Analysis of the Satisfaction Degree of Students at Spain’s Physiotherapy Universities in Relation to Online Teaching during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Instrument
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
4. Discussion
Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Advice for the Public; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Rose, S. Medical Student Education in the Time of COVID-19. JAMA 2020, 323, 2131–2132. [Google Scholar] [CrossRef] [PubMed]
- Longhini, J.; De Colle, B.; Rossettini, G.; Palese, A. What knowledge is available on massive open online courses in nursing and academic healthcare sciences education? A rapid review. Nurse Educ. Today 2021, 99, 104812. [Google Scholar] [CrossRef] [PubMed]
- Haslam, M.B. What might COVID-19 have taught us about the delivery of Nurse Education, in a post-COVID-19 world? Nurse Educ. Today 2021, 97, 104707. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de la Presidencia. Relaciones con las Cortes y Memoria Democrática. Agencia Estatal Boletín Oficial del Estado. Real Decreto 463/2020, de 14 de Marzo, por el que se Declara el Estado de Alarma para la Gestión de la Situación de Crisis Sanitaria Ocasionada por el COVID-19. Available online: https://www.boe.es/eli/es/rd/2020/03/14/463/com (accessed on 20 May 2019).
- Longhurst, G.J.; Stone, D.M.; Dulohery, K.; Scully, D.; Campbell, T.; Smith, C.F. Strength, Weakness, Opportunity, Threat (SWOT) Analysis of the Adaptations to Anatomical Education in the United Kingdom and Republic of Ireland in Response to the Covid-19 Pandemic. Anat. Sci. Educ. 2020, 13, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.K.; Joshi, A.; Malepati, R.N.; Najeeb, S.; Balakrishna, P.; Pannerselvam, N.K.; Singh, Y.K.; Ganne, P. A survey of E-learning methods in nursing and medical education during COVID-19 pandemic in India. Nurse Educ. Today 2021, 99, 104796. [Google Scholar] [CrossRef]
- Sahu, P. Closure of Universities Due to Coronavirus Disease 2019 (COVID-19): Impact on Education and Mental Health of Students and Academic Staff. Cureus 2020, 12, e7541. [Google Scholar] [CrossRef] [Green Version]
- Gaur, R.; Mudgal, S.K.; Dharni, I.T.; Sharma, R.; Suyal, N. Barriers encountered during online classes among undergraduate nursing students during COVID-19 pandemic in India. Int. J. Res. Med Sci. 2020, 8, 3687–3693. [Google Scholar] [CrossRef]
- Cervantes, R.F.; Camba, S.S. La educación de fisioterapia en tiempos de la COVID-19. Fisioterapia 2020, 42, 283–285. [Google Scholar] [CrossRef]
- Masic, I. E-Learning as New Method of Medical Education. Acta Inform. Medica 2008, 16, 102–117. [Google Scholar] [CrossRef] [Green Version]
- A Cook, D.; Triola, M. What is the role of e-learning? Looking past the hype. Med Educ. 2014, 48, 930–937. [Google Scholar] [CrossRef]
- Ruiz, J.G.; Mintzer, M.J.; Leipzig, R.M. The Impact of E-Learning in Medical Education. Acad. Med. 2006, 81, 207–212. [Google Scholar] [CrossRef]
- García-Peñalvo, F.J.; Corell, A.; Abella-García, V.; Grande, M. La evaluación online en la educación superior en tiempos de la COVID-19. Educ. Knowl. Soc. (EKS) 2020, 21, 26. [Google Scholar] [CrossRef]
- Hall, A.K.; Nousiainen, M.T.; Campisi, P.; Dagnone, J.D.; Frank, J.R.; Kroeker, K.I.; Brzezina, S.; Purdy, E.; Oswald, A. Training disrupted: Practical tips for supporting competency-based medical education during the COVID-19 pandemic. Med Teach. 2020, 42, 756–761. [Google Scholar] [CrossRef]
- Ministerio de Educación y Formación Profesional. Ministerio de Universidades. EDUCAbase. Available online: http://estadisticas.mecd.gob.es/EducaJaxiPx/Datos.htm?path=/Universitaria/EUCT/Serie/Titulaciones//l0/&file=Titulaciones_Inter_Nivel_Rama_Tot.px&type=pcaxis (accessed on 20 May 2019).
- Ferrel, M.N.; Ryan, J.J. The Impact of COVID-19 on Medical Education. Cureus 2020, 12, e7492. [Google Scholar] [CrossRef] [Green Version]
- Carretero-Dios, H.; Pérez, C. Standards for the development and review of instrumental studies: Considerations about test selection in psychological research. Int. J. Clin. Health Psychol. 2007, 7, 863–882. [Google Scholar]
- Stevens, J. Applied Multivariate Statistics for the Social Sciences, 3rd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1996. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Kline, T.J.B. Psychological Testing: A Practical Approach to Design and Evaluation, 1st ed.; SAGE Publications: Thousand Oaks, CA, USA, 2005. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for applied Research, 1st ed.; Guilford: New York, NY, USA, 2006. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. In Testing Structural Equation Models, 1st ed.; Bollen, K.A., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1993. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.R-project.org/ (accessed on 7 June 2013).
- Odriozola-González, P.; Planchuelo-Gómez, A.; Irurtia, M.J.; de Luis-García, R. Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Res. 2020, 290, 113108. [Google Scholar] [CrossRef]
- Latif, M.; Hussain, I.; Saeed, R.; Qureshi, M.; Maqsood, U. Use of Smart Phones and Social Media in Medical Education: Trends, Advantages, Challenges and Barriers. Acta Inform. Medica 2019, 27, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Langfield, T.; Colthorpe, K.; Ainscough, L. Online instructional anatomy videos: Student usage, self-efficacy, and performance in upper limb regional anatomy assessment. Anat. Sci. Educ. 2018, 11, 461–470. [Google Scholar] [CrossRef]
- Al-Balas, M.; Al-Balas, H.I.; Jaber, H.M.; Obeidat, K.; Al-Balas, H.; Aborajooh, E.A.; Al-Taher, R.; Al-Balas, B. Distance learning in clinical medical education amid COVID-19 pandemic in Jordan: Current situation, challenges, and perspectives. BMC Med Educ. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Kemp, N.; Grieve, R. Face-to-face or face-to-screen? Undergraduates’ opinions and test performance in classroom vs. online learning. Front. Psychol. 2014, 5, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinoni, G.; van’t Land, H.; Jensen, T. The Impact of COVID-19 on Global Higher Education around the World; International Association of Universities: Paris, France, 2020; ISBN 978-92-9002-212-1. [Google Scholar]
- Sintema, E.J. Effect of COVID-19 on the Performance of Grade 12 Students: Implications for STEM Education. Eurasia J. Math. Sci. Technol. Educ. 2020, 16, em1851. [Google Scholar] [CrossRef] [Green Version]
- Shahmoradi, L.; Changizi, V.; Mehraeen, E.; Bashiri, A.; Jannat, B.; Hosseini, M. The challenges of E-learning system: Higher educational institutions perspective. J. Educ. Heal. Promot. 2018, 7, 116–124. [Google Scholar] [CrossRef]
- Long, K.C. E-Learning, Information Technology, and Student Success in Higher Education. In Oxford Research Encyclopedia of Business and Management; Oxford University Press; Available online: https://oxfordre.com/business/view/10.1093/acrefore/9780190224851.001.0001/acrefore-9780190224851-e-78 (accessed on 1 June 2019).
- O’Doherty, D.; Dromey, M.; Lougheed, J.; Hannigan, A.; Last, J.; McGrath, D. Barriers and solutions to online learning in medical education—An integrative review. BMC Med Educ. 2018, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Puljak, L.; Čivljak, M.; Haramina, A.; Mališa, S.; Čavić, D.; Klinec, D.; Aranza, D.; Mesarić, J.; Skitarelić, N.; Zoranić, S.; et al. Attitudes and concerns of undergraduate university health sciences students in Croatia regarding complete switch to e-learning during COVID-19 pandemic: A survey. BMC Med. Educ. 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Ren, H.; Cao, R.; Hu, Y.; Qin, Z.; Li, C.; Mei, S. The Effect of COVID-19 on Youth Mental Health. Psychiatr. Q. 2020, 91, 841–852. [Google Scholar] [CrossRef]
- Morley, D. Applying Wenger’s communities of practice theory to placement learning. Nurse Educ. Today 2016, 39, 161–162. [Google Scholar] [CrossRef] [Green Version]
- Dedeilia, A.; Sotiropoulos, M.; Hanrahan, J.G.; Janga, D.; Dedeilias, P.; Sideris, M. Medical and Surgical Education Challenges and Innovations in the COVID-19 Era: A Systematic Review. In Vivo 2020, 34 (Suppl. 3), 1603–1611. [Google Scholar] [CrossRef]
- YoungMinds. Coronavirus: Impact on Young People with Mental Health Needs. 2020. Available online: https://youngminds.org.uk/media/3708/coronavirus-report_march2020.pdf (accessed on 10 October 2020).
- Shawaqfeh, M.S.; Al Bekairy, A.M.; Al-Azayzih, A.; A Alkatheri, A.; Qandil, A.M.; A Obaidat, A.; Al Harbi, S.; Muflih, S.M. Pharmacy Students Perceptions of Their Distance Online Learning Experience During the COVID-19 Pandemic: A Cross-Sectional Survey Study. J. Med. Educ. Curric. Dev. 2020, 7, 2382120520963039. [Google Scholar] [CrossRef]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The psychological impact of the COVID-19 epidemic on col-lege students in China. Psychiatry Res. 2020, 287, 112934. [Google Scholar] [CrossRef] [PubMed]
- Dewart, G.; Corcoran, L.; Thirsk, L.; Petrovic, K. Nursing education in a pandemic: Academic challenges in response to COVID-19. Nurse Educ. Today 2020, 92, 104471. [Google Scholar] [CrossRef] [PubMed]
Group | Sevilla | Cádiz | Córdoba | Baleares | Jaén | León | Osuna | Other | Total |
---|---|---|---|---|---|---|---|---|---|
Training | 53 | 7 | 4 | 13 | 20 | 2 | 1 | 5 | 105 |
50.48% | 6.67% | 3.81% | 12.38% | 19.05% | 1.90% | 0.95% | 4.76% | ||
Check | 98 | 13 | 17 | 22 | 45 | 13 | 20 | 14 | 242 |
40.50% | 5.37% | 7.02% | 9.09% | 18.60% | 5.37% | 8.26% | 5.79% | ||
Total | 151 | 20 | 21 | 35 | 65 | 15 | 21 | 19 | 347 |
1 | 2 | 3 | 4 | 5 | Unicidad | |
---|---|---|---|---|---|---|
Item 18 | 0.826 | 0.196 | ||||
Item 13 | 0.781 | 0.305 | ||||
Item 16 | 0.757 | 0.326 | ||||
Item 15 | 0.733 | 0.45 | ||||
Item 14 | 0.71 | 0.325 | ||||
Item 10 | 0.419 | 0.720 | 0.241 | |||
Item 19 | 0.701 | 0.413 | ||||
Item 3 | 0.685 | 0.293 | ||||
Item 21 | 0.674 | 0.436 | ||||
Item 2 | 0.607 | 0.387 | ||||
Item 20 | −0.516 | 0.542 | ||||
Item 5 | −0.435 | 0.703 | ||||
Item 9 | 0.428 | 0.417 | 0.41 | |||
Item 11 | −0.699 | 0.47 | ||||
Item 7 | 0.692 | 0.398 | ||||
Item 1 | 0.559 | 0.492 | ||||
Item 8 | 0.424 | 0.467 | ||||
Item 4 | 0.803 | 0.289 | ||||
Item 12 | 0.495 | 0.606 | 0.371 | |||
Item 6 | 0.413 | 0.434 | 0.345 | |||
Item 17 | 0.689 | 0.494 | ||||
Item 22 | −0.658 | 0.381 | ||||
Variance explained | 18.84% | 16.86% | 9.25% | 9.04% | 6.32% | 60.3% |
95% Confidence Interval | ||||||||
---|---|---|---|---|---|---|---|---|
Factor | Indicator | Estimate | SE | Lower | Upper | Z | p | Stand. Estimate |
Factor 1 | Item 13 | 0.771 | 0.145 | 0.487 | 1.054 | 5.331 | <0.001 | 0.725 |
Item 14 | 0.630 | 0.116 | 0.401 | 0.858 | 5.411 | <0.001 | 0.726 | |
Item 15 | 0.603 | 0.200 | 0.211 | 0.996 | 3.018 | 0.003 | 0.452 | |
Item 16 | 0.588 | 0.133 | 0.329 | 0.848 | 4.443 | <0.001 | 0.633 | |
Item 18 | 0.661 | 0.109 | 0.447 | 0.876 | 6.046 | <0.001 | 0.792 | |
Factor 2 | Item 2 | 0.249 | 0.124 | 0.006 | 0.492 | 2.008 | 0.045 | 0.316 |
Item 3 | 0.721 | 0.123 | 0.481 | 0.962 | 5.878 | <0.001 | 0.772 | |
Item 5 | −0.223 | 0.120 | −0.457 | 0.011 | −1.862 | 0.063 | −0.282 | |
Item 10 | 0.873 | 0.122 | 0.634 | 1.112 | 7.155 | <0.001 | 0.896 | |
Item 19 | 0.542 | 0.170 | 0.210 | 0.875 | 3.200 | 0.001 | 0.485 | |
Item 20 | −0.052 | 0.127 | −0.302 | 0.196 | −0.414 | 0.679 | −0.065 | |
Item 21 | 0.280 | 0.228 | −0.166 | 0.727 | 1.231 | 0.218 | 0.223 | |
Factor 3 | Item 1 | 0.933 | 0.142 | 0.655 | 1.211 | 6.576 | <0.001 | 0.826 |
Item 7 | 0.252 | 0.177 | −0.093 | 0.599 | 1.429 | 0.153 | 0.219 | |
Item 8 | 0.797 | 0.133 | 0.535 | 1.058 | 5.980 | <0.001 | 0.762 | |
Item 11 | 0.099 | 0.176 | −0.244 | 0.443 | 0.565 | 0.572 | 0.089 | |
Factor 4 | Item 4 | 0.453 | 0.232 | −0.001 | 0.907 | 1.953 | 0.051 | 0.308 |
Item 6 | 0.571 | 0.150 | 0.276 | 0.865 | 3.797 | <0.001 | 0.565 | |
Item 12 | 0.614 | 0.196 | 0.230 | 0.997 | 3.139 | 0.002 | 0.477 | |
Factor 5 | Item 17 | 0.063 | 0.340 | −0.602 | 0.730 | 0.188 | 0.851 | 0.081 |
Item 22 | 0.117 | 0.617 | −1.092 | 1.326 | 0.190 | 0.849 | 0.089 | |
Item 9 | −0.114 | 0.605 | −1.300 | 1.072 | −0.189 | 0.850 | −0.113 |
95% Confidence Interval | ||||||||
---|---|---|---|---|---|---|---|---|
Factor | Indicator | Estimate | SE | Lower | Upper | Z | p | Stand. Estimate |
Theory | Item 1 | 0.904 | 0.105 | 0.697 | 1.111 | 8.561 | <0.001 | 0.751 |
Item 2 | 0.567 | 0.093 | 0.383 | 0.750 | 6.050 | <0.001 | 0.598 | |
Item 3 | 0.711 | 0.098 | 0.517 | 0.905 | 7.199 | <0.001 | 0.670 | |
Item 4 | 0.157 | 0.137 | −0.112 | 0.426 | 1.140 | .254 | 0.121 | |
Item 5 | −0.424 | 0.086 | −0.593 | −0.254 | −4.901 | <0.001 | −0.487 | |
Item 6 | 0.754 | 0.105 | 0.546 | 0.961 | 7.123 | <0.001 | 0.662 | |
Item 7 | 0.598 | 0.122 | 0.356 | 0.839 | 4.865 | <0.001 | 0.484 | |
Item 8 | 0.895 | 0.098 | 0.703 | 1.087 | 9.132 | <0.001 | 0.794 | |
Practice | Item 9 | 0.776 | 0.109 | 0.561 | 0.991 | 7.075 | <0.001 | 0.653 |
Item 10 | 0.784 | 0.100 | 0.586 | 0.982 | 7.783 | <0.001 | 0.701 | |
Item 11 | −0.111 | 0.111 | −0.329 | 0.108 | −0.991 | 0.322 | −0.103 | |
Item 12 | 0.533 | 0.126 | 0.286 | 0.780 | 4.228 | <0.001 | 0.428 | |
Item 13 | 0.788 | 0.102 | 0.587 | 0.988 | 7.701 | <0.001 | 0.693 | |
Item 14 | 0.823 | 0.092 | 0.642 | 1.003 | 8.927 | <0.001 | 0.768 | |
Item 15 | 0.858 | 0.134 | 0.594 | 1.121 | 6.393 | <0.001 | 0.613 | |
Item 16 | 0.815 | 0.099 | 0.620 | 1.011 | 8.182 | <0.001 | 0.737 | |
Item 17 | 0.154 | 0.108 | −0.059 | 0.367 | 1.416 | 0.157 | 0.152 | |
Item 18 | 0.736 | 0.078 | 0.582 | 0.889 | 9.407 | <0.001 | 0.801 | |
Evaluation | Item 19 | −0.872 | 0.129 | −1.125 | −0.618 | −6.739 | <0.001 | −0.748 |
Item 20 | 0.150 | 0.104 | −0.054 | 0.354 | 1.440 | 0.150 | 0.166 | |
Item 21 | −0.765 | 0.132 | −1.025 | −0.504 | −5.753 | <0.001 | −0.624 | |
Item 22 | −0.118 | 0.136 | −0.386 | 0.149 | −0.868 | 0.386 | −0.109 |
Model | Chi-Square | Reason Chi-Square/d.f. | CFI | TLI | SRMR | RMSEA | AIC | BIC |
---|---|---|---|---|---|---|---|---|
5 dimensions | 268 (d.f. = 199; p < 0.001) | 1.34 | 0.758 | 0.719 | 0.114 | 0.084 | 2884 | 3026 |
3 dimensions | 347 (d.f. = 206; p < 0.001) | 1.68 | 0.813 | 0.790 | 0.0832 | 0.080 | 6345 | 6529 |
University | n | Mean | Standard Deviation | Standard Error | |
---|---|---|---|---|---|
Factor 1 (Theory) | University of Sevilla | 151 | 3.040 | 0.442 | 0.035 |
University of Cádiz | 20 | 2.990 | 0.545 | 0.121 | |
University of Córdoba | 21 | 3.130 | 0.405 | 0.088 | |
University of Illes Balears | 35 | 2.940 | 0.528 | 0.089 | |
University of Jaén | 65 | 3.170 | 0.493 | 0.061 | |
University of León | 15 | 2.880 | 0.462 | 0.119 | |
University of Osuna | 21 | 2.950 | 0.446 | 0.097 | |
Other | 19 | 3.090 | 0.463 | 0.106 | |
Factor 2 (Practice) | University of Sevilla | 151 | 2.930 | 0.666 | 0.054 |
University of Cádiz | 20 | 3.420 | 0.672 | 0.150 | |
University of Córdoba | 21 | 2.730 | 0.516 | 0.112 | |
University of Illes Balears | 35 | 2.530 | 0.803 | 0.135 | |
University of Jaén | 65 | 2.990 | 0.744 | 0.092 | |
University of León | 15 | 2.790 | 0.529 | 0.136 | |
University of Osuna | 21 | 2.820 | 0.456 | 0.099 | |
Other | 19 | 2.660 | 0.987 | 0.226 | |
Factor 3 (Evaluation) | University of Sevilla | 151 | 2.370 | 0.777 | 0.063 |
University of Cádiz | 20 | 2.750 | 0.466 | 0.104 | |
University of Córdoba | 21 | 2.620 | 0.636 | 0.138 | |
University of Illes Balears | 35 | 2.400 | 0.746 | 0.126 | |
University of Jaén | 65 | 2.530 | 0.605 | 0.075 | |
University of León | 15 | 2.130 | 0.442 | 0.114 | |
University of Osuna | 21 | 2.320 | 0.537 | 0.117 | |
Other | 19 | 2.410 | 0.501 | 0.115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobio-Prieto, I.; Sobrino-Sánchez, R.; Mingorance, J.A.; García-Marín, M.; Matas-Terrón, A.; Albornoz-Cabello, M. Analysis of the Satisfaction Degree of Students at Spain’s Physiotherapy Universities in Relation to Online Teaching during the COVID-19 Pandemic. Sustainability 2021, 13, 13628. https://doi.org/10.3390/su132413628
Escobio-Prieto I, Sobrino-Sánchez R, Mingorance JA, García-Marín M, Matas-Terrón A, Albornoz-Cabello M. Analysis of the Satisfaction Degree of Students at Spain’s Physiotherapy Universities in Relation to Online Teaching during the COVID-19 Pandemic. Sustainability. 2021; 13(24):13628. https://doi.org/10.3390/su132413628
Chicago/Turabian StyleEscobio-Prieto, Isabel, Raquel Sobrino-Sánchez, José Antonio Mingorance, Manuel García-Marín, Antonio Matas-Terrón, and Manuel Albornoz-Cabello. 2021. "Analysis of the Satisfaction Degree of Students at Spain’s Physiotherapy Universities in Relation to Online Teaching during the COVID-19 Pandemic" Sustainability 13, no. 24: 13628. https://doi.org/10.3390/su132413628
APA StyleEscobio-Prieto, I., Sobrino-Sánchez, R., Mingorance, J. A., García-Marín, M., Matas-Terrón, A., & Albornoz-Cabello, M. (2021). Analysis of the Satisfaction Degree of Students at Spain’s Physiotherapy Universities in Relation to Online Teaching during the COVID-19 Pandemic. Sustainability, 13(24), 13628. https://doi.org/10.3390/su132413628