Using Structural Equation Modeling to Assess Online Learning Systems’ Educational Sustainability for University Students
Abstract
:1. Introduction
Problem Statement
2. Research Model and Hypotheses Development
2.1. Experience (EXP)
2.2. Technology Anxiety (TA)
2.3. Facilitating Conditions (FC)
2.4. Students’ Engagement (SEN)
2.5. Perceived Usefulness (PU)
2.6. Perceived Ease of Use (PEOU)
2.7. Task-Technology Fit (TTF)
2.8. Behavioral Intention (BI) to Use E-Learning System for Educational Sustainability
3. Research Methodology
3.1. Participants
3.2. Measurement Instruments and Analysis
4. Results
4.1. Measurement Model
4.2. Reflective Indicator Loadings
4.3. Internal Consistency Reliability (ICR)
4.4. Convergent Validity
4.5. Discriminant Validity
4.6. Structural Model and Collinearity
5. Discussion and Implications
6. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palvia, S.; Aeron, P.; Gupta, P.; Mahapatra, D.; Parida, R.; Rosner, R.; Sindhi, S. Online Education: Worldwide Status, Challenges, Trends, and Implications. J. Glob. Inf. Technol. Manag. 2018, 21, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Uğur, N.G.; Turan, A.H. E-Learning adoption of academicians: A proposal for an extended model. Behav. Inf. Technol. 2018, 37, 393–405. [Google Scholar] [CrossRef]
- Villesseche, J.; Le Bohec, O.; Quaireau, C.; Nogues, J.; Besnard, A.L.; Oriez, S.; De La Haye, F.; Noel, Y.; Lavandier, K. Enhancing reading skills through adaptive e-learning. Interact. Technol. Smart Educ. 2019, 16, 2–17. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zou, L.C.; Miao, J.J.; Zhang, Y.X.; Hwang, G.J.; Zhu, Y. An individualized intervention approach to improving university students’ learning performance and interactive behaviors in a blended learning environment. Interact. Learn. Environ. 2020, 28, 231–245. [Google Scholar] [CrossRef]
- Agrawal, V.; Agrawal, A.; Agarwal, S. Assessment of factors for e-learning: An empirical investigation. Ind. Commer. Train. 2016, 48, 409–415. [Google Scholar] [CrossRef]
- Purbojo, R. Role of the university lecturer in an online learning environment: An analysis of Moodle features utilized in a blended learning strategy. In Educational Technology to Improve Quality and Access on a Global Scale; Springer International Publishing: Cham, Switzerland, 2018; pp. 227–244. [Google Scholar]
- Ali, S.; Uppal, M.A.; Gulliver, S.R. A conceptual framework highlighting e-learning implementation barriers. Inf. Technol. People 2018, 31, 156–180. [Google Scholar] [CrossRef]
- Fischer, H.; Heise, L.; Heinz, M.; Moebius, K.; Koehler, T. How to identify e-learning trends in academic teaching: Methodological approaches and the analysis of scientific discourses. Interact. Technol. Smart Educ. 2015, 12, 31–43. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, G.; Malik, S.; Anwar, A. Impact of COVID-19 on achieving the goal of sustainable development: E-Learning and educational productivity. Econ. Res.-Ekon. Istraz. 2021, 1–17. [Google Scholar] [CrossRef]
- Al-Rahmi, A.M.; Shamsuddin, A.; Alturki, U.; Aldraiweesh, A.; Yusof, F.M.; Al-Rahmi, W.M.; Aljeraiwi, A.A. The influence of information system success and technology acceptance model on social media factors in education. Sustainability 2021, 13, 7770. [Google Scholar] [CrossRef]
- Choi, P.M.S.; Lam, S.S. A hierarchical model for developing e-textbook to transform teaching and learning. Interact. Technol. Smart Educ. 2018, 15, 92–103. [Google Scholar] [CrossRef]
- Samsudeen, S.N.; Mohamed, R. University students’ intention to use e-learning systems: A study of higher educational institutions in Sri Lanka. Interact. Technol. Smart Educ. 2019, 16, 219–238. [Google Scholar] [CrossRef]
- Rausch, W.A.; Levi, P. Asynchronous and synchronous cooperation. In Distributed Autonomous Robotic Systems 2; Springer: Tokyo, Japan, 1996; pp. 245–256. [Google Scholar]
- Al-Rahmi, A.M. Constructivism Theory: The Factors Affecting Students’ Academic Performance in Higher Education. Preprints 2020, 2020120072. [Google Scholar] [CrossRef]
- Alamri, M.M.; Al-Rahmi, W.M.; Yahaya, N.; Al-Rahmi, A.M.; Abualrejal, H.; Zeki, A.M.; Al-Maatouk, Q. Towards adaptive e-learning among university students: By applying technology acceptance model (TAM). Int. J. Eng. Adv. Technol. 2019, 8, 270–276. [Google Scholar] [CrossRef]
- Gamage, D.; Fernando, S. Engaging Interactivity in eLearning: Review of Practices and Challenges in Sri Lanka; University of Moratuwa: Moratuwa, Sri Lanka, 2012. [Google Scholar]
- Kim, H.J.; Lee, J.M.; Rha, J.Y. Understanding the role of user resistance on mobile learning usage among university students. Comput. Educ. 2017, 113, 108–118. [Google Scholar] [CrossRef]
- Hamidi, H.; Chavoshi, A. Analysis of the essential factors for the adoption of mobile learning in higher education: A case study of students of the University of Technology. Telemat. Inform. 2018, 35, 1053–1070. [Google Scholar] [CrossRef]
- Nikou, S.A.; Economides, A.A. Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Comput. Educ. 2017, 109, 56–73. [Google Scholar] [CrossRef]
- Briz-Ponce, L.; Pereira, A.; Carvalho, L.; Juanes-Méndez, J.A.; García-Peñalvo, F.J. Learning with mobile technologies—Students’ behavior. Comput. Hum. Behav. 2017, 72, 612–620. [Google Scholar] [CrossRef]
- Qiao, P.; Zhu, X.; Guo, Y.; Sun, Y.; Qin, C. The Development and Adoption of Online Learning in Pre- and Post-COVID-19: Combination of Technological System Evolution Theory and Unified Theory of Acceptance and Use of Technology. J. Risk Financ. Manag. 2021, 14, 162. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Goodhue, D.L.; Thompson, R.L. Task-Technology fit and individual performance. MIS Q. 1995, 19, 213–233. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, F.; Ward, R.; Ahmed, E. Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Comput. Hum. Behav. 2016, 63, 75–90. [Google Scholar] [CrossRef]
- Abdullah, F.; Ward, R. Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Comput. Hum. Behav. 2016, 56, 238–256. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hsieh, Y.C.; Chen, Y.H. An investigation of employees’ use of e-learning systems: Applying the technology acceptance model. Behav. Inf. Technol. 2013, 32, 173–189. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hsieh, Y.C.; Ma, C.Y. A model of organizational employees’ e-learning systems acceptance. Knowl.-Based Syst. 2011, 24, 355–366. [Google Scholar] [CrossRef]
- De Smet, C.; Bourgonjon, J.; De Wever, B.; Schellens, T.; Valcke, M. Researching instructional use and the technology acceptation of learning management systems by secondary school teachers. Comput. Educ. 2012, 58, 688–696. [Google Scholar] [CrossRef]
- Williams, M.; Williams, J. Evaluating a model of business school students’ acceptance of web-based course management systems. Int. J. Manag. Educ. 2010, 8, 59–70. [Google Scholar] [CrossRef]
- Heinssen, R.K.; Glass, C.R.; Knight, L.A. Assessing computer anxiety: Development and validation of the Computer Anxiety Rating Scale. Comput. Hum. Behav. 1987, 3, 49–59. [Google Scholar] [CrossRef]
- Keikhosrokiani, P.; Mustaffa, N.; Zakaria, N.; Abdullah, R. Assessment of a medical information system: The mediating role of use and user satisfaction on the success of human interaction with the mobile healthcare system (iHeart). Cogn. Technol. Work 2020, 22, 281–305. [Google Scholar] [CrossRef]
- Keikhosrokiani, P. The role of m-commerce literacy on the attitude towards using e-torch in Penang, Malaysia. In E-Business in the 21st Century: Essential Topics and Studies, 2nd ed.; World Scientific Publishing Co.: Singapore, 2021; pp. 309–333. ISBN 9789811231841. [Google Scholar]
- Igbaria, M.; Parasuraman, S. A Path Analytic Study of Individual Characteristics, Computer Anxiety and Attitudes toward Microcomputers. J. Manag. 1989, 15, 373–388. [Google Scholar] [CrossRef]
- Alenezi, A.R. E-Learning acceptance: Technological key factors for successful students’ engagement in e-learning system. In Proceedings of the 2012 International Conference on e-Learning, e-Business, Enterprise Information Systems and e-Government, Las Vegas, Nevada, USA, 16–19 July 2012. [Google Scholar]
- Baki, R.; Birgoren, B.; Aktepe, A. A meta analysis of factors affecting perceived usefulness and perceived ease of use in the adoption of E-Learning systems. Turk. Online J. Distance Educ. 2018, 19, 4–42. [Google Scholar] [CrossRef]
- Tarhini, A.; Masa’deh, R.; Al-Busaidi, K.A.; Mohammed, A.B.; Maqableh, M. Factors influencing students’ adoption of e-learning: A structural equation modeling approach. J. Int. Educ. Bus. 2017, 10, 164–182. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P.A. Understanding information technology usage: A test of competing models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Baptista, G.; Oliveira, T. Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Comput. Hum. Behav. 2015, 50, 418–430. [Google Scholar] [CrossRef]
- Engelbrecht, E. Adapting to changing expectations: Post-graduate students’ experience of an e-learning tax program. Comput. Educ. 2005, 45, 217–229. [Google Scholar] [CrossRef]
- Selim, H.M. Critical success factors for e-learning acceptance: Confirmatory factor models. Comput. Educ. 2007, 49, 396–413. [Google Scholar] [CrossRef]
- Islam, A.K.M.N. E-Learning system use and its outcomes: Moderating role of perceived compatibility. Telemat. Inform. 2016, 33, 48–55. [Google Scholar] [CrossRef]
- Henrie, C.R.; Halverson, L.R.; Graham, C.R. Measuring student engagement in technology-mediated learning: A review. Comput. Educ. 2015, 90, 36–53. [Google Scholar] [CrossRef]
- Carini, R.M.; Kuh, G.D.; Klein, S.P. Student engagement and student learning: Testing the linkages. Res. High. Educ. 2006, 47, 1–32. [Google Scholar] [CrossRef]
- Hussain, M.; Zhu, W.; Zhang, W.; Abidi, S.M.R. Student Engagement Predictions in an e-Learning System and Their Impact on Student Course Assessment Scores. Comput. Intell. Neurosci. 2018, 2018, 6347186. [Google Scholar] [CrossRef] [Green Version]
- Mehdinezhad, V. First Year Students’ Engagement at the University Introduction and Theoretical Framework. Int. Online J. Educ. Sci. 2011, 3, 47–66. [Google Scholar]
- Davis, F.D.; Venkatesh, V. A critical assessment of potential measurement biases in the technology acceptance model: Three experiments. Int. J. Hum. Comput. Stud. 1996, 45, 19–45. [Google Scholar] [CrossRef] [Green Version]
- Alenazy, W.M.; Mugahed Al-Rahmi, W.; Khan, M.S. Validation of TAM Model on Social Media Use for Collaborative Learning to Enhance Collaborative Authoring. IEEE Access 2019, 7, 71550–71562. [Google Scholar] [CrossRef]
- Al-Rahmi, A.M.; Shamsuddin, A.; Alismaiel, O.A. Task-Technology Fit Model: The Factors Affecting Students’ Academic Performance in Higher Education. Univers. J. Educ. Res. 2020, 8, 6831–6843. [Google Scholar] [CrossRef]
- Martinho, D.; Santos, E.; Miguel, M.I.; Cordeiro, D. Factors that influence the adoption of postgraduate online courses. Int. J. Emerg. Technol. Learn. 2018, 13, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Mailizar, M.; Burg, D.; Maulina, S. Examining university students’ behavioural intention to use e-learning during the COVID-19 pandemic: An extended TAM model. Educ. Inf. Technol. 2021, 26, 7057–7077. [Google Scholar] [CrossRef] [PubMed]
- Weerathunga, P.R.; Samarathunga, W.H.M.S.; Rathnayake, H.N.; Agampodi, S.B.; Nurunnabi, M.; Madhunimasha, M.M.S.C. The COVID-19 Pandemic and the Acceptance of E-Learning among University Students: The Role of Precipitating Events. Educ. Sci. 2021, 11, 436. [Google Scholar] [CrossRef]
- Al-Rahmi, A.M.; Al-Rahmi, W.M.; Alturki, U.; Aldraiweesh, A.; Almutairy, S.; Al-Adwan, A.S. Exploring the Factors Affecting Mobile Learning for Sustainability in Higher Education. Sustainability 2021, 13, 7893. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of preventive innovations. Addict. Behav. 2002, 27, 989–993. [Google Scholar] [CrossRef]
- Binyamin, S.S.; Rutter, M.J.; Smith, S. Extending the technology acceptance model to understand students’ use of learning management systems in Saudi higher education. Int. J. Emerg. Technol. Learn. 2019, 14, 4–21. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Yahaya, N.; Alamri, M.M.; Alyoussef, I.Y.; Al-Rahmi, A.M.; Kamin, Y. Bin Integrating innovation diffusion theory with technology acceptance model: Supporting students’ attitude towards using a massive open online courses (MOOCs) systems. Interact. Learn. Environ. 2019, 1–13. [Google Scholar] [CrossRef]
- Fokides, E. Greek Pre-service Teachers’ Intentions to Use Computers as In-service Teachers. Contemp. Educ. Technol. 2020, 8, 56–75. [Google Scholar] [CrossRef]
- Zogheib, B.; Rabaa’i, A.; Zogheib, S.; Elsaheli, A. University student perceptions of technology use in mathematics learning. J. Inf. Technol. Educ. Res. 2015, 14, 417–438. [Google Scholar] [CrossRef] [Green Version]
- Goodhue, D.L. Understanding User Evaluations of Information Systems. Manag. Sci. 1995, 41, 1827–1844. [Google Scholar] [CrossRef]
- Alyoussef, I.Y. E-Learning acceptance: The role of task–technology fit as sustainability in higher education. Sustainability 2021, 13, 6450. [Google Scholar] [CrossRef]
- Wrzosek, N.; Zimmermann, A.; Balwicki, Ł. Doctors’ perceptions of e-prescribing upon its mandatory adoption in poland, using the unified theory of acceptance and use of technology method. Healthcare 2020, 8, 563. [Google Scholar] [CrossRef] [PubMed]
- Ain, N.U.; Kaur, K.; Waheed, M. The influence of learning value on learning management system use: An extension of UTAUT2. Inf. Dev. 2016, 32, 1306–1321. [Google Scholar] [CrossRef]
- Ching-Ter, C.; Hajiyev, J.; Su, C.R. Examining the students’ behavioral intention to use e-learning in Azerbaijan? The General Extended Technology Acceptance Model for E-Learning approach. Comput. Educ. 2017, 111, 128–143. [Google Scholar] [CrossRef]
- Alalwan, N.; Al-Rahmi, W.M.; Alfarraj, O.; Alzahrani, A.; Yahaya, N.; Al-Rahmi, A.M. Integrated three theories to develop a model of factors affecting students’ academic performance in higher education. IEEE Access 2019, 7, 98725–98742. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Prasetyo, Y.T.; Roque, R.A.C.; Chuenyindee, T.; Young, M.N.; Diaz, J.F.T.; Persada, S.F.; Miraja, B.A.; Perwira Redi, A.A.N. Determining Factors Affecting the Acceptance of Medical Education eLearning Platforms during the COVID-19 Pandemic in the Philippines: UTAUT2 Approach. Healthcare 2021, 9, 780. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, L.; Abarca, C.; Abarca, C.; Godes, N.; Pelola, E.; Pensona, M.; Niñofranco, M.; Itallo, C.A.; Paler, C.; Himang, C.; et al. Utilizing DEMATEL for Value-Embedded e-Learning during the COVID-19 Pandemic. Educ. Res. Int. 2021, 2021, 9575076. [Google Scholar] [CrossRef]
- Kim, H.J.; Hong, A.J.; Song, H.D. The roles of academic engagement and digital readiness in students’ achievements in university e-learning environments. Int. J. Educ. Technol. High. Educ. 2019, 16, 21. [Google Scholar] [CrossRef]
- Chu, T.H.; Chen, Y.Y. With Good We Become Good: Understanding e-learning adoption by theory of planned behavior and group influences. Comput. Educ. 2016, 92–93, 37–52. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hsiao, C.; Purnomo, S.H. An empirical examination of individual and system characteristics on enhancing e-learning acceptance. Australas. J. Educ. Technol. 2014, 30, 562–579. [Google Scholar] [CrossRef]
- Salloum, S.A.; Qasim Mohammad Alhamad, A.; Al-Emran, M.; Abdel Monem, A.; Shaalan, K. Exploring students’ acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Humida, T.; Al Mamun, M.H.; Keikhosrokiani, P. Predicting behavioral intention to use e-learning system: A case-study in Begum Rokeya University, Rangpur, Bangladesh. Educ. Inf. Technol. 2021, 1–25. [Google Scholar] [CrossRef]
- Safsouf, Y.; Mansouri, K.; Poirier, F. Smart learning environment, measure online student satisfaction: A case study in the context of higher education in Morocco. In Proceedings of the 2020 International Conference on Electrical and Information Technologies (ICEIT), Rabat, Morocco, 4–7 March 2020; pp. 1–5. [Google Scholar]
- Panigrahi, R.; Srivastava, P.R.; Panigrahi, P.K. Effectiveness of e-learning: The mediating role of student engagement on perceived learning effectiveness. Inf. Technol. People 2020, 34, 1840–1862. [Google Scholar] [CrossRef]
- Al-Nimer, M.; Alsheikh, G. Unleashing the role of e-learning in student engagement practices and accounting professional competencies. J. Appl. Res. High. Educ. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Rajabalee, Y.B.; Santally, M.I. Learner satisfaction, engagement and performances in an online module: Implications for institutional e-learning policy. Educ. Inf. Technol. 2021, 26, 2623–2656. [Google Scholar] [CrossRef] [PubMed]
- Sukendro, S.; Habibi, A.; Khaeruddin, K.; Indrayana, B.; Syahruddin, S.; Makadada, F.A.; Hakim, H. Using an extended Technology Acceptance Model to understand students’ use of e-learning during COVID-19: Indonesian sport science education context. Heliyon 2020, 6, e05410. [Google Scholar] [CrossRef] [PubMed]
- Kimathi, F.A.; Zhang, Y. Exploring the General Extended Technology Acceptance Model for e-Learning Approach on Student’s Usage Intention on e-Learning System in University of Dar es Salaam. Creat. Educ. 2019, 10, 208–223. [Google Scholar] [CrossRef] [Green Version]
- Girish, V.G.; Kim, M.Y.; Sharma, I.; Lee, C.K. Examining the structural relationships among e-learning interactivity, uncertainty avoidance, and perceived risks of COVID-19: Applying extended technology acceptance model. Int. J. Hum.-Comput. Interact. 2021, 7, 1–11. [Google Scholar] [CrossRef]
- Jameel, A.S.; Abdalla, S.N.; Karem, M.A.; Ahmad, A.R. Behavioural Intention to Use E-Learning from student’s perspective during COVID-19 Pandemic. In Proceedings of the 2020 2nd Annual International Conference on Information and Sciences (AiCIS), Fallujah, Iraq, 24–25 November 2020; pp. 165–171. [Google Scholar]
Items | Description | N | % | Cumulative % |
---|---|---|---|---|
Gander | Male | 273 | 69.1 | 100.0 |
Female | 122 | 30.9 | 30.9 | |
Age | 18–20 | 27 | 6.8 | 6.8 |
21–24 | 64 | 16.2 | 23.0 | |
25–29 | 138 | 34.9 | 58.0 | |
30–34 | 81 | 20.5 | 78.5 | |
35–40 | 57 | 14.4 | 92.9 | |
41–45 | 17 | 4.3 | 97.2 | |
46–Above | 11 | 2.8 | 100.0 | |
Education | Social Science | 37 | 9.4 | 9.4 |
Science &Technology | 138 | 34.9 | 44.4 | |
Engineering | 85 | 21.5 | 66.0 | |
Management | 96 | 24.3 | 90.4 | |
Others | 38 | 9.6 | 100.0 |
Construct | Items | IL | CA | CR | AVE |
---|---|---|---|---|---|
Experience (EXP) | EXP 1 | 0.789 | 0.862 | 0.901 | 0.645 |
EXP2 | 0.841 | ||||
EXP3 | 0.847 | ||||
EXP4 | 0.779 | ||||
EXP 5 | 0.755 | ||||
Technology Anxiety (TEA) | TEA 1 | 0.783 | 0.873 | 0.907 | 0.662 |
TEA 2 | 0.822 | ||||
TEA 3 | 0.831 | ||||
TEA 4 | 0.835 | ||||
TEA 5 | 0.798 | ||||
Facilitating conditions (FC) | FC 1 | 0.811 | 0.868 | 0.905 | 0.657 |
FC2 | 0.844 | ||||
FC3 | 0.865 | ||||
FC4 | 0.789 | ||||
FC 5 | 0.737 | ||||
Students’ engagement (SEN) | SEN 1 | 0.764 | 0.849 | 0.892 | 0.624 |
SEN 2 | 0.825 | ||||
SEN 3 | 0.797 | ||||
SEN 4 | 0.772 | ||||
SEN 5 | 0.789 | ||||
Perceived usefulness (PU) | PU 1 | 0.813 | 0.885 | 0.916 | 0.686 |
PU 2 | 0.828 | ||||
PU3 | 0.871 | ||||
PU4 | 0.822 | ||||
PU5 | 0.807 | ||||
Perceived ease of use (PEOU) | PEOU 1 | 0.787 | 0.884 | 0.915 | 0.684 |
PEOU 2 | 0.818 | ||||
PEOU 3 | 0.843 | ||||
PEOU 4 | 0.872 | ||||
PEOU 5 | 0.812 | ||||
Task-technology fit (TTF) | TTF1 | 0.737 | 0.849 | 0.892 | 0.622 |
TTF 2 | 0.791 | ||||
TTF 3 | 0.817 | ||||
TTF 4 | 0.821 | ||||
TTF5 | 0.775 | ||||
Behavioral intention to use eLearning (BI) | BI 1 | 0.762 | 0.845 | 0.890 | 0.619 |
BI 2 | 0.704 | ||||
BI 3 | 0.828 | ||||
BI 4 | 0.835 | ||||
BI 5 | 0.796 | ||||
eLearning adoption (EA) | EA1 | 0.787 | 0.873 | 0.908 | 0.663 |
EA2 | 0.826 | ||||
EA3 | 0.831 | ||||
EA4 | 0.832 | ||||
EA5 | 0.793 |
BI | EXP | FC | PEOU | PU | SEN | TTF | TEA | EA | |
---|---|---|---|---|---|---|---|---|---|
Behavioral intention to use e-Learning | 0.787 | ||||||||
Experience | 0.361 | 0.803 | |||||||
Facilitating conditions | 0.423 | 0.334 | 0.811 | ||||||
Perceived ease of use | 0.363 | 0.358 | 0.393 | 0.827 | |||||
Perceived usefulness | 0.422 | 0.371 | 0.480 | 0.422 | 0.828 | ||||
Students’ engagement | 0.438 | 0.345 | 0.403 | 0.446 | 0.469 | 0.790 | |||
Task-technology fit | 0.532 | 0.440 | 0.722 | 0.513 | 0.613 | 0.557 | 0.789 | ||
Technology Anxiety | 0.421 | 0.377 | 0.432 | 0.396 | 0.409 | 0.433 | 0.522 | 0.814 | |
E-learning adoption for educational sustainability | 0.421 | 0.377 | 0.431 | 0.395 | 0.410 | 0.433 | 0.522 | 1.000 | 0.814 |
BI | EA | EXP | FC | PEOU | PU | SEN | TEA | TTF | |
---|---|---|---|---|---|---|---|---|---|
BI_1 | 0.762 | 0.340 | 0.265 | 0.467 | 0.325 | 0.431 | 0.474 | 0.340 | 0.549 |
BI_2 | 0.704 | 0.257 | 0.338 | 0.355 | 0.292 | 0.384 | 0.407 | 0.257 | 0.422 |
BI_3 | 0.828 | 0.351 | 0.273 | 0.290 | 0.257 | 0.291 | 0.285 | 0.352 | 0.369 |
BI_4 | 0.835 | 0.321 | 0.298 | 0.267 | 0.273 | 0.273 | 0.273 | 0.321 | 0.375 |
BI_5 | 0.796 | 0.376 | 0.249 | 0.243 | 0.266 | 0.252 | 0.246 | 0.377 | 0.338 |
EA_1 | 0.361 | 0.787 | 0.290 | 0.313 | 0.286 | 0.362 | 0.381 | 0.783 | 0.420 |
EA_2 | 0.311 | 0.826 | 0.302 | 0.336 | 0.245 | 0.365 | 0.308 | 0.822 | 0.400 |
EA_3 | 0.304 | 0.831 | 0.336 | 0.353 | 0.294 | 0.371 | 0.323 | 0.831 | 0.404 |
EA_4 | 0.391 | 0.832 | 0.295 | 0.394 | 0.386 | 0.312 | 0.408 | 0.835 | 0.455 |
EA_5 | 0.335 | 0.793 | 0.312 | 0.352 | 0.376 | 0.269 | 0.332 | 0.798 | 0.436 |
EXP_1 | 0.260 | 0.335 | 0.789 | 0.303 | 0.264 | 0.257 | 0.275 | 0.335 | 0.319 |
EXP_2 | 0.254 | 0.303 | 0.841 | 0.270 | 0.292 | 0.331 | 0.256 | 0.303 | 0.327 |
EXP_3 | 0.321 | 0.314 | 0.847 | 0.256 | 0.307 | 0.319 | 0.296 | 0.315 | 0.374 |
EXP_4 | 0.267 | 0.266 | 0.779 | 0.198 | 0.301 | 0.254 | 0.234 | 0.267 | 0.357 |
EXP_5 | 0.340 | 0.296 | 0.755 | 0.319 | 0.268 | 0.324 | 0.321 | 0.296 | 0.380 |
FC_1 | 0.331 | 0.355 | 0.295 | 0.811 | 0.340 | 0.396 | 0.317 | 0.356 | 0.580 |
FC_2 | 0.349 | 0.362 | 0.257 | 0.844 | 0.349 | 0.382 | 0.342 | 0.363 | 0.601 |
FC_3 | 0.321 | 0.351 | 0.285 | 0.865 | 0.293 | 0.391 | 0.318 | 0.352 | 0.574 |
FC_4 | 0.327 | 0.327 | 0.268 | 0.789 | 0.287 | 0.347 | 0.280 | 0.327 | 0.553 |
FC_5 | 0.379 | 0.348 | 0.249 | 0.737 | 0.318 | 0.421 | 0.368 | 0.347 | 0.609 |
PEOU_1 | 0.331 | 0.247 | 0.326 | 0.293 | 0.787 | 0.467 | 0.401 | 0.248 | 0.431 |
PEOU_2 | 0.280 | 0.358 | 0.280 | 0.349 | 0.818 | 0.358 | 0.390 | 0.359 | 0.489 |
PEOU_3 | 0.272 | 0.363 | 0.289 | 0.317 | 0.843 | 0.296 | 0.343 | 0.364 | 0.360 |
PEOU_4 | 0.284 | 0.357 | 0.287 | 0.344 | 0.872 | 0.320 | 0.370 | 0.359 | 0.429 |
PEOU_5 | 0.335 | 0.305 | 0.297 | 0.319 | 0.812 | 0.297 | 0.332 | 0.305 | 0.401 |
PU_1 | 0.344 | 0.340 | 0.273 | 0.375 | 0.338 | 0.813 | 0.392 | 0.340 | 0.523 |
PU_2 | 0.395 | 0.328 | 0.311 | 0.341 | 0.369 | 0.828 | 0.355 | 0.327 | 0.504 |
PU_3 | 0.349 | 0.331 | 0.303 | 0.425 | 0.361 | 0.871 | 0.399 | 0.330 | 0.494 |
PU_4 | 0.327 | 0.361 | 0.323 | 0.410 | 0.352 | 0.822 | 0.388 | 0.360 | 0.502 |
PU_5 | 0.332 | 0.338 | 0.327 | 0.438 | 0.325 | 0.807 | 0.407 | 0.337 | 0.517 |
SEN_1 | 0.416 | 0.333 | 0.279 | 0.307 | 0.351 | 0.324 | 0.764 | 0.333 | 0.434 |
SEN_2 | 0.392 | 0.333 | 0.283 | 0.357 | 0.408 | 0.394 | 0.825 | 0.333 | 0.500 |
SEN_3 | 0.373 | 0.358 | 0.288 | 0.263 | 0.355 | 0.398 | 0.797 | 0.358 | 0.436 |
SEN_4 | 0.276 | 0.320 | 0.211 | 0.317 | 0.267 | 0.372 | 0.772 | 0.319 | 0.415 |
SEN_5 | 0.257 | 0.369 | 0.295 | 0.343 | 0.363 | 0.362 | 0.789 | 0.369 | 0.404 |
TEA_1 | 0.361 | 0.787 | 0.290 | 0.313 | 0.286 | 0.362 | 0.381 | 0.783 | 0.420 |
TEA_2 | 0.311 | 0.826 | 0.302 | 0.336 | 0.245 | 0.365 | 0.308 | 0.822 | 0.400 |
TEA_3 | 0.304 | 0.831 | 0.336 | 0.353 | 0.294 | 0.371 | 0.323 | 0.831 | 0.404 |
TEA_4 | 0.391 | 0.832 | 0.295 | 0.394 | 0.386 | 0.312 | 0.408 | 0.835 | 0.455 |
TEA_5 | 0.335 | 0.793 | 0.312 | 0.352 | 0.376 | 0.269 | 0.332 | 0.798 | 0.436 |
TTF_1 | 0.425 | 0.433 | 0.350 | 0.940 | 0.421 | 0.486 | 0.425 | 0.434 | 0.737 |
TTF_2 | 0.488 | 0.487 | 0.399 | 0.479 | 0.452 | 0.458 | 0.484 | 0.487 | 0.791 |
TTF_3 | 0.407 | 0.393 | 0.358 | 0.446 | 0.364 | 0.489 | 0.434 | 0.394 | 0.817 |
TTF_4 | 0.402 | 0.388 | 0.305 | 0.422 | 0.381 | 0.474 | 0.412 | 0.388 | 0.821 |
TTF_5 | 0.351 | 0.321 | 0.302 | 0.441 | 0.382 | 0.507 | 0.430 | 0.321 | 0.775 |
Factors | BI | EXP | FC | PEOU | PU | SEN | TTF | TEA | EAB |
---|---|---|---|---|---|---|---|---|---|
Behavioral intention to use e-learning | |||||||||
Experience | 0.422 | ||||||||
Facilitating conditions | 0.481 | 0.388 | |||||||
Perceived ease of use | 0.416 | 0.409 | 0.447 | ||||||
Perceived usefulness | 0.479 | 0.424 | 0.546 | 0.475 | |||||
Students’ engagement | 0.501 | 0.401 | 0.466 | 0.508 | 0.540 | ||||
Task-technology fit | 0.608 | 0.505 | 0.803 | 0.582 | 0.705 | 0.648 | |||
Technology Anxiety | 0.484 | 0.436 | 0.492 | 0.443 | 0.469 | 0.500 | 0.593 | ||
E-learning adoption for educational sustainability | 0.484 | 0.436 | 0.492 | 0.443 | 0.469 | 0.500 | 0.593 | 0.645 |
BI | EXP | FC | PEOU | PU | SEN | TTF | TEA | EA | |
---|---|---|---|---|---|---|---|---|---|
Behavioral intention to use eLearning | 1.417 | ||||||||
Experience | 1.287 | 1.312 | |||||||
Facilitating conditions | 1.473 | 1.498 | |||||||
Perceived ease of use | 1.357 | 1.456 | 1.378 | ||||||
Perceived usefulness | 1.553 | 1.587 | |||||||
Students’ engagement | 1.465 | 1.534 | |||||||
Task-technology fit | 1.357 | 1.67 | |||||||
Technology Anxiety | 1.454 | 1.48 | |||||||
E-Learning use for educational sustainability |
Factors | Number Hypothesis | Path (β) | T-Values | p-Values | Results |
---|---|---|---|---|---|
EXP → PEOU | H1 | 0.132 | 2.332 | 0.020 | Accepted |
EXP → TTF | H2 | 0.081 | 2.237 | 0.026 | Accepted |
TEA → PEOU | H3 | 0.133 | 2.444 | 0.015 | Accepted |
TEA → TTF | H4 | 0.102 | 2.505 | 0.013 | Accepted |
FC → PEOU | H5 | 0.130 | 2.279 | 0.023 | Accepted |
FC → TTF | H6 | 0.443 | 10.466 | 0.000 | Accepted |
SEN → PEOU | H7 | 0.218 | 3.861 | 0.000 | Accepted |
SEN → TTF | H8 | 0.160 | 3.886 | 0.000 | Accepted |
PU → PEOU | H9 | 0.153 | 2.535 | 0.012 | Accepted |
PU → TTF | H10 | 0.207 | 4.937 | 0.000 | Accepted |
PEOU → TTF | H11 | 0.110 | 3.228 | 0.001 | Accepted |
PEOU → BI | H12 | 0.122 | 2.503 | 0.013 | Accepted |
PEOU → EA | H13 | 0.151 | 2.774 | 0.006 | Accepted |
TTF → BI | H14 | 0.470 | 9.501 | 0.000 | Accepted |
TTF → EA | H15 | 0.348 | 5.589 | 0.000 | Accepted |
BI → EA | H16 | 0.181 | 3.368 | 0.001 | Accepted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alismaiel, O.A. Using Structural Equation Modeling to Assess Online Learning Systems’ Educational Sustainability for University Students. Sustainability 2021, 13, 13565. https://doi.org/10.3390/su132413565
Alismaiel OA. Using Structural Equation Modeling to Assess Online Learning Systems’ Educational Sustainability for University Students. Sustainability. 2021; 13(24):13565. https://doi.org/10.3390/su132413565
Chicago/Turabian StyleAlismaiel, Omar A. 2021. "Using Structural Equation Modeling to Assess Online Learning Systems’ Educational Sustainability for University Students" Sustainability 13, no. 24: 13565. https://doi.org/10.3390/su132413565
APA StyleAlismaiel, O. A. (2021). Using Structural Equation Modeling to Assess Online Learning Systems’ Educational Sustainability for University Students. Sustainability, 13(24), 13565. https://doi.org/10.3390/su132413565