Greening the Artificial Intelligence for a Sustainable Planet: An Editorial Commentary
- Greening the artificial intelligence for a sustainable planet: an editorial commentary.
- The lived experience of residents in an emerging master-planned community [87].
- Making the Gold Coast a smart city: an analysis [88].
- Leveraging smart and sustainable development via international events: insights from Bento Gonçalves Knowledge Cities World Summit [89].
- Sustainable smart cities and industrial ecosystem: structural and relational changes of the smart city industries in Korea [90].
- Redesigning the municipal solid waste supply chain considering the classified collection and disposal: a case study of incinerable waste in Beijing [91].
- Empowering a sustainable city using self-assessment of environmental performance on Ecocitopia platform [92].
- Sustainability understanding and behaviors across urban areas: a case study on Istanbul city [93].
- Overview and exploitation of haptic tele-weight device in virtual shopping stores [94].
- Framing corporate social responsibility to achieve sustainability in urban industrialization: case of Bangladesh ready-made garments [95].
- Data-driven analysis on inter-city commuting decisions in Germany [96].
- Exploring the role of digital infrastructure asset management tools for resilient linear infrastructure outcomes in cities and towns: a systematic literature review [97].
- Blockchain and building information management (BIM) for sustainable building development within the context of smart cities [98].
- Green artificial intelligence: towards an efficient, sustainable and equitable technology for smart cities and futures [99] (Yigitcanlar et al., 2021).
- Towards Australian regional turnaround: insights into sustainably accommodating post-pandemic urban growth in regional towns and cities [100].
- Social capital and sustainable social development: how are changes in neighborhood social capital associated with neighborhood sociodemographic and socioeconomic characteristics? [101].
Conflicts of Interest
References
- Cohen, J.E. Population growth and earth’s human carrying capacity. Science 1995, 269, 341–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, W.E. Revisiting carrying capacity: Area-based indicators of sustainability. Popul. Environ. 1996, 17, 195–215. [Google Scholar] [CrossRef]
- Dizdaroglu, D.; Yigitcanlar, T. A parcel-scale assessment tool to measure sustainability through urban ecosystem components: The MUSIX model. Ecol. Indic. 2014, 41, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 2017, 2, 66–77. [Google Scholar] [CrossRef]
- Mooney, H.; Larigauderie, A.; Cesario, M.; Elmquist, T.; Hoegh-Guldberg, O.; Lavorel, S.; Mace, G.M.; Palmer, M.; Scholes, R.; Yahara, T. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 2009, 1, 46–54. [Google Scholar] [CrossRef]
- Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between Sustainable Development Goals. Nat. Cell Biol. 2016, 534, 320–322. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The 17 Goals, Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 24 May 2021).
- Dimitrov, R.S. The Paris Agreement on Climate Change: Behind Closed Doors. Glob. Environ. Politics 2016, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tollefson, J. IPCC says limiting global warming to 1.5 °C will require drastic action. Nature 2018, 562, 172–173. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aller, C.; de Velasco, A.F.; Manjarrés, Á.; Pastor-Escuredo, D.; Pickin, S.; Criado, J.S.; Ausín, T. An Inclusive and Sustainable Artificial Intelligence Strategy for Europe Based on Human Rights. IEEE Technol. Soc. Mag. 2021, 40, 46–54. [Google Scholar] [CrossRef]
- Vaughan, A. Will the IPCC report matter? New Sci. 2021, 251, 8–9. [Google Scholar] [CrossRef]
- Bergmann, Z.; Ossewaarde, R. Youth climate activists meet environmental governance: Ageist depictions of the FFF movement and Greta Thunberg in German newspaper coverage. J. Multicult. Discourses 2020, 15, 267–290. [Google Scholar] [CrossRef] [Green Version]
- Gunningham, N. Averting Climate Catastrophe: Environmental Activism, Extinction Rebellion and coalitions of Influence. King’s Law J. 2019, 30, 194–202. [Google Scholar] [CrossRef]
- Ruiz-Campillo, X.; Broto, V.C.; Westman, L. Motivations and Intended Outcomes in Local Governments’ Declarations of Climate Emergency. Politics Gov. 2021, 9, 17–28. [Google Scholar] [CrossRef]
- Beiser-McGrath, L. COP26: Why Politicians Have Little Incentive to Prepare for Future Climate Change Disasters. Available online: https://theconversation.com/cop26-why-politicians-have-little-incentive-to-prepare-for-future-climate-change-disasters-171539 (accessed on 11 November 2021).
- Fisher, D.R.; Nasrin, S. Climate activism and its effects. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e683. [Google Scholar] [CrossRef]
- Aldieri, L.; Carlucci, F.; Vinci, C.P.; Yigitcanlar, T. Environmental innovation, knowledge spillovers and policy implications: A systematic review of the economic effects literature. J. Clean. Prod. 2019, 239, 118051. [Google Scholar] [CrossRef]
- Lauterbach, A. Artificial intelligence and policy: Quo vadis? Digit. Policy Regul. Gov. 2019, 21, 238–263. [Google Scholar] [CrossRef]
- Nwankwo, W.; Ukhurebor, K.E.; Aigbe, U.O. Climate change and innovation technology: A review. Renew. Energy 2020, 20, 23. [Google Scholar]
- Fujii, H.; Managi, S. Trends and priority shifts in artificial intelligence technology invention: A global patent analysis. Econ. Anal. Policy 2018, 58, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, B.W.; Weyerer, J.C.; Geyer, C. Artificial Intelligence and the Public Sector—Applications and Challenges. Int. J. Public Adm. 2018, 42, 596–615. [Google Scholar] [CrossRef]
- Dignam, A. Artificial intelligence, tech corporate governance and the public interest regulatory response. Camb. J. Reg. Econ. Soc. 2020, 13, 37–54. [Google Scholar] [CrossRef]
- Chatterjee, S.; Sreenivasulu, N.S. Personal data sharing and legal issues of human rights in the era of artificial intelligence: Moderating effect of government regulation. Int. J. Electron. Gov. Res. (IJEGR) 2019, 15, 21–36. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharjee, K.K. Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Educ. Inf. Technol. 2020, 25, 3443–3463. [Google Scholar] [CrossRef]
- Simon, J.P. Artificial intelligence: Scope, players, markets and geography. Digit. Policy Regul. Gov. 2019, 21, 208–237. [Google Scholar] [CrossRef]
- Vadlamudi, S. How Artificial Intelligence Improves Agricultural Productivity and Sustainability: A Global Thematic Analysis. Asia Pac. J. Energy Environ. 2019, 6, 91–100. [Google Scholar]
- Yigitcanlar, T. Kamruzzaman Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns? J. Urban Technol. 2019, 26, 21–46. [Google Scholar] [CrossRef]
- Masakowski, Y.R. Artificial Intelligence and the Future Global Security Environment. In Artificial Intelligence and Global Security; Emerald Publishing Limited: London, UK, 2020; pp. 1–34. [Google Scholar]
- Nayal, K.; Raut, R.; Priyadarshinee, P.; Narkhede, B.E.; Kazancoglu, Y.; Narwane, V. Exploring the role of artificial intelligence in managing agricultural supply chain risk to counter the impacts of the COVID-19 pandemic. Int. J. Logist. Manag. 2021. [Google Scholar] [CrossRef]
- Wheeler, A.R.; Buckley, M.R. The Current State of HRM with Automation, Artificial Intelligence, and Machine Learning. InHR without People? Emerald Publishing Limited: London, UK, 2021; pp. 29–44. [Google Scholar]
- Cortés, U.; Sànchez-Marrè, M.; Ceccaroni, L.; R-Roda, I.; Poch, M. Artificial Intelligence and Environmental Decision Support Systems. Appl. Intell. 2000, 13, 77–91. [Google Scholar] [CrossRef]
- Coulson, R.N.; Folse, L.J.; Loh, D.K. Artificial Intelligence and Natural Resource Management. Science 1987, 237, 262–267. [Google Scholar] [CrossRef]
- Jones, D.O.; Gates, A.; Huvenne, V.A.; Phillips, A.B.; Bett, B.J. Autonomous marine environmental monitoring: Application in decommissioned oil fields. Sci. Total Environ. 2019, 668, 835–853. [Google Scholar] [CrossRef]
- Corcoran, E.; Denman, S.; Hanger, J.; Wilson, B.; Hamilton, G. Automated detection of koalas using low-level aerial surveillance and machine learning. Sci. Rep. 2019, 9, 3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyayt, A.L.; Mokhov, I.I.; Lang, B.; Krzhizhanovskaya, V.V.; Meijer, R.J. Machine learning methods for environmental monitoring and flood protection. World Acad. Sci. Eng. Technol. 2011, 78, 118–123. [Google Scholar]
- Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar]
- Li, C. Biodiversity assessment based on artificial intelligence and neural network algorithms. Microprocess. Microsyst. 2020, 79, 103321. [Google Scholar] [CrossRef]
- Weber, E.; Marzo, N.; Papadopoulos, D.P.; Biswas, A.; Lapedriza, A.; Ofli, F.; Imran, M.; Torralba, A. Detecting natural disasters, damage, and incidents in the wild. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 331–350. [Google Scholar]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telemat. Inform. 2021, 65, 101729. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T.; DeSouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef] [Green Version]
- Paschen, U.; Pitt, C.; Kietzmann, J. Artificial intelligence: Building blocks and an innovation typology. Bus. Horiz. 2019, 63, 147–155. [Google Scholar] [CrossRef]
- Barns, S. Out of the loop? On the radical and the routine in urban big data. Urban Stud. 2021, 58, 3203–3210. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Bus. Horiz. 2019, 63, 37–50. [Google Scholar] [CrossRef]
- Watson, G.J.; Desouza, K.C.; Ribiere, V.M.; Lindič, J. Will AI ever sit at the C-suite table? The future of senior leadership. Bus. Horiz. 2021, 64, 465–474. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Cugurullo, F. The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability 2020, 12, 8548. [Google Scholar] [CrossRef]
- Lee, J.-H.; Woo, J. Green New Deal Policy of South Korea: Policy Innovation for a Sustainability Transition. Sustainability 2020, 12, 10191. [Google Scholar] [CrossRef]
- Frank, B. Artificial intelligence-enabled environmental sustainability of products: Marketing benefits and their variation by consumer, location, and product types. J. Clean. Prod. 2020, 285, 125242. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, X.; Xu, Z.; Fujita, H. Emergency decision making for natural disasters: An overview. Int. J. Disaster Risk Reduct. 2018, 27, 567–576. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 2019, 133, 169–182. [Google Scholar] [CrossRef]
- Nañez Alonso, S.L.; Reier Forradellas, R.F.; Pi Morell, O.; Jorge-Vázquez, J. Digitalization, circular economy and environmental sustainability: The application of Artificial Intelligence in the efficient self-management of waste. Sustainability 2021, 13, 2092. [Google Scholar] [CrossRef]
- Khakurel, J.; Penzenstadler, B.; Porras, J.; Knutas, A.; Zhang, W. The rise of artificial intelligence under the lens of sustainability. Technologies 2018, 6, 100. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, M.; Hassan, S.; Bhaumik, A. Academic Policy Regarding Sustainability and Artificial Intelligence (AI). Sustainability 2020, 12, 9435. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Langhans, S.D.; Domisch, S.; Fuso-Nerini, F.; Felländer, A.; Battaglini, M.; Tegmark, M.; Vinuesa, R. Assessing whether artificial intelligence is an enabler or an inhibitor of sustainability at indicator level. Transp. Eng. 2021, 4, 100064. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Goralski, M.A.; Tan, T.K. Artificial intelligence and sustainable development. Int. J. Manag. Educ. 2019, 18, 100330. [Google Scholar] [CrossRef]
- Truby, J. Governing Artificial Intelligence to benefit the UN Sustainable Development Goals. Sustain. Dev. 2020, 28, 946–959. [Google Scholar] [CrossRef]
- Yeh, S.-C.; Wu, A.-W.; Yu, H.-C.; Wu, H.C.; Kuo, Y.-P.; Chen, P.-X. Public Perception of Artificial Intelligence and Its Connections to the Sustainable Development Goals. Sustainability 2021, 13, 9165. [Google Scholar] [CrossRef]
- Khamis, A.; Li, H.; Prestes, E.; Haidegger, T. AI: A Key Enabler of Sustainable Development Goals, Part 1 [Industry Activities]. IEEE Robot. Autom. Mag. 2019, 26, 95–102. [Google Scholar] [CrossRef]
- Cernev, T.; Fenner, R. The importance of achieving foundational Sustainable Development Goals in reducing global risk. Futures 2019, 115, 102492. [Google Scholar] [CrossRef]
- Miailhe, N.; Hodes, C.; Jain, A.; Iliadis, N.; Alanoca, S.; Png, J. AI for sustainable development goals. Delphi 2019, 2, 207. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Corchado, J.M.; Mehmood, R.; Li, R.Y.; Mossberger, K.; Desouza, K. Responsible urban innovation with local government artificial intelligence (AI): A conceptual framework and research agenda. J. Open Innov. Technol. Mark. Complex. 2021, 7, 71. [Google Scholar] [CrossRef]
- Lahsen, M. Should AI be Designed to Save Us from Ourselves? Artificial Intelligence for Sustainability. IEEE Technol. Soc. Mag. 2020, 39, 60–67. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Han, H.; Kamruzzaman, M.; Ioppolo, G.; Sabatini-Marques, J. The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build? Land Use Policy 2019, 88, 104187. [Google Scholar] [CrossRef]
- Dhar, P. The carbon impact of artificial intelligence. Nat. Mach. Intell. 2020, 2, 423–425. [Google Scholar] [CrossRef]
- Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [Google Scholar] [CrossRef]
- Dobbe, R.; Whittaker, M. AI and Climate Change: How They’re Connected, and What We Can Do about It. Available online: https://medium.com/@AINowInstitute/ai-and-climate-change-how-theyre-connected-and-what-we-can-do-about-it-6aa8d0f5b32c (accessed on 11 November 2021).
- Yigitcanlar, T.; Butler, L.; Windle, E.; Desouza, K.C.; Mehmood, R.; Corchado, J.M. Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors 2020, 20, 2988. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hua, S.; Shi, Y.; Wang, H.; Zhang, J.; Letaief, K.B. Sparse optimization for green edge AI inference. J. Commun. Inf. Netw. 2020, 5, 1–5. [Google Scholar]
- Candelieri, A.; Perego, R.; Archetti, F. Green machine learning via augmented Gaussian processes and multi-information source optimization. Soft Comput. 2021, 25, 12591–12603. [Google Scholar] [CrossRef]
- Yun, J.J.; Lee, D.; Ahn, H.; Park, K.; Yigitcanlar, T. Not Deep Learning but Autonomous Learning of Open Innovation for Sustainable Artificial Intelligence. Sustainability 2016, 8, 797. [Google Scholar] [CrossRef] [Green Version]
- Gould, S. Green AI: How Can AI Solve Sustainability Challenges? Available online: https://www2.deloitte.com/uk/en/blog/experience-analytics/2020/green-ai-how-can-ai-solve-sustainability-challenges.html (accessed on 23 June 2021).
- Yigitcanlar, T.; Kankanamge, N.; Regona, M.; Ruiz Maldonado, A.; Rowan, B.; Ryu, A.; Desouza, K.C.; Corchado, J.M.; Mehmood, R.; Li, R.Y. Artificial intelligence technologies and related urban planning and development concepts: How are they perceived and utilized in Australia? J. Open Innov. Technol. Mark. Complex. 2020, 6, 187. [Google Scholar] [CrossRef]
- Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.; Melero, F.J.; Molina, D.; Fernández, B.; et al. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Appl. Intell. 2021, 51, 6497–6527. [Google Scholar] [CrossRef] [PubMed]
- Yigitcanlar, T.; Foth, M.; Kamruzzaman, M. Towards post-anthropocentric cities: Reconceptualizing smart cities to evade urban ecocide. J. Urban Technol. 2019, 26, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Nishant, R.; Kennedy, M.; Corbett, J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. Int. J. Inf. Manag. 2020, 53, 102104. [Google Scholar] [CrossRef]
- Reed, C. How should we regulate artificial intelligence? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170360. [Google Scholar] [CrossRef] [Green Version]
- Buiten, M.C. Towards Intelligent Regulation of Artificial Intelligence. Eur. J. Risk Regul. 2019, 10, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Glauner, P. An Assessment of the AI Regulation Proposed by the European Commission. Available online: https://arxiv.org/pdf/2105.15133.pdf (accessed on 23 June 2021).
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- IPCC. Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 11 November 2021).
- Australian Government. Australia’s Climate Change Strategies. Available online: https://www.industry.gov.au/policies-and-initiatives/australias-climate-change-strategies (accessed on 11 November 2021).
- Cislak, A.; Cichocka, A.; Wojcik, A.D.; Milfont, T.L. Words not deeds: National narcissism, national identification, and support for greenwashing versus genuine proenvironmental campaigns. J. Environ. Psychol. 2021, 74, 101576. [Google Scholar] [CrossRef]
- Perakslis, C. Exposing Technowashing: To Mitigate Technosocial Inequalities [Last Word]. IEEE Technol. Soc. Mag. 2020, 39, 88. [Google Scholar] [CrossRef]
- Rasmussen, K.; Thornber, B. How Can Australia Get Cracking on Emissions? The Know―How We Need Is in Our Universities. Available online: https://theconversation.com/how-can-australia-get-cracking-on-emissions-the-know-how-we-need-is-in-our-universities-170374 (accessed on 11 November 2021).
- Buys, L.; Newton, C.; Walker, N. The Lived Experience of Residents in an Emerging Master-Planned Community. Sustainability 2021, 13, 12158. [Google Scholar] [CrossRef]
- Khanjanasthiti, I.; Chandrasekar, K.S.; Bajracharya, B. Making the Gold Coast a Smart City—An Analysis. Sustainability 2021, 13, 10624. [Google Scholar] [CrossRef]
- Michelam, L.D.; Cortese, T.T.P.; Yigitcanlar, T.; Fachinelli, A.C.; Vils, L.; Levy, W. Leveraging Smart and Sustainable Development via International Events: Insights from Bento Gonçalves Knowledge Cities World Summit. Sustainability 2021, 13, 9937. [Google Scholar] [CrossRef]
- Jo, S.-S.; Han, H.; Leem, Y.; Lee, S.-H. Sustainable Smart Cities and Industrial Ecosystem: Structural and Relational Changes of the Smart City Industries in Korea. Sustainability 2021, 13, 9917. [Google Scholar] [CrossRef]
- Yang, X.; Guo, X.; Yang, K. Redesigning the Municipal Solid Waste Supply Chain Considering the Classified Collection and Disposal: A Case Study of Incinerable Waste in Beijing. Sustainability 2021, 13, 9855. [Google Scholar] [CrossRef]
- Kongboon, R.; Gheewala, S.H.; Sampattagul, S. Empowering a Sustainable City Using Self-Assessment of Environmental Performance on EcoCitOpia Platform. Sustainability 2021, 13, 7743. [Google Scholar] [CrossRef]
- Topal, H.; Hunt, D.; Rogers, C. Sustainability Understanding and Behaviors across Urban Areas: A Case Study on Istanbul City. Sustainability 2021, 13, 7711. [Google Scholar] [CrossRef]
- Farooq, A.; Seyedmahmoudian, M.; Horan, B.; Mekhilef, S.; Stojcevski, A. Overview and exploitation of haptic tele-weight device in virtual shopping stores. Sustainability 2021, 13, 7253. [Google Scholar] [CrossRef]
- Saha, P.K.; Akhter, S.; Hassan, A. Framing Corporate Social Responsibility to Achieve Sustainability in Urban Industrialization: Case of Bangladesh Ready-Made Garments (RMG). Sustainability 2021, 13, 6988. [Google Scholar] [CrossRef]
- Chen, H.; Voigt, S.; Fu, X. Data-Driven Analysis on Inter-City Commuting Decisions in Germany. Sustainability 2021, 13, 6320. [Google Scholar] [CrossRef]
- Caldera, S.; Mostafa, S.; Desha, C.; Mohamed, S. Exploring the Role of Digital Infrastructure Asset Management Tools for Resilient Linear Infrastructure Outcomes in Cities and Towns: A Systematic Literature Review. Sustainability 2021, 13, 11965. [Google Scholar] [CrossRef]
- Liu, Z.; Chi, Z.; Osmani, M.; Demian, P. Blockchain and Building Information Management (BIM) for Sustainable Building Development within the Context of Smart Cities. Sustainability 2021, 13, 2090. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Mehmood, R.; Corchado, J.M. Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures. Sustainability 2021, 13, 8952. [Google Scholar] [CrossRef]
- Guaralda, M.; Hearn, G.; Foth, M.; Yigitcanlar, T.; Mayere, S.; Law, L. Towards Australian Regional Turnaround: Insights into Sustainably Accommodating Post-Pandemic Urban Growth in Regional Towns and Cities. Sustainability 2020, 12, 10492. [Google Scholar] [CrossRef]
- Eriksson, M.; Santosa, A.; Zetterberg, L.; Kawachi, I.; Ng, N. Social Capital and Sustainable Social Development—How Are Changes in Neighbourhood Social Capital Associated with Neighbourhood Sociodemographic and Socioeconomic Characteristics? Sustainability 2021, 13, 13161. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yigitcanlar, T. Greening the Artificial Intelligence for a Sustainable Planet: An Editorial Commentary. Sustainability 2021, 13, 13508. https://doi.org/10.3390/su132413508
Yigitcanlar T. Greening the Artificial Intelligence for a Sustainable Planet: An Editorial Commentary. Sustainability. 2021; 13(24):13508. https://doi.org/10.3390/su132413508
Chicago/Turabian StyleYigitcanlar, Tan. 2021. "Greening the Artificial Intelligence for a Sustainable Planet: An Editorial Commentary" Sustainability 13, no. 24: 13508. https://doi.org/10.3390/su132413508
APA StyleYigitcanlar, T. (2021). Greening the Artificial Intelligence for a Sustainable Planet: An Editorial Commentary. Sustainability, 13(24), 13508. https://doi.org/10.3390/su132413508