± 1 a | 5 ± 0.25 a | 5 ± 0.27 b | 5.5 ± 0.3 a | 5.5 ± 0.25 a | 5.5 ± 0.29 b | 5 ± 0 a | 5 ± 0.53 a | 5 ± 0.14 b | ||
Mg (mg·L−1) | 5.5 ± 0.2 b | 8 ± 0.36 c | 8 ± 0.52 b | 8 ± 0.28 a | 8 ± 0.5 c | 7 ± 0.38 b | 4.5 ± 0.25 a | 17.5 ± 0.51 c | 11 ± 0.58 b | 10 ± 0.15 a | ||
K (mg·L−1) | 0.78 ± 0.01 b | 0.08 ± 0.01 a | 0.08 ± 0.02 a | 0.86 ± 0.01 b | 0.85 ± 0.03 a | 0.77 ± 0.01 a | 1.77 ± 0.06 b | 0.73 ± 0.08 a | 0.74 ± 0.17 a | 0.80 ± 0.17 b | ||
Na (mg·L−1) | 11.14 ± 0.06 a | 10.21 ± 0.07 b | 10.81 ± 0.14 c | 10.71 ± 0.43 b | 10.01 ± 0.28 b | 9.91 ± 0.07 c | 8.5 ± 0.25 b | 11.26 ± 0.43 b | 10.66 ± 0.34 c | 10.66 ± 0.28 b | ||
TKN (mg·L−1) | 115.46 ± 0.04 d | 110.89 ± 0.39 c | 120.89 ± 0.06 b | 118.89 ± 0.06 a | 121.89 ± 0.06 c | 118.71 ± 0.12 b | 123.07 ± 0.56 a | 121.68 ± 0.38 c | 132.78 ± 0.1 b | 138.68 ± 0.3 a | ||
Cd (mg·L−1) | 0.004 ± 0.001 a | 0.014 ± 0.001 a | 0.005 ± 0.002 a | 0.002 ± 0.001 a | 0.026 ± 0.002 a | 0.021 ± 0.01 a | 0 ± 0.005 a | 0.03 ± 0.005 a | 0.031 ± 0.002 a | 0.032 ± 0 a | ||
Zn (mg·L−1) | 0.205 ± 0 a | 0.16 ± 0.03 c | 0.24 ± 0.03 b | 0.16 ± 0.02 d | 0.84 ± 0.03 c | 0.2 ± 0.06 b | 0.24 ± 0.03 d | 0.3 ± 0.05 c | 0.22 ± 0.01 b | 0.26 ± 0.03 d | ||
Fe (mg·L−1) | 1.18 ± 0.002 a | 0.836 ± 0.002 b | 0.872 ± 0.008 c | 0.757 ± 0.009 b | 1.08 ± 0.03 b | 1.069 ± 0.35 c | 1.048 ± 0.006 b | 0.588 ± 0.03 b | 0.647 ± 0.012 c | 0.495 ± 0.01 b | ||
Pb (mg·L−1) | 0.041 ± 0 a | 0.116 ± 0 a | 0.12 ± 0.07 a | 0.089 ± 0 a | 0.149 ± 0 a | 0.145 ± 0.02 a | 0.066 ± 0.01 a | 0.043 ± 0 a | 0.06 ± 0.02 a | 0.043 ± 0 a | ||
Ni (mg·L−1) | 0.031 ± 0.001 a | 0.095 ± 0.05 a | 0.086 ± 0.002 a | 0.085 ± 0.002 a | 0.14 ± 0.015 a | 0.117 ± 0.002 a | 0.056 ± 0.004 a | 0.069 ± 0.003 a | 0.046 ± 0.002 a | 0.057 ± 0 a |
Factors | Interactions | |||||||
---|---|---|---|---|---|---|---|---|
Parameters | Wastewater Quality | Variety | Coagulant Concentration | Quality × Variety | Quality × Concentration | Variety × Concentration | Quality × Variety × Concentration | |
EC | * | * | NS | NS | NS | NS | NS | |
pH | NS | NS | NS | NS | NS | NS | NS | |
COD | * | * | * | * | * | * | * | |
BOD5 | * | * | * | * | NS | NS | NS | |
TSS | * | * | * | * | * | * | * | |
TKN | * | * | * | * | * | * | * | |
K | * | * | * | * | * | NS | * | |
Na | * | * | NS | * | * | * | * | |
Cl | * | * | NS | * | * | * | * | |
HCO3 | * | * | NS | * | NS | NS | * | |
SO4 | * | * | * | * | * | * | * | |
Ca | * | * | * | * | * | * | * | |
Mg | NS | * | * | * | * | NS | * | |
Cd | - | - | - | - | - | - | - | |
Zn | * | * | * | * | * | * | * | |
Fe | NS | * | * | NS | NS | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzougui, N.; Guasmi, F.; Dhouioui, S.; Bouhlel, M.; Hachicha, M.; Berndtsson, R.; Sleimi, N. Efficiency of Different Moringa oleifera (Lam.) Varieties as Natural Coagulants for Urban Wastewater Treatment. Sustainability 2021, 13, 13500. https://doi.org/10.3390/su132313500
Marzougui N, Guasmi F, Dhouioui S, Bouhlel M, Hachicha M, Berndtsson R, Sleimi N. Efficiency of Different Moringa oleifera (Lam.) Varieties as Natural Coagulants for Urban Wastewater Treatment. Sustainability. 2021; 13(23):13500. https://doi.org/10.3390/su132313500
Chicago/Turabian StyleMarzougui, Nidhal, Ferdaous Guasmi, Sondes Dhouioui, Mohamed Bouhlel, Mohamed Hachicha, Ronny Berndtsson, and Noomene Sleimi. 2021. "Efficiency of Different Moringa oleifera (Lam.) Varieties as Natural Coagulants for Urban Wastewater Treatment" Sustainability 13, no. 23: 13500. https://doi.org/10.3390/su132313500
APA StyleMarzougui, N., Guasmi, F., Dhouioui, S., Bouhlel, M., Hachicha, M., Berndtsson, R., & Sleimi, N. (2021). Efficiency of Different Moringa oleifera (Lam.) Varieties as Natural Coagulants for Urban Wastewater Treatment. Sustainability, 13(23), 13500. https://doi.org/10.3390/su132313500