Source Apportionment of Particulate Matter in Urban Snowpack Using End-Member Mixing Analysis and Positive Matrix Factorization Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Chemical Determinations
2.3. Data Processing
3. Results and Discussion
3.1. Chemical Composition of Particulate Matter
3.2. Identification of Pollution Sources and Their Tracers Using Correlation Analysis and End-Member Mixing Approach
3.3. Source Apportionment of Particulate Matter Using End-Member Mixing Approach
3.3.1. Differences in Source Contributions Resulting from the Use of Al-Normalized and Si-Normalized Tracer Ratios
3.3.2. Differences in Contributions of Sources Common for All the Three Cities
3.3.3. Source Attribution of Chemical Species That Were Not Used as Source Tracers
3.4. Source Apportionment of Particulate Matter Using Positive Matrix Factorization
3.4.1. PM Sources Identified in Irkutsk City and Their Contributions to Snow Pollution
3.4.2. PM Sources Identified in Shelekhov City and Their Contributions to Snow Pollution
3.4.3. PM Sources Identified in Slyudyanka City and Their Contributions to Snow Pollution
4. Conclusions
- In urban environments of Eastern Siberia, the most suitable tracers of PM sources are Si, Al, Fe and Ca. It was found that Si, Fe and Ca were the tracers of aluminosilicates, non-exhaust traffic emissions and concrete deterioration, respectively. Aluminum was found to be the tracer of both fossil fuel combustion and aluminum production. The trace elements measured in PM was not attributed to any particular source and thus could not be used as source tracers.
- The number of sources identified in each city using EMMA was equal to four, whereas the number of sources identified in Irkutsk, Shelekhov and Slyudyanka using PMF model was equal to five, four and three, respectively. Some sources identified using PMF were the combinations of two sources identified using EMMA, whereas some sources identified using EMMA were split by PMF into two sources. Despite of this, the types of pollution sources identified in each particular city using EMMA and PMF model were the same.
- The contributions of combined sources identified using PMF are similar to sums of contributions of respective single sources identified using EMMA. Moreover, the contributions of point PM sources such as aluminum production (Shelekhov) and marble quarry (Slyudyanka) evaluated using EMMA and PMF were quite similar.
- Despite the differences in number of PM sources and their contributions, the data obtained using both techniques are in agreement with existing knowledge on economic-geographical situations in studied cities. For example, the contributions of non-exhaust traffic emission and aluminosilicates calculated using both techniques increase with decrease of city size, due to increase in use of personal vehicles and application of local deicing materials (sand, gravel) instead of salt.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mar, T.F.; Norris, G.A.; Koenig, J.Q.; Larson, T.V. Associations between air pollution and mortality in Phoenix, 1995–1997. Environ. Health Perspect. 2000, 108, 347–353. [Google Scholar] [CrossRef]
- Tsiouri, V.; Kakosimos, K.E.; Kumar, P. Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area—A review. Air Qual. Atmos. Health 2014, 8, 67–80. [Google Scholar] [CrossRef]
- Bartels, S.F.; Gendreau-Berthiaume, B.; Macdonald, S.E. The impact of atmospheric acid deposition on tree growth and forest understory vegetation in the Athabasca Oil Sands Region. Sci. Total Environ. 2019, 696, 133877. [Google Scholar] [CrossRef]
- Tranvik, L.J. Acidification of inland waters. AMBIO 2020, 50, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Meili, M.; Bishop, K.; Bringmark, L.; Johansson, K.; Munthe, J.; Sverdrup, H.; de Vries, W. Critical levels of atmospheric pollution: Criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Sci. Total Environ. 2003, 304, 83–106. [Google Scholar] [CrossRef]
- Bergkvist, B.; Folkeson, L.; Berggren, D. Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. Water Air Soil Pollut. 1989, 47, 217–286. [Google Scholar] [CrossRef]
- Semenov, M.; Bashkin, V.; Sverdrup, H. Critical Loads of Acidity for Forest Ecosystems of North Asia. Water Air Soil Pollut. 2001, 130, 1193–1198. [Google Scholar] [CrossRef]
- Semenov, M.; Semenov, Y.; Silaev, A.; Begunova, L. Source Apportionment of Inorganic Solutes in Surface Waters of Lake Baikal Watershed. Sustainability 2021, 13, 5389. [Google Scholar] [CrossRef]
- Chen, L.; Zhi, X.; Shen, Z.; Dai, Y.; Aini, G. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China. Environ. Sci. Pollut. Res. 2018, 25, 2377–2388. [Google Scholar] [CrossRef]
- Lafrenière, M.J.; Blais, J.M.; Sharp, M.J.; Schindler, D.W. Organochlorine Pesticide and Polychlorinated Biphenyl Concentrations in Snow, Snowmelt, and Runoff at Bow Lake, Alberta. Environ. Sci. Technol. 2006, 40, 4909–4915. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Österlund, H.; Marsalek, J.; Viklander, M. Laboratory Melting of Late-Winter Urban Snow Samples: The Magnitude and Dynamics of Releases of Heavy Metals and PAHs. Water Air Soil Pollut. 2019, 230, 182. [Google Scholar] [CrossRef] [Green Version]
- Semenov, M.Y.; Marinaite, I.I. Multi-source apportionment of polycyclic aromatic hydrocarbons using end-member mixing approach. Environ. Earth Sci. 2014, 73, 1769–1777. [Google Scholar] [CrossRef]
- Popovicheva, O.; Molozhnikova, E.; Nasonov, S.; Potemkin, V.; Penner, I.; Klemasheva, M.; Marinaite, I.; Golobokova, L.; Vratolis, S.; Eleftheriadis, K.; et al. Industrial and wildfire aerosol pollution over world heritage Lake Baikal. J. Environ. Sci. 2021, 107, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Zhamsueva, G.; Zayakhanov, A.; Tcydypov, V.; Dementeva, A.; Balzhanov, T. Spatial-Temporal Variability of Small Gas Impurities over Lake Baikal during the Forest Fires in the Summer of 2019. Atmosphere 2020, 12, 20. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Marinaite, I.I. Using the end-member mixing approach to apportion sources of polycyclic aromatic hydrocarbons in various environmental compartments. Environ. Earth Sci. 2016, 75, 207. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Marinaite, I.I.; Golobokova, L.P.; Khuriganova, O.I.; Khodzher, T.V.; Semenov, Y.M. Source apportionment of polycyclic aromatic hydrocarbons in Lake Baikal water and adjacent air layer. Chem. Ecol. 2017, 33, 977–990. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Marinaite, I.I.; Zhuchenko, N.A.; Silaev, A.V.; Vershinin, K.E.; Semenov, Y.M. Revealing the factors affecting occurrence and distribution of polycyclic aromatic hydrocarbons in water and sediments of Lake Baikal and its tributaries. Chem. Ecol. 2018, 34, 925–940. [Google Scholar] [CrossRef]
- Thurston, G.D.; Ito, K.; Lall, R. A source apportionment of U.S. fine particulate matter air pollution. Atmos. Environ. 2011, 45, 3924–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Xie, S.; Zhang, Y.; Zeng, L.; Salmon, L.G.; Zheng, M. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ. 2006, 372, 278–286. [Google Scholar] [CrossRef]
- Beddows, D.C.S.; Dall’Osto, M.; Harrison, R.M. Cluster analysis of rural, urban and curbside 916 atmospheric particle size data. Environ. Sci. Technol. 2009, 43, 4694–4700. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qi, X.; Nie, W.; Wang, J.; Xu, Z.; Wang, T.; Liu, Y.; Shen, Y.; Xu, Z.; Kokkonen, T.V.; et al. Cluster analysis of submicron particle number size distributions at the SORPES station in the Yangtze River Delta of East China. J. Geophys. Res. Atmos. 2021, 126, e2020JD034004. [Google Scholar] [CrossRef]
- Wan, X.; Chen, J.; Tian, F.; Sun, W.; Yang, F.; Saiki, K. Source apportionment of PAHs in atmospheric particulates of Dalian: Factor analysis with nonnegative constraints and emission inventory analysis. Atmos. Environ. 2006, 40, 6666–6675. [Google Scholar] [CrossRef]
- Hu, N.-J.; Huang, P.; Liu, J.-H.; Ma, D.-Y.; Shi, X.-F.; Mao, J.; Liu, Y. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments in the Yellow River Estuary, China. Environ. Earth Sci. 2014, 71, 873–883. [Google Scholar] [CrossRef]
- Larsen, R.K.; Baker, J. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef]
- Cai, K.; Li, C. Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City-Shijiazhuang, China. Int. J. Environ. Res. Public Health 2019, 16, 2625. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Li, H.; Li, J.; Mao, C.; Ji, J.; Yuan, X.; Li, T.; Ayoko, G.; Frost, R.L.; Feng, Y.-X. Multivariate linear regression model for source apportionment and health risk assessment of heavy metals from different environmental media. Ecotoxicol. Environ. Saf. 2018, 165, 555–563. [Google Scholar] [CrossRef]
- Henry, R.C. Multivariate receptor modeling by N-dimensional edge detection. Chemom. Intell. Lab. Syst. 2003, 65, 179–189. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Belis, C.; Favez, O.; Mircea, M.; Diapouli, E.; Manousakas, M.; Vratolis, S.; Gilardoni, S.; Paglione, M.; Decesari, S.; Mocnik, G.; et al. European Guide on Air Pollution Source Apportionment with Receptor Models; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-09001-4. [Google Scholar] [CrossRef]
- Gietl, J.K.; Klemm, O. Source Identification of Size-Segregated Aerosol in Münster, Germany, by Factor Analysis. Aerosol Sci. Technol. 2009, 43, 828–837. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Tang, A.; Yuan, H.; Sun, Y.; Chen, S.; Zheng, A. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Ulbrich, I.M.; Canagaratna, M.R.; Zhang, Q.; Worsnop, D.R.; Jimenez, J.L. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. Discuss. 2009, 9, 2891–2918. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.U.; Robinson, E.S.; Gu, P.; Robinson, A.L.; Apte, J.S.; Presto, A.A. High-spatial-resolution mapping and source apportionment of aerosol composition in Oakland, California, using mobile aerosol mass spectrometry. Atmos. Chem. Phys. Discuss. 2018, 18, 16325–16344. [Google Scholar] [CrossRef] [Green Version]
- Pindado, O.; Perez, R.M. Source apportionment of particulate organic compounds in a rural area of Spain by positive matrix factorization. Atmos. Pollut. Res. 2011, 2, 492–505. [Google Scholar] [CrossRef] [Green Version]
- Simoneit, B.R. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Lucarelli, F.; Calzolai, G.; Chiari, M.; Giardi, F.; Czelusniak, C.; Nava, S. Hourly Elemental Composition and Source Identification by Positive Matrix Factorization (PMF) of Fine and Coarse Particulate Matter in the High Polluted Industrial Area of Taranto (Italy). Atmosphere 2020, 11, 419. [Google Scholar] [CrossRef] [Green Version]
- Acciai, C.; Zhang, Z.; Wang, F.; Zhong, Z.; Lonati, G. Characteristics and source Analysis of trace Elements in PM2.5 in the Urban Atmosphere of Wuhan in Spring. Aerosol Air Qual. Res. 2017, 17, 2224–2234. [Google Scholar] [CrossRef]
- Krecl, P.; Larsson, E.H.; Ström, J.; Johansson, C. Contribution of residential wood combustion and other sources to hourly winter aerosol in Northern Sweden determined by positive matrix factorization. Atmos. Chem. Phys. Discuss. 2008, 8, 3639–3653. [Google Scholar] [CrossRef] [Green Version]
- Semenov, M.Y.; Marinaite, I.I.; Bashenkhaeva, N.V.; Zhuchenko, N.A.; Khuriganova, O.I.; Molozhnikova, E.V. Polycyclic aromatic hydrocarbons in a small eastern siberian river: Sources, delivery pathways, and behavior. Environ. Earth Sci. 2016, 75, 954. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Silaev, A.V.; Semenov, Y.M.; Begunova, L.A. Using Si, Al and Fe as Tracers for Source Apportionment of Air Pollutants in Lake Baikal Snowpack. Sustainability 2020, 12, 3392. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Xiao, Z.; Wang, H.; Peng, X.; Guan, L.; Huangfu, Y.; Shi, G.; Chen, K.; Bi, X.; Feng, Y. Influence of the sampling period and time resolution on the PM source apportionment: Study based on the high time-resolution data and long-term daily data. Atmos. Environ. 2017, 165, 301–309. [Google Scholar] [CrossRef]
- Luo, H.; Guan, Q.; Lin, J.; Wang, Q.; Yang, L.; Tan, Z.; Wang, N. Air pollution characteristics and human health risks in key cities of northwest China. J. Environ. Manag. 2020, 269, 110791. [Google Scholar] [CrossRef] [PubMed]
- Javed, W.; Guo, B. Chemical characterization and source apportionment of fine and coarse atmospheric particulate matter in Doha, Qatar. Atmos. Pollut. Res. 2020, 12, 122–136. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, J.; Zhang, L.; Cao, J.; Hu, J.; Tian, S.; Li, X.; Xu, W. Bulk Deposition and Source Apportionment of Atmospheric Heavy Metals and Metalloids in Agricultural Areas of Rural Beijing during 2016–2020. Atmosphere 2021, 12, 283. [Google Scholar] [CrossRef]
- Betsou, C.; Diapouli, E.; Tsakiri, E.; Papadopoulou, L.; Frontasyeva, M.; Eleftheriadis, K.; Ioannidou, A. First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece. Atmosphere 2021, 12, 208. [Google Scholar] [CrossRef]
- Manousakas, M.I.; Florou, K.; Pandis, S.N. Source Apportionment of Fine Organic and Inorganic Atmospheric Aerosol in an Urban Background Area in Greece. Atmosphere 2020, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yu, H.; Wang, Z.; Liang, W.; Shi, G.; Gao, J.; Li, M.; Feng, Y. Review of online source apportionment research based on observation for ambient particulate matter. Sci. Total Environ. 2020, 762, 144095. [Google Scholar] [CrossRef]
- Christophersen, N.; Neal, C.; Hooper, R.P.; Vogt, R.D.; Andersen, S. Modelling streamwater chemistry as a mixture of soilwater end-members—A step towards second-generation acidification models. J. Hydrol. 1990, 116, 307–320. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Zimnik, E.A. A three-component hydrograph separation based on relationship between organic and inorganic component concentrations: A case study in Eastern Siberia, Russia. Environ. Earth Sci. 2014, 73, 611–620. [Google Scholar] [CrossRef]
- Shevchenko, V.; Vorobyev, S.; Krickov, I.; Boev, A.; Lim, A.; Novigatsky, A.; Starodymova, D.; Pokrovsky, O. Insoluble Particles in the Snowpack of the Ob River Basin (Western Siberia) a 2800 km Submeridional Profile. Atmosphere 2020, 11, 1184. [Google Scholar] [CrossRef]
- Liang, S.X.; Wu, H.; Sun, H.W. Determination of trace elements in airborne PM10 by inductively coupled plasma mass spectrometry. Int. J. Environ. Sci. Technol. 2015, 12, 1373–1378. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, Z.; Zhang, T.; Wang, F.; Tao, Y.; Zhang, X.; Wang, F.; Huang, J.; Cheng, T.; Jiang, H.; et al. Chemical nature and predominant sources of PM10 and PM2.5 from multiple sites on the Silk Road, Northwest China. Atmos. Pollut. Res. 2020, 12, 425–436. [Google Scholar] [CrossRef]
- Liu, Y.; Yamanaka, T. Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. J. Hydrol. 2012, 464–465, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Sun, G.; Ma, S.; Liang, K.; Yang, C.; Li, B.; Luo, W. Inferring sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from the western Taiwan Strait through end-member mixing analysis. Mar. Pollut. Bull. 2016, 112, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Funk, B.; Göhler, D.; Sachsenhauser, B.; Stintz, M.; Stahlmecke, B.; Johnson, B.A.; Wohlleben, W. Impact of freeze—thaw weathering on integrity, internal structure and particle release from micro- and nanostructured cement composites. Environ. Sci. Nano 2019, 6, 1443–1456. [Google Scholar] [CrossRef] [Green Version]
- Estokova, A.; Oravec, J.; Kovalcikova, M. Environmental impact assessment of the concrete composites in terms of the selected toxic metals leaching. Chem. Eng. Trans. 2015, 43, 1915–1920. [Google Scholar] [CrossRef]
- Aleksandrova, A.Y.; Timofeeva, S.S. Assessment of the Impact of Mining Enterprises on the State of Atmospheric Air on the Results of Geochemical Snow Surveys. IOP Conf. Ser. Earth Environ. Sci. 2019, 272, 022068. [Google Scholar] [CrossRef]
- Westerlund, K.G.; Johansson, C. Emission of metals and particulate matter due to wear of brake linings in Stockholm. Air Poll. 2002, 10, 793–802. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Bagi, S.; Sharma, V.; Patel, M.; Aswath, P.B. Effects of diesel soot composition and accumulated vehicle mileage on soot oxidation characteristics. Energy Fuels 2016, 30, 8479–8490. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Kireeva, E.D.; Steiner, S.; Rothen-Rutishauser, B.; Persiantseva, N.M.; Timofeev, M.A.; Shonija, N.K.; Comte, P.; Czerwinski, J. Microstructure and Chemical Composition of Diesel and Biodiesel Particle Exhaust. Aerosol Air Qual. Res. 2014, 14, 1392–1401. [Google Scholar] [CrossRef]
- Davydova, N.D.; Znamenskaya, T.I.; Lopatkin, D.A. Identification of chemical elements as pollutants and their primary distribution in steppes of the southern Minusinsk depression. Contemp. Probl. Ecol. 2013, 6, 228–235. [Google Scholar] [CrossRef]
- Grebenshchikova, V.I.; Kuzmin, M.I.; Rukavishnikov, V.S.; Efimova, N.V.; Donskikh, I.V.; Doroshkov, A.A. Chemical Contamination of Soil on Urban Territories with Aluminum Production in the Baikal Region, Russia. Air Soil Water Res. 2021, 14, 1–11. [Google Scholar] [CrossRef]
- Kvande, H.; Drabløs, P.A. The Aluminum Smelting Process and Innovative Alternative Technologies. J. Occup. Environ. Med. 2014, 56, S23–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarhaug, T.A.; Ratvik, A.P. Aluminium Primary Production Off-Gas Composition and Emissions: An Overview. JOM 2019, 71, 2966–2977. [Google Scholar] [CrossRef] [Green Version]
- Root, R.A. Analysis of a Study of Lead Wheel Weight Deposition and Abrasion in New Jersey. Water Air Soil Pollut. 2015, 226, 381. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Kruger, N. Tyre Weights an Overlooked Diffuse Source of Lead and Antimony to Road Runoff. Sustainability 2020, 12, 6790. [Google Scholar] [CrossRef]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef] [Green Version]
- Pachon, J.E.; Weber, R.J.; Zhang, X.; Mulholland, J.A.; Russell, A.G. Revising the use of potassium (K) in the source apportionment of PM2.5. Atmos. Pollut. Res. 2013, 4, 14–21. [Google Scholar] [CrossRef] [Green Version]
Parameter | Al | Si | K | Ca | Ti | Cr | Mn | Fe | Ni | Cu | Zn | Sr | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irkutsk | |||||||||||||
Min | 2371 | 4381 | 97.8 | 210 | 38.8 | 1.25 | 5.90 | 405 | 1.17 | 3.01 | 2.87 | 2.51 | 0.84 |
25th | 3575 | 7882 | 287 | 578 | 77.8 | 2.54 | 13.94 | 923 | 3.48 | 5.87 | 7.79 | 11.1 | 1.77 |
Median | 4424 | 10,934 | 549 | 1288 | 167 | 4.85 | 36.33 | 1723 | 7.00 | 9.04 | 16.0 | 21.9 | 2.86 |
75th | 5304 | 14,667 | 815 | 2372 | 271 | 9.14 | 61.83 | 3932 | 14.4 | 17.6 | 27.9 | 47.5 | 5.44 |
Max | 7205 | 23,915 | 1964 | 16,457 | 632 | 24.19 | 137.94 | 7792 | 48.0 | 39.2 | 84.5 | 163 | 12.7 |
Mean | 4516 | 11,341 | 607 | 1858 | 187 | 6.45 | 42.26 | 2515 | 10.4 | 13.0 | 21.5 | 35.2 | 3.91 |
STD * | 1229 | 4069 | 409 | 2557 | 133 | 5.32 | 33.83 | 1973 | 9.67 | 9.90 | 18.0 | 36.3 | 2.90 |
Shelekhov | |||||||||||||
Min | 4002 | 2727 | 35.1 | 122 | 15.3 | 1.49 | 2.95 | 176 | 0.67 | 1.47 | 2.51 | 0.93 | 0.88 |
25th | 9760 | 6801 | 124 | 337 | 30.5 | 2.99 | 8.05 | 686 | 3.70 | 2.83 | 8.40 | 2.39 | 3.47 |
Median | 12,772 | 10,613 | 314 | 749 | 72.3 | 3.35 | 16.5 | 1026 | 5.02 | 5.56 | 16.2 | 8.10 | 4.27 |
75th | 15,933 | 12,720 | 444 | 944 | 113 | 4.58 | 23.9 | 1404 | 7.58 | 9.76 | 22.5 | 12.2 | 6.21 |
Max | 21,543 | 15,391 | 664 | 2025 | 258 | 7.99 | 95.6 | 4885 | 13.5 | 17.9 | 31.4 | 50.8 | 8.64 |
Mean | 12,221 | 9919 | 295 | 777 | 84.9 | 3.87 | 20.7 | 1201 | 5.63 | 6.32 | 15.3 | 10.2 | 4.65 |
STD | 4801 | 3491 | 180 | 492 | 59.8 | 1.72 | 19.5 | 955 | 2.93 | 4.07 | 8.75 | 11.0 | 2.09 |
Slyudyanka | |||||||||||||
Min | 587 | 997 | 41.5 | 45.0 | 7.62 | 0.24 | 0.95 | 70.7 | 0.48 | 0.59 | 0.50 | 0.34 | 0.25 |
25th | 3704 | 5977 | 261 | 1587 | 106 | 2.39 | 20.6 | 1098 | 3.20 | 6.66 | 6.70 | 27.9 | 1.63 |
Median | 4723 | 7133 | 416 | 4481 | 122 | 4.48 | 36.0 | 1775 | 5.02 | 11.2 | 9.30 | 84.2 | 2.11 |
75th | 5478 | 11,079 | 548 | 17,720 | 222 | 6.11 | 59.2 | 3215 | 7.34 | 22.9 | 17.3 | 119 | 3.80 |
Max | 7055 | 15,148 | 744 | 48,912 | 283 | 9.08 | 97.0 | 4210 | 9.92 | 30.9 | 24.1 | 170 | 6.15 |
Mean | 4686 | 8123 | 416 | 8947 | 149 | 4.46 | 43.0 | 2130 | 5.23 | 14.6 | 11.5 | 76.9 | 2.72 |
STD | 1532 | 3724 | 183 | 11,077 | 82.1 | 2.69 | 27.2 | 1218 | 2.74 | 9.77 | 7.06 | 52.2 | 1.62 |
Al | Si | K | Ca | Ti | Cr | Mn | Fe | Ni | Cu | Zn | Sr | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irkutsk | |||||||||||||
Al | 1 | ||||||||||||
Si | 0.49 * | 1 | |||||||||||
K | 0.48 | 0.68 | 1 | ||||||||||
Ca | 0.01 | 0.10 | 0.49 | 1 | |||||||||
Ti | 0.46 | 0.56 | 0.94 | 0.47 | 1 | ||||||||
Cr | 0.33 | 0.29 | 0.68 | 0.48 | 0.84 | 1 | |||||||
Mn | 0.40 | 0.56 | 0.88 | 0.70 | 0.93 | 0.80 | 1 | ||||||
Fe | 0.35 | 0.49 | 0.87 | 0.50 | 0.95 | 0.84 | 0.97 | 1 | |||||
Ni | 0.20 | 0.22 | 0.48 | 0.82 | 0.48 | 0.89 | 0.77 | 0.82 | 1 | ||||
Cu | 0.23 | 0.31 | 0.46 | 0.72 | 0.75 | 0.81 | 0.78 | 0.84 | 0.84 | 1 | |||
Zn | 0.19 | 0.29 | 0.68 | 0.81 | 0.50 | 0.47 | 0.81 | 0.81 | 0.81 | 0.82 | 1 | ||
Sr | 0.27 | 0.33 | 0.68 | 0.86 | 0.79 | 0.80 | 0.49 | 0.85 | 0.89 | 0.86 | 0.90 | 1 | |
Pb | 0.26 | 0.33 | 0.71 | 0.77 | 0.81 | 0.84 | 0.82 | 0.43 | 0.88 | 0.95 | 0.84 | 0.91 | 1 |
Shelekhov | |||||||||||||
Al | 1 | ||||||||||||
Si | −0.34 | 1 | |||||||||||
K | 0.29 | 0.11 | 1 | ||||||||||
Ca | 0.46 | 0.05 | 0.82 | 1 | |||||||||
Ti | 0.23 | 0.05 | 0.90 | 0.73 | 1 | ||||||||
Cr | 0.27 | 0.14 | 0.77 | 0.77 | 0.89 | 1 | |||||||
Mn | 0.14 | −0.05 | 0.71 | 0.49 | 0.91 | 0.88 | 1 | ||||||
Fe | 0.12 | −0.02 | 0.73 | 0.44 | 0.92 | 0.88 | 0.99 | 1 | |||||
Ni | 0.26 | 0.07 | 0.50 | 0.65 | 0.83 | 0.94 | 0.88 | 0.88 | 1 | ||||
Cu | 0.36 | 0.06 | 0.72 | 0.88 | 0.78 | 0.87 | 0.69 | 0.50 | 0.79 | 1 | |||
Zn | 0.58 | −0.17 | 0.52 | 0.73 | 0.50 | 0.72 | 0.49 | 0.43 | 0.79 | 0.84 | 1 | ||
Sr | 0.15 | −0.13 | 0.71 | 0.58 | 0.90 | 0.86 | 0.98 | 0.98 | 0.87 | 0.73 | 0.47 | 1 | |
Pb | 0.22 | 0.08 | 0.48 | 0.41 | 0.63 | 0.80 | 0.69 | 0.72 | 0.92 | 0.67 | 0.73 | 0.70 | 1 |
Slyudyanka | |||||||||||||
Al | 1 | ||||||||||||
Si | 0.53 | 1 | |||||||||||
K | 0.68 | 0.51 | 1 | ||||||||||
Ca | 0.17 | −0.14 | 0.32 | 1 | |||||||||
Ti | 0.76 | 0.72 | 0.69 | −0.27 | 1 | ||||||||
Cr | 0.73 | 0.77 | 0.47 | −0.33 | 0.92 | 1 | |||||||
Mn | 0.65 | 0.49 | 0.73 | −0.14 | 0.94 | 0.82 | 1 | ||||||
Fe | 0.60 | 0.48 | 0.65 | −0.20 | 0.93 | 0.86 | 0.98 | 1 | |||||
Ni | 0.60 | 0.58 | 0.39 | −0.27 | 0.82 | 0.91 | 0.78 | 0.86 | 1 | ||||
Cu | 0.45 | 0.42 | 0.10 | −0.11 | 0.53 | 0.74 | 0.48 | 0.61 | 0.88 | 1 | |||
Zn | 0.52 | 0.42 | 0.54 | −0.33 | 0.82 | 0.75 | 0.80 | 0.84 | 0.83 | 0.61 | 1 | ||
Sr | 0.26 | −0.10 | 0.39 | 0.65 | 0.18 | 0.16 | 0.38 | 0.39 | 0.33 | 0.47 | 0.27 | 1 | |
Pb | 0.38 | 0.29 | 0.46 | −0.36 | 0.72 | 0.64 | 0.73 | 0.78 | 0.73 | 0.52 | 0.94 | 0.30 | 1 |
Pollution Source | Si/Al | Fe/Al | Ca/Al | Al/Si | Fe/Si | Ca/Si |
---|---|---|---|---|---|---|
Irkutsk | ||||||
Concrete deterioration | 3.25 | 0.91 | 0.54 | 0.59 | 0.55 | 0.45 |
Non-exhaust traffic emissions | 1.25 | 1.11 | 0.03 | 0.66 | 0.96 | 0.05 |
Aluminosilicates | 3.65 | 0.33 | 0.14 | 0.28 | 0.10 | 0.03 |
Fossil fuel combustion | 1.11 | 0.13 | 0.07 | 0.73 | 0.08 | 0.01 |
Shelekhov | ||||||
Concrete deterioration | 0.98 | 0.76 | 0.53 | 2.01 | 0.39 | 0.71 |
Non-exhaust traffic emissions | 1.06 | 0.83 | 0.07 | 1.35 | 0.94 | 0.17 |
Aluminosilicates | 2.84 | 0.11 | 0.02 | 0.35 | 0.04 | 0.02 |
Aluminum production | 0.17 | 0.05 | 0.01 | 3.01 | 0.04 | 0.03 |
Slyudyanka | ||||||
Marble and mica mining | 2.15 | 0.60 | 6.93 | 0.92 | 0.52 | 3.96 |
Non-exhaust traffic emissions | 2.18 | 1.54 | 0.18 | 1.03 | 1.06 | 0.12 |
Aluminosilicates | 3.51 | 0.59 | 0.22 | 0.41 | 0.13 | 0.08 |
Fossil fuel combustion | 1.74 | 0.14 | 0.09 | 1.32 | 0.25 | 0.09 |
Pollution Source | Tracers | |
---|---|---|
Si, Fe, Ca Normalized to Al | Al, Fe, Ca Normalized to Si | |
Irkutsk | ||
Concrete deterioration | 22 | 20 |
Non-exhaust traffic emissions | 3 | 8 |
Aluminosilicates | 39 | 38 |
Fossil fuel combustion | 35 | 34 |
Shelekhov | ||
Concrete deterioration | 23 | 12 |
Non-exhaust traffic emissions | 6 | 15 |
Aluminosilicates | 23 | 51 |
Aluminum production | 49 | 22 |
Slyudyanka | ||
Marble and mica mining | 18 | 18 |
Non-exhaust traffic emissions | 24 | 18 |
Aluminosilicates | 19 | 53 |
Fossil fuel combustion | 38 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenov, M.Y.; Onishchuk, N.A.; Netsvetaeva, O.G.; Khodzher, T.V. Source Apportionment of Particulate Matter in Urban Snowpack Using End-Member Mixing Analysis and Positive Matrix Factorization Model. Sustainability 2021, 13, 13584. https://doi.org/10.3390/su132413584
Semenov MY, Onishchuk NA, Netsvetaeva OG, Khodzher TV. Source Apportionment of Particulate Matter in Urban Snowpack Using End-Member Mixing Analysis and Positive Matrix Factorization Model. Sustainability. 2021; 13(24):13584. https://doi.org/10.3390/su132413584
Chicago/Turabian StyleSemenov, Mikhail Y., Natalya A. Onishchuk, Olga G. Netsvetaeva, and Tamara V. Khodzher. 2021. "Source Apportionment of Particulate Matter in Urban Snowpack Using End-Member Mixing Analysis and Positive Matrix Factorization Model" Sustainability 13, no. 24: 13584. https://doi.org/10.3390/su132413584
APA StyleSemenov, M. Y., Onishchuk, N. A., Netsvetaeva, O. G., & Khodzher, T. V. (2021). Source Apportionment of Particulate Matter in Urban Snowpack Using End-Member Mixing Analysis and Positive Matrix Factorization Model. Sustainability, 13(24), 13584. https://doi.org/10.3390/su132413584