Low Nickel, Ceria Zirconia-Based Micro-Tubular Solid Oxide Fuel Cell: A Study of Composition and Oxidation Using Hydrogen and Methane Fuel
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Fabrication of DL-HF
2.3. Characterization
2.4. Conductivity Test
2.5. Performance Test
3. Results and Discussion
3.1. Morphology and Properties
3.2. Fuel Cell Performance
3.2.1. Power Density Analysis (I-V Diagram)
3.2.2. Electrochemical Impedance Spectroscopy (EIS)
3.2.3. Rohm for Operation in H2 and CH4
3.2.4. Rct for Operation in H2 and CH4
3.2.5. Ea for Rohm for Operation in H2 and CH4
3.2.6. Ea for Rct for Operation in H2
3.2.7. Ea for Rct for Operation in CH4
3.2.8. Comparison of Effects of Ni and CeO2 Content on Rohm and Rct on H2 and CH4 Fuel
4. Conclusions
- In H2 operation, Ea for Rohm and Rct is limited by anode conductivity, where higher anode conductivity will provide lower Ea. This implies that anode conductivity is a rate-limiting step in H2 operation.
- In CH4 operation, Ea for Rohm is limited by anode conductivity, oxide ion conductivity and fuel oxidation rate.
- In CH4 operation, lower Ea for Rct or CH4 oxidation is observed in the Ni–CeO2–YSZ anode. The presence of Ni in ceria–zirconia increases the oxidation of methane.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ades, M.; Adler, R.; Allan, R.; Anderson, J.; Argüez, A.; Arosio, C.; Augustine, J.A.; Azorin-Molina, C.; Barichivich, J.; Barnes, J.; et al. Global Climate. Bull. Am. Meteorol. Soc. 2020, 101, S9–S128. [Google Scholar] [CrossRef]
- Shabri, H.A.; Othman, M.H.D.; Mohamed, M.A.; Kurniawan, T.A.; Jamil, S.M. Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: A review. Fuel Process. Technol. 2021, 212, 106626. [Google Scholar] [CrossRef]
- Ahmed, S.; Aitani, A.; Rahman, F.; Al-Dawood, A.; Al-Muhaish, F. Decomposition of hydrocarbons to hydrogen and carbon. Appl. Catal. A Gen. 2009, 359, 1–24. [Google Scholar] [CrossRef]
- Lee, J.; Theis, J.R.; Kyriakidou, E.A. Vehicle emissions trapping materials: Successes, challenges, and the path forward. Appl. Catal. B Environ. 2019, 243, 397–414. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Elangovan, S.; Elwell, J.; Larsen, D. Oxygen Production from Mars Atmosphere Carbon Dioxide Using Solid Oxide Electrolysis. ECS Trans. 2017, 78, 2953–2963. [Google Scholar] [CrossRef]
- Lee, J.G.; Jeon, O.S.; Hwang, H.J.; Jang, J.; Lee, Y.; Hyun, S.H.; Shul, Y.G. Durable and High-Performance Direct-Methane Fuel Cells with Coke-Tolerant Ceria-Coated Ni Catalysts at Reduced Temperatures. Electrochim. Acta 2016, 191, 677–686. [Google Scholar] [CrossRef]
- Lee, D.; Myung, J.; Tan, J.; Hyun, S.-H.; Irvine, J.T.; Kim, J.; Moon, J. Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. J. Power Sources 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Omar, A.F.; Othman, M.H.D.; Gunaedi, C.N.; Jamil, S.M.; Mohamed, M.H.; Jaafar, J.; Rahman, M.A.; Ismail, A.F. Performance analysis of hollow fibre-based micro-tubular solid oxide fuel cell utilising methane fuel. Int. J. Hydrogen Energy 2019, 44, 30754–30762. [Google Scholar] [CrossRef]
- Riegraf, M.; Dierickx, S.; Weber, A.; Costa, R.; Schiller, G.; Friedrich, K.A. Electrochemical Impedance Analysis of Ni/CGO10-Based Electrolyte-Supported Cells. ECS Trans. 2019, 91, 1985–1992. [Google Scholar] [CrossRef] [Green Version]
- Osinkin, D. Complementary effect of ceria on the hydrogen oxidation kinetics on Ni—Ce0.8Sm0.2O2-δ anode. Electrochim. Acta 2020, 330, 135257. [Google Scholar] [CrossRef]
- Öksüzömer, M.F.; Sarıboğa, V. Combined Cu-CeO2/YSZ and Ni/YSZ dual layer anode structures for direct methane solid oxide fuel cells. Int. J. Energy Res. 2018, 42, 3228–3243. [Google Scholar] [CrossRef]
- Rabuni, M.F.; Li, T.; Punmeechao, P.; Li, K. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC). J. Power Sources 2018, 384, 287–294. [Google Scholar] [CrossRef]
- Sumi, H.; Shimada, H.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Development of Portable Solid Oxide Fuel Cell System Driven by Hydrocarbon and Alcohol Fuels. Adv. Bioceram. Porous Ceram. II 2019, 39, 159–163. [Google Scholar]
- Ab Rahman, M.; Othman, M.H.D.; Wibisono, Y.; Harun, Z.; Omar, A.F.; Shabri, H.A.; Deraman, S.; Rahman, M.A.; Jaafar, J.; Ismail, A.F. Effect of electrolyte thickness manipulation on enhancing carbon deposition resistance of methane-fueled solid oxide fuel cell. Int. J. Energy Res. 2021, 45, 2837–2855. [Google Scholar] [CrossRef]
- Ab Rahman, M.; Othman, M.H.D.; Fansuri, H.; Harun, Z.; Omar, A.F.; Shabri, H.A.; Ravi, J.; Rahman, M.A.; Jaafar, J.; Ismail, A.F.; et al. Development of high-performance anode/electrolyte/cathode micro-tubular solid oxide fuel cell via phase inversion-based co-extrusion/co-sintering technique. J. Power Sources 2020, 467, 228345. [Google Scholar] [CrossRef]
- Jamil, S.M.; Rahman, M.A.; Shabri, H.A.; Othman, M.H.D. Solid Electrolyte Membranes for Low- and High-Temperature Fuel Cells. In Membrane Technology Enhancement for Environmental Protection and Sustainable Industrial Growth; Zhang, Z., Zhang, W., Chehimi, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 109–125. [Google Scholar]
- Eguchi, K.; Akasaka, N.; Mitsuyasu, H.; Nonaka, Y. Process of solid state reaction between doped ceria and zirconia. Solid State Ionics 2000, 135, 589–594. [Google Scholar] [CrossRef]
- Tuller, H. Ionic conduction in nanocrystalline materials. Solid State Ionics 2000, 131, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Carlson, B.D.; Toops, T.J.; Li, Z.; Lance, M.J.; Karakalos, S.G.; Choi, J.; Kyriakidou, E.A. Methane Combustion Over Ni/CexZr1−xO2 Catalysts: Impact of Ceria/Zirconia Ratio. ChemCatChem 2020, 12, 5558–5568. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, K.; Chen, M.; Zhang, L.; Brodersen, K.; Du, Y. Interdiffusion between gadolinia doped ceria and yttria stabilized zirconia in solid oxide fuel cells: Experimental investigation and kinetic modeling. J. Power Sources 2019, 441, 227152. [Google Scholar] [CrossRef] [Green Version]
- Kurapova, O.Y.; Shugurov, S.M.; Vasil’Eva, E.A.; Savelev, D.A.; Konakov, V.G.; Lopatin, S.I. Thermal prehistory, structure and high-temperature thermodynamic properties of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions. Ceram. Int. 2021, 47, 11072–11079. [Google Scholar] [CrossRef]
- Danielis, M.; Betancourt, L.E.; Orozco, I.; Divins, N.J.; Llorca, J.; Rodríguez, J.A.; Senanayake, S.D.; Colussi, S.; Trovarelli, A. Methane oxidation activity and nanoscale characterization of Pd/CeO2 catalysts prepared by dry milling Pd acetate and ceria. Appl. Catal. B Environ. 2021, 282, 119567. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Rui, N.; Li, X.; Lin, L.; Betancourt, L.E.; Su, D.; Xu, W.; Cen, J.; Attenkofer, K.; et al. Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ruδ+–Ce3+ Interactions for Enhanced Conversion. ACS Catal. 2019, 9, 3349–3359. [Google Scholar] [CrossRef]
- Ahmad, S.I.; Rao, P.K.; Syed, I.A. Sintering temperature effect on density, structural and morphological properties of Mg- and Sr-doped ceria. J. Taibah Univ. Sci. 2016, 10, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Panthi, D.; Hedayat, N.; Du, Y. Densification behavior of yttria-stabilized zirconia powders for solid oxide fuel cell electrolytes. J. Adv. Ceram. 2018, 7, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Sariboğa, V.; Öksüzömer, M.F. Cu-CeO2 anodes for solid oxide fuel cells: Determination of infiltration characteristics. J. Alloys Compd. 2016, 688, 323–331. [Google Scholar] [CrossRef]
- Zhou, X. Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ionics 2004, 175, 19–22. [Google Scholar] [CrossRef]
- Mori, M.; Yamamoto, T.; Itoh, H.; Inaba, H.; Tagawa, H. Thermal Expansion of Nickel-Zirconia Anodes in Solid Oxide Fuel Cells during Fabrication and Operation. J. Electrochem. Soc. 1998, 145, 1374–1381. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Wang, C.; Yu, J.; Li, L. Crystal structure, microstructure, thermal expansion and electrical conductivity of CeO2–ZrO2 solid solution. Adv. Appl. Ceram. 2017, 116, 477–481. [Google Scholar] [CrossRef]
- Jamil, S.M.; Othman, M.H.D.; Rahman, M.A.; Jaafar, J.; Ismail, A.F.; Honda, S.; Iwamoto, Y. Properties and performance evaluation of dual-layer ceramic hollow fiber with modified electrolyte for MT-SOFC. Renew. Energy 2019, 134, 1423–1433. [Google Scholar] [CrossRef]
- Feng, J.; Qiao, J.; Sun, W.; Yang, P.; Li, H.; Wang, Z.; Sun, K. Characteristic and preparation of Ce0.5Zr0.5O2 as the anode support for solid oxide fuel cells by phase inversion technology. Int. J. Hydrogen Energy 2015, 40, 12784–12789. [Google Scholar] [CrossRef]
- Dees, D.W.; Claar, T.D.; Easler, T.E.; Fee, D.C.; Mrazek, F.C. ChemInform Abstract: The Conductivity of Porous Ni/ZrO2-Y2O3 Cermets. Chemin 1987, 18, 5–10. [Google Scholar] [CrossRef]
- Yu, J.H.; Park, G.W.; Lee, S.; Woo, S.K. Microstructural effects on the electrical and mechanical properties of Ni–YSZ cermet for SOFC anode. J. Power Sources 2007, 163, 926–932. [Google Scholar] [CrossRef]
- Sasaki, K.; Teraoka, Y. Equilibria in Fuel Cell Gases. J. Electrochem. Soc. 2003, 150, A885–A888. [Google Scholar] [CrossRef]
- Shishkin, M.; Ziegler, T. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: A critical overview. Phys. Chem. Chem. Phys. 2014, 16, 1798–1808. [Google Scholar] [CrossRef] [PubMed]
- Vita, A. Catalytic Applications of CeO2-Based Materials. Catalysts 2020, 10, 576. [Google Scholar] [CrossRef]
- Shutilov, A.A.; Simonov, M.N.; Zaytseva, Y.A.; Zenkovets, G.A.; Simakova, I. Phase composition and catalytic properties of ZrO2 and CeO2-ZrO2 in the ketonization of pentanoic acid to 5-nonanone. Kinet. Catal. 2013, 54, 184–192. [Google Scholar] [CrossRef]
- Coles-Aldridge, A.V.; Baker, R.T. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium. Solid State Ionics 2020, 347, 115255. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-8932-0. [Google Scholar] [CrossRef]
- Luciani, G.; Landi, G.; Imparato, C.; Vitiello, G.; Deorsola, F.A.; Di Benedetto, A.; Aronne, A. Improvement of splitting performance of Ce0.75Zr0.25O2 material: Tuning bulk and surface properties by hydrothermal synthesis. Int. J. Hydrogen Energy 2019, 44, 17565–17577. [Google Scholar] [CrossRef]
- Deng, J.; Li, S.; Xiong, L.; Jiao, Y.; Yuan, S.; Wang, J.; Chen, Y. Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Appl. Surf. Sci. 2020, 505, 144301. [Google Scholar] [CrossRef]
- Shishkin, M.; Ziegler, T. The Electronic Structure and Chemical Properties of a Ni/CeO2 Anode in a Solid Oxide Fuel Cell: A DFT + U Study. J. Phys. Chem. C 2010, 114, 21411–21416. [Google Scholar] [CrossRef]
- Escudero, M.; Serrano, J. Individual impact of several impurities on the performance of direct internal reforming biogas solid oxide fuel cell using W-Ni-CeO2 as anode. Int. J. Hydrogen Energy 2019, 44, 20616–20631. [Google Scholar] [CrossRef]
- Hou, X.; Zhao, K.; Marina, O.A.; Norton, M.G.; Ha, S. NiMo-ceria-zirconia-based anode for solid oxide fuel cells operating on gasoline surrogate. Appl. Catal. B Environ. 2019, 242, 31–39. [Google Scholar] [CrossRef]
- Fuerte, A.; Valenzuela, R.X.; Escudero, M.J. Role of Dopants on Ceria-based Anodes for IT-SOFCs Powered by Hydrocarbon Fuels. Univers. J. Electr. Electron. Eng. 2017, 5, 45–55. [Google Scholar] [CrossRef]
- Rudin, S.N.F.M.; Ab Muis, Z.; Ramli, A.F.; Shabri, H.A.; Zailan, R.; Hashim, H.; Ho, W.S. Sustainable Supply of Hydrogen for Integrated Power Plant with Methanation via Pinch Analysis. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 884. [Google Scholar] [CrossRef]
- Rudin, S.N.F.M.; Ab Muis, Z.; Hashim, H.; Ho, W.S. Techno-economic assessment of integrated power plant with methanation. Chem. Eng. Trans. 2018, 63, 451–456. [Google Scholar]
Sample Name | NiO, % | CeO2, % | YSZ, % |
---|---|---|---|
Mat_A | 0 | 50 | 50 |
Mat_B | 12.5 | 37.5 | 50 |
Mat_C | 25 | 25 | 50 |
Mat_D | 37.5 | 12.5 | 50 |
Mat_E | 50 | 0 | 50 |
2θ, ° | d-Spacing, A | Plane | Compound | DL-HF |
---|---|---|---|---|
47.5 | 1.9131 | 202 | CeO2 | Mat_A, Mat_B, Mat_C |
48.2 | 1.8640 | 440 | CeZrO4 | Mat_A, Mat_B |
49.5 | 1.8373 | 112 | Zr0.82Ce0.18O2 | Mat_C, Mat_D |
50.2 | 1.8151 | 202 | ZrO2 in ((ZrO2)0.88(Y2O3)0.12)0.893 | All |
56.3 | 1.6315 | 311 | CeO2 | Mat_A, Mat_C |
58.0 | 1.5896 | 622 | CeZrO4 | Mat_A, Mat_B |
58.5 | 1.5759 | 013 | Zr0.82Ce0.18O2 | Mat_C, Mat_D |
59.6 | 1.5491 | 311 | ZrO2 in ((ZrO2)0.88(Y2O3)0.12)0.893 | All |
Properties | Low Ni High CeO2 | High Ni Low CeO2 | Remark |
---|---|---|---|
Electronic Conductivity | Low Supplied by Ce(III)–Ce(IV) | High Supplied by Ni | |
O2− conductivity | High Aided by CeO2 | Low | |
H2 oxidation | Done by CeO2–YSZ Lower rate | Done by Ni–YSZ High rate | Higher Ea for Ni–CeO2–YSZ |
CH4 oxidation | Low | Low | Lower Ea in Ni–CeO2–YSZ |
Fuel | Ea for Rohm | Ea for Rct |
---|---|---|
H2 | Limited by anode conductivity Higher anode conductivity, lower Ea Anode conductivity is a rate-limiting step | Limited by anode conductivity Higher anode conductivity, lower Ea Anode conductivity is a rate-limiting step |
CH4 | Limited by anode conductivity, oxide ion conductivity, fuel oxidation | Lower Ea for CH4 oxidation observed in Ni–CeO2–YSZ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabri, H.A.; Rudin, S.N.F.M.; Deraman, S.; Rahman, M.A.; Othman, M.H.D.; Jamil, S.M.; Kurniawan, T.A.; Li, T.; Bakar, S.A.; Osman, N.; et al. Low Nickel, Ceria Zirconia-Based Micro-Tubular Solid Oxide Fuel Cell: A Study of Composition and Oxidation Using Hydrogen and Methane Fuel. Sustainability 2021, 13, 13789. https://doi.org/10.3390/su132413789
Shabri HA, Rudin SNFM, Deraman S, Rahman MA, Othman MHD, Jamil SM, Kurniawan TA, Li T, Bakar SA, Osman N, et al. Low Nickel, Ceria Zirconia-Based Micro-Tubular Solid Oxide Fuel Cell: A Study of Composition and Oxidation Using Hydrogen and Methane Fuel. Sustainability. 2021; 13(24):13789. https://doi.org/10.3390/su132413789
Chicago/Turabian StyleShabri, Hazrul Adzfar, Siti Norlaila Faeizah Mohd Rudin, Shahirah Deraman, Mazlinda Ab Rahman, Mohd Hafiz Dzarfan Othman, Siti Munira Jamil, Tonni Agustiono Kurniawan, Tao Li, Suriani Abu Bakar, Nafisah Osman, and et al. 2021. "Low Nickel, Ceria Zirconia-Based Micro-Tubular Solid Oxide Fuel Cell: A Study of Composition and Oxidation Using Hydrogen and Methane Fuel" Sustainability 13, no. 24: 13789. https://doi.org/10.3390/su132413789
APA StyleShabri, H. A., Rudin, S. N. F. M., Deraman, S., Rahman, M. A., Othman, M. H. D., Jamil, S. M., Kurniawan, T. A., Li, T., Bakar, S. A., Osman, N., Jaafar, J., Rahman, M. A., & Ismail, A. F. (2021). Low Nickel, Ceria Zirconia-Based Micro-Tubular Solid Oxide Fuel Cell: A Study of Composition and Oxidation Using Hydrogen and Methane Fuel. Sustainability, 13(24), 13789. https://doi.org/10.3390/su132413789