Flood-Prone Area Delineation in Urban Subbasins Based on Stream Ordering: Culiacan Urban Basin as a Study Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Dataset Acquisition
2.2.2. DEM Validation
2.2.3. Raster and Vector Processing
Raster Pre-Processing
Raster Processing
Delineation of the Urban Subbasin
2.2.4. Morphometric Analysis
2.2.5. Stream Ordering
2.2.6. Sewage Network Inspection
2.2.7. Identification and Delineation of Flood-Prone Areas
3. Results
3.1. DEM Validation
3.2. DEM Depression Elimination
3.3. Delineation of the Urban Subbasin
3.4. Analysis of Morphometric Parameters
3.4.1. Geometry and Shape of the Urban Subbasin
3.4.2. Relief Aspects of the Urban Subbasin
3.4.3. Drainage Network Aspects of the Urban Subbasin
3.5. Identification and Delineation of Flood-Prone Areas in the Urban Subbasin
3.5.1. Flow Direction
3.5.2. Urban Stream Ordering
3.5.3. Zonation of Urban Streams
3.5.4. Field Inspection of the Sewage Network Conditions
3.5.5. Delineation of Flood-Prone Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zúñiga, E.; Magaña, V.; Piña, V. Effect of Urban Development in Risk of Floods in Veracruz, Mexico. Geosciences 2020, 10, 402. [Google Scholar] [CrossRef]
- Fowler, H.J.; Wasko, C.; Prein, A.F. Intensification of short-duration rainfall extremes and implications for flood risk: Current state of the art and future directions. Philos. Trans. R. Soc. 2021, 379, 20190541. [Google Scholar] [CrossRef]
- Deshmukh, A.; Singh, R. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U.S. Water Resour. Res. 2016, 52, 8775–8793. [Google Scholar] [CrossRef]
- Loaiza, J.G.; Rangel-Peraza, J.G.; Sanhouse-García, A.J.; Monjardín-Armenta, S.A.; Mora-Félix, Z.D.; Bustos-Terrones, Y.A. Assessment of Water Quality in A Tropical Reservoir in Mexico: Seasonal, Spatial and Multivariable Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7456. [Google Scholar] [CrossRef] [PubMed]
- Waghwala, R.K.; Agnihotri, P.G. Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. Int. J. Disaster Risk Sci. 2019, 40, 101155. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, S.; Ji, X.; Hong, Z.; Lu, M.; Wang, P. Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River. Land 2021, 10, 521. [Google Scholar] [CrossRef]
- Abass, K. Rising incidence of urban floods: Understanding the causes for flood risk reduction in Kumasi, Ghana. GeoJournal 2020, 1–18. [Google Scholar] [CrossRef]
- Dráb, A.; Říha, J. An approach to the implementation of European Directive 2007/60/EC on flood risk management in the Czech Republic. Nat. Hazards Earth Syst. Sci. 2010, 10, 1977–1987. [Google Scholar] [CrossRef]
- Kubal, C.; Haase, D.; Meyer, V.; Scheuer, S. Integrated urban flood risk assessment—Adapting a multicriteria approach to a city. Nat. Hazards Earth Syst. Sci. 2009, 9, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Leandro, J.; Chen, A.S.; Djordjević, S.; Savić, D.A. Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation. J. Hydraul. Eng. 2009, 135, 495–504. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A. Land Cover Change and Flood Risk in a Peri-Urban Environment of the Metropolitan Area of Rome (Italy). Water Resour. Manag. 2020, 34, 4399–4413. [Google Scholar] [CrossRef]
- Pellicani, R.; Parisi, A.; Iemmolo, G.; Apollonio, C. Economic Risk Evaluation in Urban Flooding and Instability-Prone Areas: The Case Study of San Giovanni Rotondo (Southern Italy). Geosciences 2018, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V.; Scheuer, S.; Haase, D. GIS-Based Multicriteria Analysis as Decision Support in Flood Risk Management. FLOODsite Consortium, Report T10-07-06. Available online: http://www.floodsite.net/ (accessed on 20 November 2021).
- Julínek, T.; Duchan, D.; Říha, J. Mapping of uplift hazard due to rising groundwater level during floods. J. Flood Risk Manag. 2020, 34, 162–174. [Google Scholar] [CrossRef]
- Ullah, K.; Zhang, J. GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, A.P.; Giordano, L.; Ruggerio, C.A. A basin-level analysis of flood risk in urban and periurban areas: A case study in the metropolitan region of Buenos Aires, Argentina. Heliyon 2020, 6, E04517. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.K.; Smith, J.A.; Baeck, M.L.; Miller, A.J. Exploring storage and runoff generation processes for urban flooding through a physically based watershed model. Water Resour. Res. 2015, 51, 1552–1569. [Google Scholar] [CrossRef]
- Kabenge, M.; Elaru, J.; Wang, H.; Li, F. Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index. Nat. Hazards 2017, 89, 1369–1387. [Google Scholar] [CrossRef]
- Zhou, Q.; Su, J.; Arnbjerg-Nielsen, K.; Ren, Y.; Luo, J.; Ye, Z.; Feng, J. A GIS-Based Hydrological Modeling Approach for Rapid Urban Flood Hazard Assessment. Water 2021, 13, 1483. [Google Scholar] [CrossRef]
- Van Dijk, E.; Van Der Meulen, J.; Kluck, J.; Straatman, J.H.M. Comparing modelling techniques for analysing urban pluvial flooding. Water Sci. Technol. 2014, 69, 305–311. [Google Scholar] [CrossRef]
- Leandro, J.; Djordjević, S.; Chen, A.S.; Savić, D.A.; Stanić, M. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data. Water Sci. Technol. 2011, 64, 1016–1024. [Google Scholar] [CrossRef] [Green Version]
- Domeneghetti, A.; Gandolfi, S.; Castellarin, A.; Brandimarte, L.; Di Baldassarre, G.; Barbarella, M.; Brath, A. Flood Risk Mitigation in Developing Countries: Deriving Accurate Topographic Data for Remote Areas Under Severe Time and Economic Constraints. J. Flood Risk Manag. 2013, 8, 301–314. [Google Scholar] [CrossRef]
- SEDATU. Atlas de Riesgos y Catálogo de Datos Geográficos para Representar en el Municipio de Culiacán, Sinaloa 2015. Secretaria de Desarrollo Agrario, Territorial y Urbano. Available online: http://rmgir.proyectomesoamerica.org/PDFMunicipales/2015/25006_AR_CULIACAN.pdf (accessed on 25 September 2021).
- Rentería-Guevara, S.; Sanhouse-García, A.; Bustos-Terrones, Y.; Rodriguez-Mata, A.; Rangel-Peraza, J.G. A proposal to integrate the legal definition and official delineation of watersheds in Mexico: Eight model case studies. Rev. Ambient. Água 2019, 14. [Google Scholar] [CrossRef]
- INEGI. Continuo de Elevaciones Mexicano 3.0 Sinaloa 2016. 2021. Available online: https://www.inegi.org.mx/temas/relieve/continental/#Metadatos (accessed on 25 February 2021).
- INEGI. Documento Técnico Descriptivo De La Red Hidrográfica Escala 1:50000. Dirección General de Geografía y Medio Ambiente. 2021. Available online: https://www.inegi.org.mx/temas/hidrografia/ (accessed on 25 April 2021).
- Polidori, L.; El Hage, M. Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sens. 2020, 12, 3522. [Google Scholar] [CrossRef]
- FGDC. Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy. FGCD-STD-007.3-1998. 1998. Available online: https://www.fgdc.gov/standards/standards_publications/ (accessed on 29 April 2021).
- Mora-Felix, Z.D.; Sanhouse-Garcia, A.J.; Bustos-Terones, Y.A.; Loaiza, J.G.; Monjardin-Armenta, S.A.; Rangel-Peraza, J.G. Effect of photogrammetric RPAS flight parameters on plani-altimetric accuracy of DTM. Open Geosci. 2020, 12, 1–19. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 2006, 20, 193–213. [Google Scholar] [CrossRef]
- Walesh, S.G. Urban Surface Water Management; Wiley-Interscience Publication: New York, NY, USA, 1989. [Google Scholar]
- Esper-Angillieri, M.Y.; Fernandez, O.M. Morphometric analysis of river basins using GIS and remote sensing of an Andean section of Route 150, Argentina. A comparison between manual and automated delineation of basins. Rev. Mex. Cienc. Geológicas 2017, 34, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.E. Drainage Basin Characteristics. Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional Development of Streams and Their Drainage Basins: Hydro-Physical Approach to Quantitative Morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee; Tech. Rep. 3 NR 389-402; Columbia University, Department of Geology: New York, NY, USA, 1953. [Google Scholar]
- Schumm, S.A. The evolution of drainage systems and slopes in badlands at Perth Amboi, New Jersey. Geol. Soc. Am. Bull. 1956, 7, 597–646. [Google Scholar] [CrossRef]
- Gravelius, H. Rivers in Germany. Berlin, Germany: Göschen. Grundriß der gesamten Gewässerkunde. Band I Flußkunde. Compend. Hydrol. 1914, I, 265–278. [Google Scholar]
- Strahler, A.N. Quantitative Geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw-Hill: New York, NY, USA, 1964; pp. 439–476. [Google Scholar]
- Kirpich, Z.P. Time of concentration of small agricultural watersheds. Civ. Eng. 1940, 10, 362. [Google Scholar]
- Garbrecht, J.; Martz, L.W. The assignment of drainage direction over flat surfaces in raster digital elevation models. J. Hydrol. 1997, 193, 204–213. [Google Scholar] [CrossRef]
- Hawker, L.; Bates, P.; Neal, J.; Rougier, J. Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM. Front. Earth Sci. 2018, 6, 233. [Google Scholar] [CrossRef] [Green Version]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Muthusamy, M.; Rivas Casado, M.; Butler, D.; Leinster, P. Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. J. Hydrol. 2021, 596, 126088. [Google Scholar] [CrossRef]
- Mora-Chaparro, J.C. Mapping the Risk of Flood, Mass Movement and Local Subsidence. In A New Proposal for Major Cities; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Azmeri, I.K.; Vadiya, R. Identification of flash flood hazard zones in mountainous small watershed of Aceh Besar Regency, Aceh Province, Indonesia. Egypt. J. Remote Sens. Space Sci. 2016, 19, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Latuamury, B.; Marasabessy, H.; Talaohu, M.; Imlabla, W. Small island watershed morphometric and hydrological characteristics in Ambon Region, Maluku Province. In IOP Conference Series: Earth and Environmental Science, Proceedings of International Conference on Sustainable Utilization of Natural Resources, Ambon, Indonesia, 28 November 2020; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 800, p. 012047. [Google Scholar]
- Demoulin, A. Basin and river profile morphometry: A new index with a high potential for relative dating of tectonic uplift. Geomorphology 2011, 126, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Boogaard, F.; Lucke, T.; Beecham, S. Effect of Age of Permeable Pavements on Their Infiltration Function. CLEAN-Soil Air Water 2013, 42, 146–152. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Selvakumar, R.; Rajasimman, U.A.B.; Victor, R.G. Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM. Geomat. Nat. Hazards Risk. 2015, 6, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Komolafe, A.A.; Herath, S.; Avtar, R. Methodology to Assess Potential Flood Damages in Urban Areas under the Influence of Climate Change. Nat. Hazards Rev. 2018, 19, 05018001. [Google Scholar] [CrossRef]
- Liu, J.; Shao, W.W.; Xiang, C.; Mei, C.; Li, Z. Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces. Environ. Res. 2020, 182, 108929. [Google Scholar] [CrossRef]
- Ali Shaikh, T.; Saher, R.; Ahmad, S.; Gerrity, D.; Stephen, H. Impacts of Urban Development on Flooding: A Case Study of Flamingo and Tropicana Watershed, Clark County. In Watershed Management 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 233–244. [Google Scholar]
- Talchabhadel, R.; Karki, R.; Thapa, B.R.; Maharjan, M.; Parajuli, B. Spatio-Temporal Variability of Extreme Precipitation in Nepal. Int. J. Clim. 2018, 38, 4296–4313. [Google Scholar] [CrossRef]
- Ercoli, R.F.; Vandeir, R.S.M.; Palmeira, V.C. Urban Expansion and Erosion Processes in an Area of Environmental Protection in Nova Lima, Minas Gerais State, Brazil. Front. Environ. Sci. 2020, 8, 52. [Google Scholar] [CrossRef]
- Sanhouse-Garcia, A.J.; Bustos-Terrones, Y.; Rangel-Peraza, J.G.; Quevedo-Castro, A.; Pacheco, C. Multi-temporal analysis for land use and land cover changes in an agricultural region using open source tools. Remote Sens. Appl. 2017, 8, 278–290. [Google Scholar] [CrossRef]
- Araújo, P.V.N.; Amaro, V.E.; Silva, R.M.; Lopes, A.B. Delimitation of flood areas based on a calibrated DEM and geoprocessing: Case study on the Uruguay River, Itaqui, southern Brazil. Nat. Hazards Earth Syst. Sci. 2019, 19, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Mokarram, M.; Sathyamoorthy, D. Morphometric Analysis of Hydrological Behavior of North Fars Watershed, Iran. European. J. Geog. 2015, 6, 88–106. [Google Scholar]
- Hernández-Uribe, R.E.; Barrios-Piña, H.; Ramírez, A.I. Análisis de riesgo por inundación: Metodología y aplicación a la cuenca Atemajac. Tecnol. Cienc. Agua 2017, 8, 5–25. [Google Scholar] [CrossRef]
- Domeneghetti, A.; Vorogushyn, S.; Castellarin, A.; Merz, B.; Brath, A. Probabilistic flood hazard mapping: Effects of uncertain boundary conditions. Hydrol. Earth Syst. Sci. 2013, 17, 3127–3140. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of Flood-Prone Areas Using Remote Sensing Techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- Osti, R.; Tanaka, S.; Tokioka, T. Flood hazard mapping in developing countries: Problems and prospects. Disaster Prev. Manag. 2008, 17, 104–113. [Google Scholar] [CrossRef]
- Şen, O.; Kahya, E. Determination of flood risk: A case study in the rainiest city of Turkey. Environ. Model. Softw. 2017, 93, 296–309. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Subbasin perimeter (km) | 13.576 |
Subbasin length (km) | 2.8 |
Subbasin area (km2) | 2.517 |
Stream length (km) | 3.8 |
Subbasin width (km) | 0.898 |
Form factor (km) | 0.321 |
Compactness coefficient (unitless) | 2.396 |
Circularity ratio (unitless) | 0.172 |
Parameter | Value |
---|---|
Stream order (order) | 4 |
Stream Length (km) | 3.8 |
Drainage Density (km−1) | 6.99 |
Stream Frequency (streams/km2) | 23.04 |
Number of first-order streams (streams) | 53 |
Coefficient of torrentiality(streams/km2) | 21.05 |
Time of concentration (h) | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanhouse-García, A.J.; Rangel-Peraza, J.G.; Rentería-Guevara, S.A.; Bustos-Terrones, Y.A.; Mora-Félix, Z.D.; Plata-Rocha, W.; Monjardin-Armenta, S.A. Flood-Prone Area Delineation in Urban Subbasins Based on Stream Ordering: Culiacan Urban Basin as a Study Case. Sustainability 2021, 13, 13513. https://doi.org/10.3390/su132413513
Sanhouse-García AJ, Rangel-Peraza JG, Rentería-Guevara SA, Bustos-Terrones YA, Mora-Félix ZD, Plata-Rocha W, Monjardin-Armenta SA. Flood-Prone Area Delineation in Urban Subbasins Based on Stream Ordering: Culiacan Urban Basin as a Study Case. Sustainability. 2021; 13(24):13513. https://doi.org/10.3390/su132413513
Chicago/Turabian StyleSanhouse-García, Antonio J., Jesús Gabriel Rangel-Peraza, Sergio A. Rentería-Guevara, Yaneth A. Bustos-Terrones, Zuriel D. Mora-Félix, Wenseslao Plata-Rocha, and Sergio Alberto Monjardin-Armenta. 2021. "Flood-Prone Area Delineation in Urban Subbasins Based on Stream Ordering: Culiacan Urban Basin as a Study Case" Sustainability 13, no. 24: 13513. https://doi.org/10.3390/su132413513
APA StyleSanhouse-García, A. J., Rangel-Peraza, J. G., Rentería-Guevara, S. A., Bustos-Terrones, Y. A., Mora-Félix, Z. D., Plata-Rocha, W., & Monjardin-Armenta, S. A. (2021). Flood-Prone Area Delineation in Urban Subbasins Based on Stream Ordering: Culiacan Urban Basin as a Study Case. Sustainability, 13(24), 13513. https://doi.org/10.3390/su132413513