Evaluation of Regulating and Provisioning Services Provided by a Park Designed to Be Resilient to Climate Change in Bangkok, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Inventory and Measurements
2.2.1. Evaluating the Monetary Value of Regulating Services Provided by Trees Using the i-Tree Eco International Model Version 6 (V6)
Carbon Storage and Sequestration
Model | Input Data/Parameter | Value/ID/Monitor * | Data Year | Reference |
---|---|---|---|---|
Weather data a | 484500: Bangkok | 2017 | NCEI, 2017 | |
484500: Bangkok | 2017 | NCEI, 2017 | ||
484500: Bangkok | 2017 | NCEI, 2017 | ||
484500: Bangkok | 2017 | NCEI, 2017 | ||
Carbon Storage/ Sequestration | Social cost of carbon a | USD 210.63 per metric ton | 2015 | IWG, 2015 |
Air Pollutant Removal | CO concentration b Hourly average = 0.60 ppm (threshold = 3.492 ppm) | USD 1628.66 per metric ton | 2017 | KU Station, 2017 |
NO2 concentration b Hourly average = 11.57 ppb (24 h = 13 ppb) | USD 11,466.82 per metric ton | 2017 | KU Station, 2017 | |
O3 concentration b Hourly average = 12.31 ppb (8 h ≤ 51 ppb) | USD 11,466.82 per metric ton | 2017 | KU Station, 2017 | |
PM2.5 concentration b Hourly average = 16.51 µg/m3 (24 h = 15 µg/m3 | USD 7655.87 per metric ton | 2017 | KU Station, 2017 | |
SO2 concentration b Hourly average = 1.18 ppb (24 h = 15 ppb) | USD 2807.28 per metric ton | 2017 | KU Station, 2017 | |
Avoided runoff | Stormwater control cost c | USD 2.5 per m3 | 2017 | Vargas and others, 2007 |
Air Pollution Removal
Avoided Runoff
2.2.2. Provisioning Services Based on Timber Market Price
3. Results
4. Discussion
4.1. Ecosystem Benefit Value Comparison
4.2. Uncertainty of the Model in Estimating Ecosystem Services
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects 2018. Available online: https://population.un.org/wup (accessed on 28 October 2021).
- United Nations ESCAP. Population and Development Indicators for Asia and the Pacific. 2016. Available online: https://www.unescap.org/sites/default/files/SPPS%20PS%20data%20sheet%202016%20v15-2.pdf (accessed on 12 August 2021).
- Jennings, V.; Larson, L.; Yun, J. Advancing sustainability through urban green space: Cultural ecosystem services, equity, and social determinants of health. Int. J. Environ. Res. Public Health 2016, 13, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, M.C.; Skelly, D.K.; Burchsted, D.; Price, W.; Lowry, S. Stream communities across a rural-urban landscape gradient. Divers. Distrib. 2006, 12, 337–350. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystem and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- The Economics of Ecosystems and Biodiversity (TEEB) Foundation. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Hori, K.; Kamiyama, C.; Sito, O. Exploring the relationship between ecosystems and human well-being by understanding the preferences for natural capital based and produced capital-based ecosystem services. Sustain. Sci. 2019, 14, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Maew, J. Mapping Ecosystem Services; Pensoft Publisher: Sofia, Bulgaria, 2017. [Google Scholar]
- Harrison, P.A.; Dunford, R.; Barton, D.N.; Kelemen, E.; Marín-Lópea, B.; Norton, L.; Termansen, M.; Saarikoski, H.; Hendriks, K.; Gómez-Baggethun, E.; et al. Selecting methods for ecosystem service assessment: A decision tree approach. Ecosyst. Serv. 2018, 29, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.L. What could we lose? Economic values of urban fores benefits. In Proceedings of the 6th Canadian Urban Forest Conference, Kelowna, BC, Canada, 19–23 October 2004. [Google Scholar]
- Perrotti, D.; Iuorio, O. Green Infrastructure in the Space of Flows: An Urban Metabolism Approach to Bridge Environmental Performance and User’s Wellbeing; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Lindén, L.; Riikonen, A.; Setälä, H.; Yli-Pelkonen, V. Quantifying carbon stocks in urban parks under cold climate conditions. Urban For. Urban Green. 2020, 49, 126633. [Google Scholar] [CrossRef]
- Kordowski, K.; Kuttler, W. Carbon dioxide fluxes over an urban park area. Atmos. Environ. 2010, 44, 2722–2730. [Google Scholar] [CrossRef]
- Yotapakdee, T.; Asanok, L.a.; Kamyo, T.; Norsangsri, M.; Karnasuta, N.; Navakam, S.; Kaewborisut, C. Benefits and value of big trees in urban area: A study in Bang Kachao Green Space, Thailand. Environ. Nat. Resour. J. 2019, 17, 33–43. [Google Scholar] [CrossRef]
- Hamel, P.; Guerry, A.D.; Polasky, S.; Douglass, J.A.; Hamann, M.; Janke, B.; Kuiper, J.J.; Levrel, H.; Liu, H.; Lonsdorf, E.; et al. Mapping the benefits of nature in cities with the InVEST software. NPJ Urban Sustain. 2021, 1, 25. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.J.; Rowntree, R.A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; United States Department of Agriculture (USDA), Forest Service: Radnor, PA, USA, 1994; p. 201. [Google Scholar]
- Nowak, D.J. Assessing the benefits and economic values of trees. In Routledge Handbook of Urban Forestry, 1st ed.; Ferrini, F., Konijnendijk van den Boshch, C.C., Eds.; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bone, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Endreny, T.; Santagata, R.; Perna, A.; De Stefano, C.; Rallo, R.F.; Ulgiati, S. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Model. 2017, 360, 328–335. [Google Scholar] [CrossRef]
- Parmehr, E.G.; Amati, M.; Taylor, E.; Livesley, S.J. Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban For. Urban Green. 2016, 20, 160–171. [Google Scholar] [CrossRef]
- Olivatto, T.F. Using i-Tree canopy to estimate and value ecosystem services of air pollutant removal. In Proceedings of the Proceedings of the 3rd Brazilian Technology Symposium: Emerging Trends and Challenges in Technology, Campinas, Brazil, 22–24 October 2019; pp. 291–299. [Google Scholar]
- Russo, A.; Escobedo, F.J.; Timilsina, N.; Schmitt, A.O.; Varela, S.; Zerbe, S. Assessing urban tree carbon storage and sequestration in Bolzano, Italy. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 54–70. [Google Scholar] [CrossRef]
- Nowak, D.J.; Maco, S.; Binkley, M. i-Tree global tools to assess tree benefits and risks to improve forest management. Arboric. Consult. 2018, 51, 10–13. [Google Scholar]
- Choothong, S.; Hua, Q.; Soonsawad, N. Diversity, prevalence and environmental benefits of street trees in Nakhon Si Thammarat province. Thailand Int. J. Agric. Technol. 2016, 12, 395–413. [Google Scholar]
- Lin, J.; Kroll, C.N.; Nowak, D.J. An uncertainty framework for i-Tree eco; A comparative study of 15 cities across the United States. Urban For. Urban Green. 2021, 60, 127062. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA) Forest Service. i-Tree Eco User’s Manual V 6.0. Available online: https://www.itreetools.org/tools/i-tree-eco (accessed on 29 October 2021).
- Na, H.R.; Heisler, G.M.; Nowak, D.J.; Grant, R.H. Modeling of urban trees’ effects on reducing human exposure to UV Radiation in Seoul, Korea. Urban For. Urban Green. 2014, 13, 785–792. [Google Scholar] [CrossRef]
- Gonzales, L.P.; Magnaye, D.C. Measuring the urban biodiversity of green spaces in a highly urbanizing environment and its implications for human settlement resiliency planning: The case of Manila city, Philippines. Procedia Environ. Sci. 2017, 37, 83–100. [Google Scholar] [CrossRef]
- Song, P.; Kim, G.; Mayer, A.; He, R.; Tian, G. Assessing the ecosystem services of various types of urban green spaces based on i-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef] [Green Version]
- Cristiano, S.; Ghisellini, P.; D’Ambrosio, G.; Xue, J.; Nesticò, A.; Gonella, F.; Ulgiati, S. Construction and demolition waste in the metropolitan city of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. J. Clean. Prod. 2021, 293, 125856. [Google Scholar] [CrossRef]
- Tan, X.; Hirabayashi, S.; Shibata, S. Estimation of ecosystem services provided by street trees in Kyoto, Japan. Forests 2021, 12, 311. [Google Scholar] [CrossRef]
- United Nations Enironment Programme. Convention on Biological Diversity (CBD). 1992. Available online: https://www.cbd.int/doc/legal/cbd-en.pdf (accessed on 26 July 2021).
- Office of the National Economic and Social Development Board Office of the Prime Minister Bangkok Thailand. The Twelfth National Economic and Social Development Plan (2017–2021). Available online: https://www.greengrowthknowledge.org/sites/default/files/downloads/policy-database/THAILAND%29%20The%20Twelfth%20National%20Economic%20and%20Social%20Development%20Plan%20%282017-2021%29.pdf (accessed on 30 August 2021).
- Leksungnoen, N.; Eiadthong, W.; Kjelgren, R. Thailand’s catastrophic flood: Bangkok tree mortality as a function of taxa, habitat, and tree size. Urban For. Urban Green. 2017, 22, 111–119. [Google Scholar] [CrossRef]
- Bangkok Metropolitan Administration (BMA). Pathumwan Population and Areas. Available online: http://data.bangkok.go.th/dataset/pathumwan (accessed on 27 October 2021).
- Chulalongkorn University Centenary Park. Chulalongkorn University Centenary Park a Gift of the Century to Society. Available online: http://www.cu100.chula.ac.th/cu-centenary-park/ (accessed on 23 October 2021).
- Holmes, D. Chulalongkorn University Centenary Park Green Infrastructure for the City of Bangkok. Available online: https://worldlandscapearchitect.com/chulalongkorn-centenary-park-green-infrastructure-for-the-city-of-bangkok (accessed on 30 October 2021).
- Bangkok Metropolitant Administration. Green Bangkok 2030 Developing Bangkok to the Green City. Available online: https://prbangkok-eng.com/index.php/2021/06/14/green-bangkok-2030-developing-bangkok-to-the-green-city/ (accessed on 23 September 2021).
- Department of National Parks Wildlife and Plant Conservation. Office of the Forest Herbarium. Available online: https://www.dnp.go.th/botany/botany_eng/index.aspx (accessed on 26 October 2021).
- United States Department of Agriculture (USDA) Forest Service. i-Tree. Available online: https://www.fs.usda.gov/ccrc/tool/i-tree (accessed on 10 July 2019).
- Hirabayashi, S. i-Tree Eco Precipitation Interception Model Descriptions. 2013. Available online: https://dev.itreetools.org/documents/61/iTree_Eco_Precipitation_Interception_Model_Descriptions.pdf (accessed on 27 October 2021).
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Interagency Working Group on Social Cost of Carbon. Available online: https://www.epa.gov/sites/default/files/2016-12/documents/sc_co2_tsd_august_2016.pdf (accessed on 25 July 2021).
- Kasetsart University Tower Station. Pollution Data. Available online: https://airq.ku.ac.th/ (accessed on 20 October 2021).
- National Centers for Environmental Information (NECI). Climate Data Online. Available online: https://www.ncei.noaa.gov/ (accessed on 27 October 2021).
- World Health Organization. The New 2021 WHO Air Quality Guideline Limits. Available online: https://www.breeze-technologies.de/blog/new-2021-who-air-quality-guideline-limits/ (accessed on 15 November 2021).
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D.J. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. Component-based development and sensitivity and analyses of an air pollutant dry deposition model. Environ. Model. Softw. 2011, 26, 804–816. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. Development of a distributed air pollutant dry deposition modeling framework. Environ. Pollut. 2012, 171, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J. Understanding i-Tree: Summary of Programs and Methods; United States Department of Agriculture (USDA), Forest Service: Madison, WI, USA, 2020; pp. 1–100. [Google Scholar]
- Wang, J.; Endreny, T.A.; Nowak, D.J. Mechanistic simulation of tree effects in an urban water balance model. J. Am. Water Resour. Assoc. 2008, 44, 75–85. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA) Forest Service. Community Tree Guides. Available online: https://www.fs.fed.us/psw/topics/urban_forestry/products/tree_guides.shtml (accessed on 28 October 2021).
- Bank for Agriculture and Agricultural Cooperative. Handbook of Assessment for Trees Value in Thailand; Bank for Agriculture and Agricultural Cooperative: Bangkok, Thailand, 2018. [Google Scholar]
- Forest Research and Development Office Royal Forest Department. The Thai Hardwoods; Sukhumvit Media Marketing Company Limited: Bangkok, Thailand, 2005; Volume 3. (In Thai) [Google Scholar]
- Machar, I.; Poprach, K.; Praus, L.; Úradníček, L. Floodplain forests and urban parks-A brief comparison of bird diversity. J. Landsc. Ecol. 2021, 14, 1–11. [Google Scholar] [CrossRef]
- Thanvisitthpon, N.; Shrestha, S.; Pal, I. Urban flooding and climate change: A case study of Bangkok, Thailand. Environ. Urban. ASIA 2018, 9, 86–100. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Protecting Water Quality from Urban Runoff. Available online: https://www3.epa.gov/npdes/pubs/nps_urban-facts_final.pdf (accessed on 22 October 2021).
- Duley, F.L.; Hays, O.E. The Effect of the degree of slope on run-off and soil erosion. J. Agric. Res. 1932, 45, 349–360. [Google Scholar]
- Ross, S.; Jean-Philippe, S.; Clatterbuck, W.; Giffen, N.; Herold, J.; Zobel, J. i-Tree Eco analysis of landscape vegetation on remediated areas of Oak Ridge national laboratory. Open J. For. 2020, 10, 412–427. [Google Scholar] [CrossRef]
- Intasen, M.; Hauer, R.J.; Werner, L.P.; Larsen, E. Urban forest assessment in Bangkok, Thailand. J. Sustain. For. 2017, 36, 148–163. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Qu, X.; Huang, B.; Li, Z.; Sun, J.; Wei, X.; Yang, X. Urban trees in university campus: Strucutre, function, and ecological values. Environ. Sci. Pollut. Res. 2021, 28, 45183–45198. [Google Scholar] [CrossRef] [PubMed]
- Szkop, Z. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban For. Urban Green. 2020, 55, 126859. [Google Scholar] [CrossRef]
- Department of National Parks Wildlife and Plant Conservation (DNP). Forest Reference Emission Level and Forest Reference Level Thailand. Available online: https://redd.unfccc.int/files/thailand_frel_frl_report.pdf (accessed on 10 September 2021).
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- McPherson, E.G. Benefits and Costs of Tree Planting and Care in Chicago; United States Department of Agriculture (USDA), Forest Service: Radnor, PA, USA, 1994; pp. 115–134. [Google Scholar]
- Ma, J.; Li, X.; Jia, B.; Liu, X.; Li, T.; Zhan, W.; Liu, W. Spatial variation analysis of urban forest vegetation carbon storage and sequestration in buil-up areas of Bijing based on i-Tree Eco and Kriging. Urban For. Urban Green. 2021, 66, 127413. [Google Scholar] [CrossRef]
- Lin, B.-S.; Lin, Y.-J. Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience 2010, 45, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J. Urban Forest Structure: The State of Chicago’s Urban Forest; United States Department of Agriculture (USDA), Forest Service: Radnor, PA, USA, 1994; pp. 3–18. [Google Scholar]
- Scholz, T.; Hof, A.; Schmitt, T. Cooling effects and regulating ecosystem services provided by urban trees-Novel analysis approaches using urban tree Cadastre data. Sustainability 2018, 10, 712. [Google Scholar] [CrossRef] [Green Version]
Species Name | Forest Type | Habitat | DBH (cm) | Total Height (m) | Tree Count | Monetary Value from i-Tree Eco Calculation (USD) (1) | Monetary Value from BAAC (USD) (2) | Total Monetary Value (USD) (1) + (2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Carbon Storage | Gross Carbon Sequestration | Avoid Runoff | Pollution Removal | Oxygen | Timber Value | ||||||||||||
kg tree−1 year−1 | USD tree−1 year−1 | kg tree−1 year−1 | USD tree−1 year−1 | m3 tree−1 year−1 | USD tree−1 year−1 | kg tree−1 year−1 | USD tree−1 year−1 | kg/tree | Total (USD) | USD tree−1 year−1 | USD tree−1 year−1 | ||||||
Azadirachta indica | D | NA | 18.80 ± 0.96 | 8.30 ± 0.83 | 3 | 67.06 | 13.57 | 12.33 | 2.48 | 0.17 | 0.43 | 1.29 | 14.54 | 32.90 | 1463.18 | 487.73 | 518.75 |
Shorea roxburghii | D | NA | 14.45 ± 9.55 | 6.15 ± 2.45 | 2 | 57.60 | 11.74 | 12.40 | 2.49 | 0.30 | 0.76 | 2.27 | 25.58 | 33.00 | 753.19 | 376.60 | 417.17 |
Millettia leucantha | D | NA | 16.85 ± 1.15 | 8.45 ± 0.75 | 2 | 57.95 | 11.67 | 7.75 | 1.56 | 0.37 | 0.93 | 2.77 | 31.23 | 20.70 | 738.95 | 369.48 | 414.87 |
Xylia xylocarpa | D | NA | 13.74 ± 2.33 | 8.47 ± 1.22 | 17 | 33.82 | 6.84 | 7.80 | 1.57 | 0.17 | 0.36 | 1.07 | 12.11 | 20.81 | 3881.34 | 228.31 | 249.20 |
Dalbergia cochinchinensis | D | NA | 13.82 ± 2.11 | 8.33 ± 1.43 | 136 | 36.18 | 7.28 | 11.23 | 1.29 | 0.13 | 0.32 | 0.97 | 10.86 | 17.12 | 31,152.70 | 229.06 | 248.82 |
Hopea odorata | D | A | 13.68 ± 2.14 | 8.70 ± 1.37 | 26 | 35.66 | 7.19 | 6.27 | 1.21 | 0.05 | 0.13 | 0.39 | 4.41 | 16.72 | 5986.74 | 230.26 | 243.26 |
Chukrasia tabularis | E | NA | 13.49 ± 3.12 | 7.69 ± 0.90 | 9 | 35.47 | 7.15 | 7.13 | 1.43 | 0.04 | 0.14 | 0.42 | 4.72 | 19.01 | 2048.94 | 227.66 | 241.10 |
Terminalia arjuna | D | NA | 12.57 ± 3.58 | 5.97 ± 2.52 | 3 | 27.20 | 5.58 | 8.37 | 1.69 | 0.27 | 0.68 | 2.05 | 23.09 | 22.30 | 608.18 | 202.73 | 233.77 |
Afzelia xylocarpa | D | NA | 13.54 ± 2.03 | 7.26 ± 0.83 | 27 | 43.56 | 6.95 | 5.89 | 1.18 | 0.04 | 0.11 | 0.34 | 3.59 | 15.69 | 5938.30 | 219.94 | 231.77 |
Terminalia alata | D | NA | 13.34 ± 1.42 | 7.06 ± 1.07 | 5 | 29.60 | 5.69 | 6.20 | 1.25 | 0.08 | 0.21 | 0.64 | 7.19 | 16.50 | 1033.55 | 206.71 | 221.31 |
Other species | D, E | A, NA, ME, OC | 12 ± 4.21 | 6.43 ± 1.60 | 467 | 1628.63 | 332.48 | 284.48 | 80.65 | 4.86 | 11.79 | 48.62 | 391.25 | 775.19 | 30,926.49 | 2224.13 | 3040.30 |
Total | D, E | A, NA, ME, OC | 12.63 ± 3.98 | 6.64 ± 1.58 | 697 | 2052.73 | 416.42 | 363.65 | 96.87 | 6.48 | 15.86 | 60.83 | 528.58 | 989.94 | 84,531.57 | 5002.60 | 6060.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarnvudhi, A.; Leksungnoen, N.; Tor-Ngern, P.; Premashthira, A.; Thinkampheang, S.; Hermhuk, S. Evaluation of Regulating and Provisioning Services Provided by a Park Designed to Be Resilient to Climate Change in Bangkok, Thailand. Sustainability 2021, 13, 13624. https://doi.org/10.3390/su132413624
Yarnvudhi A, Leksungnoen N, Tor-Ngern P, Premashthira A, Thinkampheang S, Hermhuk S. Evaluation of Regulating and Provisioning Services Provided by a Park Designed to Be Resilient to Climate Change in Bangkok, Thailand. Sustainability. 2021; 13(24):13624. https://doi.org/10.3390/su132413624
Chicago/Turabian StyleYarnvudhi, Arerut, Nisa Leksungnoen, Pantana Tor-Ngern, Aerwadee Premashthira, Sathid Thinkampheang, and Sutheera Hermhuk. 2021. "Evaluation of Regulating and Provisioning Services Provided by a Park Designed to Be Resilient to Climate Change in Bangkok, Thailand" Sustainability 13, no. 24: 13624. https://doi.org/10.3390/su132413624
APA StyleYarnvudhi, A., Leksungnoen, N., Tor-Ngern, P., Premashthira, A., Thinkampheang, S., & Hermhuk, S. (2021). Evaluation of Regulating and Provisioning Services Provided by a Park Designed to Be Resilient to Climate Change in Bangkok, Thailand. Sustainability, 13(24), 13624. https://doi.org/10.3390/su132413624