Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region
Abstract
:1. Introduction
2. Material and Methods
2.1. Overview of Methodology
2.2. Meteorological Mast and Wind Data Acquisition
2.3. The Weibull Distribution
2.4. Wind Atlas Analysis and Application Program
2.5. Surface Elevation and Roughness Maps
2.6. Economic Analysis
3. Results and Discussion
3.1. Analysis of Wind Speed, Wind Direction, and Wind Power Density
3.2. WAsP Analysis: South–Eastern Thailand
3.3. LCOE Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeed, M.A.; Ahmed, Z.; Hussain, S.; Zhang, W. Wind resource assessment and economic analysis for wind energy development in Pakistan. Sustain. Energy Technol. Assess. 2021, 44, 101068. [Google Scholar] [CrossRef]
- Tang, X.-Y.; Zhao, S.; Fan, B.; Peinke, J.; Stoevesandt, B. Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts. Appl. Energy 2019, 238, 806–815. [Google Scholar] [CrossRef]
- Murthy, K.; Rahi, O. A comprehensive review of wind resource assessment. Renew. Sustain. Energy Rev. 2017, 72, 1320–1342. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Introducing a new approach for wind energy potential assessment under climate change at the wind turbine scale. Energy Convers. Manag. 2020, 225, 113425. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W.; Hoekstra, A. Future electricity: The challenge of reducing both carbon and water footprint. Sci. Total Environ. 2016, 569–570, 1282–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, M.A.; Ahmed, Z.; Zhang, W. Optimal approach for wind resource assessment using Kolmogorov–Smirnov statistic: A case study for large-scale wind farm in Pakistan. Renew. Energy 2021, 168, 1229–1248. [Google Scholar] [CrossRef]
- Morales-Ruvalcaba, C.; Rodríguez-Hernández, O.; Martínez-Alvarado, O.; Drew, D.; Ramos, E. Estimating wind speed and capacity factors in Mexico using reanalysis data. Energy Sustain. Dev. 2020, 58, 158–166. [Google Scholar] [CrossRef]
- Waewsak, J.; Ali, S.; Natee, W.; Kongruang, C.; Chancham, C.; Gagnon, Y. Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand. Renew. Sustain. Energy Rev. 2020, 130, 109953. [Google Scholar] [CrossRef]
- Janjai, S.; Masiri, I.; Promsen, W.; Pattarapanitchai, S.; Pankaew, P.; Laksanaboonsong, J.; Bischoff-Gauss, I.; Kalthoff, N. Evaluation of wind energy potential over Thailand by using an atmospheric mesoscale model and a GIS approach. J. Wind. Eng. Ind. Aerodyn. 2014, 129, 1–10. [Google Scholar] [CrossRef]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- EGAT. Power for Happiness; EGAT: Nonthaburi, Thailand, 2019. [Google Scholar]
- PDP. Thailand Power Development Plan 2018–2037 (PDP2018: Revision 1); PDP: Bangkok, Thailand, 2018. Available online: https://www.egat.co.th/images/businessop/PDP2018-Rev1-Oct2020.pdf (accessed on 13 March 2021).
- EPPO. Energy Policy and Planning Office. Ministry of Energy; 2021. Available online: http://www.eppo.go.th/index.php/en/ (accessed on 10 July 2021).
- AEDP. Alternative Energy Development Plan. Ministry of Energy 2012, 7, 1–10. Available online: http://www.eppo.go.th/index.php/en/policy-and-plan/en-tieb/tieb-aedp (accessed on 13 June 2021).
- DEDE. Department of Alternative Energy Development and Efficiency. Ministry of Energy; 2021; pp. 1–29. Available online: http://weben.dede.go.th/webmax/ (accessed on 17 May 2021).
- Chingulpitak, S.; Wongwises, S. Critical review of the current status of wind energy in Thailand. Renew. Sustain. Energy Rev. 2014, 31, 312–318. [Google Scholar] [CrossRef]
- TMD. Thai Meteorological Report; TMD: Bangkok, Thailand, 2018; pp. 1–11.
- EGAT. Why Does the South of Thailand Need Coal-Fired Power Plants? 2018. Available online: https://www.egat.co.th/en/news-announcement/egat-reasons-why/why-does-the-south-of-thailand-need-coal-fired-power-plants (accessed on 17 July 2020).
- Waewsak, J.; Kongruang, C.; Gagnon, Y. Assessment of wind power plants with limited wind resources in developing countries: Application to Ko Yai in southern Thailand. Sustain. Energy Technol. Assess. 2017, 19, 79–93. [Google Scholar] [CrossRef]
- Glassbrook, K.A.; Carr, A.H.; Drosnes, M.L.; Oakley, T.R.; Kamens, R.M.; Gheewala, S.H. Life cycle assessment and feasibility study of small wind power in Thailand. Energy Sustain. Dev. 2014, 22, 66–73. [Google Scholar] [CrossRef]
- Quan, P.; Leephakpreeda, T. Assessment of wind energy potential for selecting wind turbines: An application to Thailand. Sustain. Energy Technol. Assess. 2015, 11, 17–26. [Google Scholar] [CrossRef]
- Bennui, A.; Rattanamanee, P.; Puetpaiboon, U.; Phukpattaranont, P.; Chetpattananondh, K. Site selection for large wind turbine using GIS. In Proceedings of the PSU-UNS International Conference on Engineering and Environment, Songkhla, Thailand, 10–11 May 2007. [Google Scholar]
- Yang, L.; Rojas, J.I.; Montlaur, A. Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas. Energy 2020, 190, 116487. [Google Scholar] [CrossRef]
- Ashtine, M.; Bello, R.; Higuchi, K. Assessment of wind energy potential over Ontario and Great Lakes using the NARR data: 1980–2012. Renew. Sustain. Energy Rev. 2016, 56, 272–282. [Google Scholar] [CrossRef]
- Ko, D.H.; Jeong, S.T.; Kim, Y.C. Assessment of wind energy for small-scale wind power in Chuuk State, Micronesia. Renew. Sustain. Energy Rev. 2015, 52, 613–622. [Google Scholar] [CrossRef]
- Flay, R.G.; King, A.B.; Revell, M.; Carpenter, P.; Turner, R.; Cenek, P.; Pirooz, A.A.S. Wind speed measurements and predictions over Belmont Hill, Wellington, New Zealand. J. Wind. Eng. Ind. Aerodyn. 2019, 195, 104018. [Google Scholar] [CrossRef]
- Rogers, T.; Ashtine, M.; Koon, R.K.; Atherley-Ikechi, M. Onshore wind energy potential for Small Island Developing States: Findings and recommendations from Barbados. Energy Sustain. Dev. 2019, 52, 116–127. [Google Scholar] [CrossRef]
- Bruck, M.; Sandborn, P.; Goudarzi, N. A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs). Renew. Energy 2018, 122, 131–139. [Google Scholar] [CrossRef]
- Mortensen, N.G. Wind Resource Assessment Using the WAsP Software (DTU Wind Energy E-0135); Technical University of Denmark: Copenhagen, Denmark, 2018; p. 43. [Google Scholar]
- Liu, J.; Gao, C.Y.; Ren, J.; Gao, Z.; Liang, H.; Wang, L. Wind resource potential assessment using a long term tower measurement approach: A case study of Beijing in China. J. Clean. Prod. 2018, 174, 917–926. [Google Scholar] [CrossRef]
- Fang, H.-F. Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago. Renew. Energy 2014, 67, 237–241. [Google Scholar] [CrossRef]
- Romanic, D.; Parvu, D.; Refan, M.; Hangan, H. Wind and tornado climatologies and wind resource modelling for a modern development situated in “Tornado Alley”. Renew. Energy 2018, 115, 97–112. [Google Scholar] [CrossRef]
- Galvez, G.H.; Flores, R.S.; Miranda, U.M.; Martínez, O.S.; Téllez, M.C.; López, D.A.; Gómez, A.K.T. Wind resource assessment and sensitivity analysis of the levelised cost of energy. A case study in Tabasco, Mexico. Renew. Energy Focus 2019, 29, 94–106. [Google Scholar] [CrossRef]
- Ramadan, H. Wind energy farm sizing and resource assessment for optimal energy yield in Sinai Peninsula, Egypt. J. Clean. Prod. 2017, 161, 1283–1293. [Google Scholar] [CrossRef]
- Sharma, K.; Ahmed, M.R. Wind energy resource assessment for the Fiji Islands: Kadavu Island and Suva Peninsula. Renew. Energy 2016, 89, 168–180. [Google Scholar] [CrossRef]
- Verma, M. Wind Farm Repowering Using WAsP Software—An Approach for Reducing CO2 Emissions in the Environment, in Encyclopedia of Renewable and Sustainable Materials; Hashmi, S., Choudhury, I.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 844–859. [Google Scholar]
- Himri, Y.; Merzouk, M.; Merzouk, N.K.; Himri, S. Potential and economic feasibility of wind energy in south West region of Algeria. Sustain. Energy Technol. Assess. 2020, 38, 100643. [Google Scholar] [CrossRef]
- Kamdar, I.; Ali, S.; Bennui, A.; Techato, K.; Jutidamrongphan, W. Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resour. Conserv. Recycl. 2019, 149, 220–235. [Google Scholar] [CrossRef]
- Mahmood, F.H.; Resen, A.; Khamees, A.B. Wind characteristic analysis based on Weibull distribution of Al-Salman site, Iraq. Energy Rep. 2020, 6, 79–87. [Google Scholar] [CrossRef]
- TMD. Specifications of the Measuring Equipment; TMD: Bangkok, Thailand, 2018; pp. 1–20.
- TMD. Thai Meteorological Department Automatic Weather Station (TMD AWS). Available online: http://www.aws-observation.tmd.go.th/web/main/index.asp (accessed on 21 March 2021).
- Mathew, S. Wind Energy: Fundamentals, Resource Analysis and Economics, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kapen, P.T.; Gouajio, M.J.; Yemélé, D. Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon. Renew. Energy 2020, 159, 1188–1198. [Google Scholar] [CrossRef]
- Petersen, E.L.; Troen, I. European wind atlas. In Wind Energy-2nd Contractors’ Meeting; Harwood Academic Publishers: Harwood, ON, Canada, 1988. [Google Scholar]
- Sveinbjornsson, S.K. Analysis of WAsP (Wind Atlas Analysis and Application Program) in Complex Topographical Conditions Using Measured Production from a Large Scale Wind Farm. Master’s Thesis, University of Washington, Seattle, WA, USA, 2013. [Google Scholar]
- Jackson, P.S.; Hunt, J.C.R. Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 1975, 101, 929–955. [Google Scholar] [CrossRef]
- Mortensen, N.G. Wind Resource Assessment Using WAsP Software. (DTU Wind Energy E-0135); Technical University of Denmark: Copenhagen, Denmark, 2020. [Google Scholar]
- Tran, T.T.; Smith, A.D. Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Appl. Energy 2018, 216, 157–171. [Google Scholar] [CrossRef]
- Katinas, V.; Gecevicius, G.; Marciukaitis, M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy 2018, 218, 442–451. [Google Scholar] [CrossRef]
- Irwanto, M.; Gomesh, N.; Mamat, M.; Yusoff, Y. Assessment of wind power generation potential in Perlis, Malaysia. Renew. Sustain. Energy Rev. 2014, 38, 296–308. [Google Scholar] [CrossRef]
- Costoya, X.; Decastro, M.; Carvalho, D.; Gómez-Gesteira, M. On the suitability of offshore wind energy resource in the United States of America for the 21st century. Appl. Energy 2020, 262, 114537. [Google Scholar] [CrossRef]
- Yu, X.; Qu, H. Wind power in China—Opportunity goes with challenge. Renew. Sustain. Energy Rev. 2010, 14, 2232–2237. [Google Scholar] [CrossRef]
- Kamdar, I.; Taweekun, J. Assessment of wind energy potential of Hat Yai (Songkhla), Thailand. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1163, 012001. [Google Scholar] [CrossRef]
- Tummala, A.; Velamati, R.K.; Sinha, D.K.; Indraja, V.; Krishna, V.H. A review on small scale wind turbines. Renew. Sustain. Energy Rev. 2016, 56, 1351–1371. [Google Scholar] [CrossRef]
- Lopez-Villalobos, C.; Rodriguez-Hernandez, O.; Martínez-Alvarado, O.; Hernandez-Yepes, J. Effects of wind power spectrum analysis over resource assessment. Renew. Energy 2021, 167, 761–773. [Google Scholar] [CrossRef]
- Boudia, S.M.; Benmansour, A.; Hellal, M.A.T. Wind resource assessment in Algeria. Sustain. Cities Soc. 2016, 22, 171–183. [Google Scholar] [CrossRef]
Equipment | Sensor Type | Instrument Range | Accuracy | Height (AGL) |
---|---|---|---|---|
Anemometer | Ultrasonic sensor | 0–75 m/s | ±2% | 10 m |
Wind vane | Ultrasonic sensor | 0–360° | ±2% | |
Thermometer | Platinum resistance element | −40 °C to 50 °C | ±0.3 °C | |
Barometer | Digital | 800–1100 hPa | ±0.2 | |
Relative humidity | Thin film | 0–100% RH | ±2% RH | |
Rain gauge | Tumbling cup | 0–100 mm/h | 2% |
Station Name | Latitude (ᵒ) | Longitude (ᵒ) | Altitude (m a.s.l.) | Measurement Period |
---|---|---|---|---|
Chumphon | 10.49 | 99.18 | 22 | 2017–2019 |
Kanchanadit | 9.18 | 99.73 | 27 | 2017–2019 |
Koh Samui | 9.45 | 100.03 | 6 | 2017–2019 |
Nakhon Si Thammarat | 8.54 | 99.93 | 5 | 2017–2019 |
Narathiwat | 6.41 | 101.81 | 5.13 | 2017–2019 |
Pattani | 6.78 | 101.15 | 6 | 2017–2019 |
Phatthalung | 7.58 | 100.16 | 4.15 | 2017–2019 |
Songkhla | 7.18 | 100.60 | 6 | 2017–2019 |
Yala | 6.51 | 101.28 | 36.04 | 2017–2019 |
Parameters | CAPEX | Fixed OPEX | Variable OPEX | Capacity Factor | Lifetime |
---|---|---|---|---|---|
Million $/MW | $/kW–yr | $/MWh | % | (t) yr | |
Wind | 2.52 | 10.28–60.0 | 4.82–23.0 | 26.0–52.0 | 25 |
Exchange rate | 31.24 (THB/$) | – | – | – | – |
Discount rate | 7.5 (%) | – | – | – | – |
FiTFix | 1.81 | – | – | – | – |
FiTVar | 1.85 | – | – | – | – |
Wind Power Class | Mean Wind Speed (m/s) | Wind Power Density (W/m2) | Resource Potential |
---|---|---|---|
1 | 3.5–5.6 | 50–200 | Poor |
2 | 5.6–6.4 | 200–300 | Marginal |
3 | 6.4–7.0 | 300–400 | Fair |
4 | 7.0–7.5 | 400–500 | Good |
5 | 7.5–8.0 | 500–600 | Excellent |
6 | 8.0–8.8 | 600–800 | Outstanding |
7 | Above 8.8 | Above 800 | Superb |
Rotor Diameter | Hub Height | Cut–In Speed | Cut–Out Speed | Survival Wind Speed | Rated Power | Rated Wind Speed |
---|---|---|---|---|---|---|
18 m | 28.5 m | 2.5 m/s | 25.0 m/s | 67.0 m/s | 80 kW | 12.0 m/s |
Sites | AEP (MWh) | CF (%) | LCOE ($/MWh) | |
---|---|---|---|---|
Fixed and Variable OPEX (Min.) | Fixed and Variable OPEX (Max.) | |||
Chumphon | 102.32 | 14.61 | 189.49 | 246.52 |
Kanchanadit | 146.03 | 20.83 | 134.35 | 179.78 |
Koh Samui | 173.71 | 24.77 | 113.74 | 154.84 |
Nakhon Si Thammarat | 127.91 | 18.25 | 152.66 | 201.94 |
Narathiwat | 190.18 | 27.14 | 104.23 | 143.33 |
Pattani | 109.05 | 15.54 | 178.44 | 233.14 |
Phatthalung | 146.87 | 20.96 | 133.54 | 178.8 |
Songkhla | 216.30 | 30.84 | 92.31 | 128.89 |
Yala | 198.24 | 28.27 | 100.26 | 138.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamdar, I.; Ali, S.; Taweekun, J.; Ali, H.M. Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region. Sustainability 2021, 13, 13718. https://doi.org/10.3390/su132413718
Kamdar I, Ali S, Taweekun J, Ali HM. Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region. Sustainability. 2021; 13(24):13718. https://doi.org/10.3390/su132413718
Chicago/Turabian StyleKamdar, Ismail, Shahid Ali, Juntakan Taweekun, and Hafiz Muhammad Ali. 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region" Sustainability 13, no. 24: 13718. https://doi.org/10.3390/su132413718
APA StyleKamdar, I., Ali, S., Taweekun, J., & Ali, H. M. (2021). Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region. Sustainability, 13(24), 13718. https://doi.org/10.3390/su132413718