Recent Developments on Rare-Earth Hexaboride Nanowires
Abstract
:1. Introduction
2. Growth of RB6 Nanowires
2.1. CVD Growth
2.2. HPSS Growth
3. Properties and Applications of RB6 Nanowires
3.1. Electronic Transportation
3.2. Optoelectronic Properties
3.3. Electrochemical Performances
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ji, X.H.; Zhang, Q.Y.; Xu, J.Q.; Zhao, Y.M. Rare-earth hexaborides nanostructures: Recent advances in materials, characterization and investigations of physical properties. Prog. Solid State Chem. 2011, 39, 51–69. [Google Scholar] [CrossRef]
- Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.; Zhang, T.; Guo, Z.; Lin, H.; Li, Z.; Chen, H.; Chen, J.; Liu, F. The growth methods and field emission studies of low-dimensional boron-based nanostructures. Appl. Sci. 2019, 9, 1019. [Google Scholar] [CrossRef] [Green Version]
- Kunii, S.; Kasuya, T.; Kadowaki, K.; Date, M.; Woods, S.B. Electron tunneling into superconducting YB6. Solid State Commun. 1984, 52, 659–661. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Zhang, Q.; Zhao, G.; Yang, G.; Zhang, J.; Zhou, O.; Qin, L.-C. Field emission of electrons from single LaB6 nanowire. Adv. Mater. 2006, 18, 87–91. [Google Scholar] [CrossRef]
- Jang, H.; Friemel, G.; Ollivier, J.; Dukhnenko, A.V.; Shitsevalova, N.Y.; Filipov, V.B.; Keimer, B.; Inosov, D.S. Intense low-energy ferromagnetic fluctuations in the antiferromagnetic heavy-fermion metal CeB6. Nat. Mater. 2014, 13, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Pohlit, M.; Rößler, S.; Ohno, Y.; Ohno, H.; Von Molnár, S.; Fisk, Z.; Müller, J.; Wirth, S. Evidence for ferromagnetic clusters in the colossal-magnetoresistance material EuB6. Phys. Rev. Lett. 2018, 120, 257201. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, K.; Kurdak, C.; Allen, J.W. Emergent mystery in the Kondo insulator samarium hexaboride. Nat. Rev. Phys. 2020, 2, 463–479. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Tang, J.; Qin, L.C. Single-crystalline LaB6 nanowires. J. Am. Chem. Soc. 2005, 127, 2862–2863. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Tang, J.; Qin, L.C. Single-crystalline CeB6 nanowires. J. Am. Chem. Soc. 2005, 127, 8002–8003. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Zhao, G.; Tang, J.; Zhou, O.; Qin, L.C. Single-crystalline GdB6 nanowire field emitters. J. Am. Chem. Soc. 2005, 127, 13120–13121. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Zou, C. Self-catalyst growth of LaB6 nanowires and nanotubes. Chem. Phys. Lett. 2006, 423, 138–142. [Google Scholar] [CrossRef]
- Zou, C.Y.; Zhao, Y.M.; Xu, J.Q. Synthesis of single-crystalline CeB6 nanowires. J. Cryst. Growth 2006, 291, 112–116. [Google Scholar] [CrossRef]
- Ding, Q.; Zhao, Y.; Xu, J.; Zou, C. Large-scale synthesis of neodymium hexaboride nanowires by self-catalyst. Solid State Commun. 2007, 141, 53–56. [Google Scholar] [CrossRef]
- Xu, J.; Chen, X.; Zhao, Y.; Zou, C.; Ding, Q.; Jian, J. Self-catalyst growth of EuB6 nanowires and nanotubes. J. Cryst. Growth 2007, 303, 466–471. [Google Scholar] [CrossRef]
- Xu, J.Q.; Zhao, Y.M.; Shi, Z.D.; Zou, C.Y.; Ding, Q.W. Single-crystalline SmB6 nanowires. J. Cryst. Growth 2008, 310, 3443–3447. [Google Scholar] [CrossRef]
- Brewer, J.R.; Deo, N.; Wang, Y.M.; Cheung, C.L. Lanthanum hexaboride nanoobelisks. Chem. Mater. 2007, 19, 6379–6381. [Google Scholar] [CrossRef]
- Wang, G.; Brewer, J.R.; Chan, J.Y.; Diercks, D.R.; Cheung, C.L. Morphological evolution of neodymium boride nanostructure growth by chemical vapor deposition. J. Phys. Chem. C 2009, 113, 10446–10451. [Google Scholar] [CrossRef]
- Brewer, J.R.; Jacobberger, R.M.; Diercks, D.R.; Cheung, C.L. Rare earth hexaboride nanowires: General synthetic design and analysis using atom probe tomography. Chem. Mater. 2011, 23, 2606–2610. [Google Scholar] [CrossRef]
- Chi, M.; Zhao, Y.; Fan, Q.; Han, W. The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method. Ceram. Int. 2014, 40, 8921–8924. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Yuan, J.; Ma, J.; Shinya, N.; Nakajima, K.; Murakami, H.; Ohkubo, T.; Qin, L.-C. Nanostructured LaB6 field emitter with lowest apical work function. Nano Lett. 2010, 10, 3539–3544. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, X.; Zhao, Y.; Zou, C.; Ding, Q. Single-crystalline PrB6 nanowires and their field-emission properties. Nanotechnology 2007, 18, 115621. [Google Scholar] [CrossRef]
- Xu, J.Q.; Zhao, Y.M.; Zhang, Q.Y. Enhanced electron field emission from single-crystalline LaB6 nanowires with ambient temperature. J. Appl. Phys. 2008, 104, 124306. [Google Scholar] [CrossRef]
- Xu, J.Q.; Zhao, Y.M.; Ji, X.H.; Zhang, Q.; Lau, S.P. Growth of single-crystalline SmB6 nanowires and their temperature-dependent electron field emission. J. Phys. D Appl. Phys. 2009, 42, 135403. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Xu, J.Q.; Zhao, Y.M.; Ji, X.H.; Lau, S.P. Fabrication of large-scale single-crystalline PrB6 nanorods and their temperature-dependent electron field emission. Adv. Funct. Mater. 2009, 19, 742–747. [Google Scholar] [CrossRef]
- Xu, J.; Hou, G.; Li, H.; Zhai, T.; Dong, B.; Yan, H.; Wang, Y.; Yu, B.; Bando, Y.; Golberg, D. Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Mater. 2013, 5, e53. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Hou, G.; Mori, T.; Li, H.; Wang, Y.; Chang, Y.; Luo, Y.; Yu, B.; Ma, Y.; Zhai, T. Excellent field-emission performances of neodymium hexaboride (NdB6) nanoneedles with ultra-low work functions. Adv. Funct. Mater. 2013, 23, 5038–5048. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Chen, J.; Zhao, Y.; Han, W.; Fan, Q.; Liang, Z.; Liu, X.; Kuang, Q. Single-crystalline LaxNd1−xB6 nanowires: Synthesis, characterization and field emission performance. J. Mater. Chem. C 2015, 3, 7476–7482. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Zhang, L.; An, B.; Qin, L.C. Atomic force microscopy measurement of the Young’s modulus and hardness of single LaB6 nanowires. Appl. Phys. Lett. 2008, 92, 173121. [Google Scholar] [CrossRef] [Green Version]
- Hossain, F.M.; Riley, D.P.; Murch, G.E. Ab initio calculations of the electronic structure and bonding characteristics of LaB6. Phys. Rev. B 2005, 72, 235101. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Ning, S.; Xiao, Y.; Zhang, J. The electronic structure and work functions of single crystal LaB6 typical crystal surfaces. Vacuum 2017, 143, 245–250. [Google Scholar] [CrossRef]
- Neupane, M.; Xu, S.Y.; Alidoust, N.; Bian, G.; Kim, D.J.; Liu, C.; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Durakiewicz, T.; et al. Non-Kondo-like electronic structure in the correlated rare-earth hexaboride YbB6. Phys. Rev. Lett. 2015, 114, 016403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzero, M.; Xia, J.; Galitski, V.; Coleman, P. Topological kondo insulators. Annu. Rev. Condens. Matter Phys. 2016, 7, 249–280. [Google Scholar] [CrossRef] [Green Version]
- Gan, H.B.; Peng, L.X.; Yang, X.; Tian, Y.; Xu, N.S.; Chen, J.; Liu, F.; Deng, S.Z. A moderate synthesis route of 5.6 mA-current LaB6 nanowire film with recoverable emission performance towards cold cathode electron source applications. RSC Adv. 2017, 7, 24848–24855. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Xu, J.; Chang, Y.; Wang, Q.; Wang, Y.; Yu, B.; Guo, P.; Xu, J.; Sun, H.; Luo, Y.; et al. Flexible three-dimensional CeB6 nanowire arrays and excellent field emission emitters. J. Alloys Compd. 2017, 729, 997–1003. [Google Scholar] [CrossRef]
- Han, W.; Zhao, Y.; Fan, Q.; Li, Q. Preparation and growth mechanism of one-dimensional NdB6 nanostructures: Nanobelts, nanoawls, and nanotubes. RSC Adv. 2016, 6, 41891–41896. [Google Scholar] [CrossRef]
- Han, W.; Zhang, H.; Chen, J.; Zhao, Y.; Fan, Q.; Li, Q.; Liu, X.; Lin, X. Single-crystalline LaxPr1-xB6 nanoawls: Synthesis, characterization and growth mechanism. Ceram. Int. 2016, 42, 6236–6243. [Google Scholar] [CrossRef]
- Gan, H.; Ye, B.; Zhang, T.; Xu, N.; He, H.; Deng, S.; Liu, F. A controllable solid-source CVD route to prepare topological Kondo insulator SmB6 nanobelt and nanowire arrays with high activation energy. Cryst. Growth Des. 2019, 19, 845–853. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, Y.H.; Yin, Y.L.; Zhou, W.C.; Zhou, F.; Liu, C.; Liu, G.T.; Sun, L.F.; Tang, D.S. Large-scale synthesis and electrical transport properties of single-crystalline SmB6 nanowires. J. Phys. D Appl. Phys. 2016, 49, 265302. [Google Scholar] [CrossRef]
- Selvan, R.K.; Genish, I.; Perelshtein, I.; Calderon Moreno, J.M.; Gedanken, A. Single step, low-temperature synthesis of submicron-sized rare earth hexaborides. J. Phys. Chem. C 2008, 112, 1795–1802. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, L.; Wang, X.; Fan, H.; Wang, X.; Wu, X.; Wang, H.; Qian, Y. A low-temperature route for the synthesis of nanocrystalline LaB6. J. Solid State Chem. 2008, 181, 294–297. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Zhang, X.; Wang, P.; Xiong, S.; Shi, L.; Qian, Y. Direct low-temperature synthesis of RB6 (R = Ce, Pr, Nd) nanocubes and nanoparticles. J. Solid State Chem. 2009, 182, 3098–3104. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, Y.; Xu, G.; Wang, P.; Wang, X.; Xiong, S.; Wang, X.; Qian, Y. Mg-assisted autoclave synthesis of RB6 (R = Sm, Eu, Gd, and Tb) submicron cubes and SmB6 submicron rods. Eur. J. Inorg. Chem. 2010, 8, 1289–1294. [Google Scholar] [CrossRef]
- Pol, V.G.; Pol, S.V.; Gedanken, A. Dry autoclaving for the nanofabrication of sulfides, selenides, borides, phosphides, nitrides, carbides, and oxides. Adv. Mater. 2011, 23, 1179–1190. [Google Scholar] [CrossRef]
- Wang, L.; Xu, L.; Ju, Z.; Qian, Y. A versatile route for the convenient synthesis of rare-earth and alkaline-earth hexaborides at mild temperatures. CrystEngComm 2010, 12, 3923–3928. [Google Scholar] [CrossRef]
- Chen, B.; Yang, L.; Heng, H.; Chen, J.; Zhang, L.; Xu, L.; Qian, Y.; Yang, J. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals. J. Solid State Chem. 2012, 194, 219–224. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, L.; Shao, L.; Chen, B.; Meng, F.; Qian, Y.; Xu, L. General fabrication of boride, carbide, and nitride nanocrystals via a metal-hydrolysis-assisted process. Inorg. Chem. 2017, 56, 2440–2447. [Google Scholar] [CrossRef] [PubMed]
- Kanakala, R.; Rojas-George, G.; Graeve, O.A. Unique preparation of hexaboride nanocubes: A first example of boride formation by combustion synthesis. J. Am. Ceram. Soc. 2010, 93, 3136–3141. [Google Scholar] [CrossRef]
- Kanakala, R.; Escudero, R.; Rojas-George, G.; Ramisetty, M.; Graeve, O.A. Mechanisms of combustion synthesis and magnetic response of high-surface-area hexaboride compounds. ACS Appl. Mater. Inter. 2011, 3, 1093–1100. [Google Scholar] [CrossRef]
- Portehault, D.; Devi, S.; Beaunier, P.; Gervais, C.; Giordano, C.; Sanchez, C.; Antonietti, M. A general solution route toward metal boride nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 3262–3265. [Google Scholar] [CrossRef]
- Liu, X.; Gong, Y. Molten salt synthesis of samarium borides with controllable stoichiometry and morphology. J. Alloys Compd. 2021, 867, 159174. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Kuang, Q.; Fan, Q.; Zhao, Y. Low-temperature synthesis of CeB6 nanowires and nanoparticles as feasible lithium-ion anode materials. Adv. Powder Tech. 2020, 31, 595–603. [Google Scholar] [CrossRef]
- Han, W.; Qiu, Y.; Zhao, Y.; Zhang, H.; Chen, J.; Sun, S.; Lan, L.; Fan, Q.; Li, Q. Low-temperature synthesis and electronic transport of topological insulator SmB6 nanowires. CrystEngComm 2016, 18, 7934–7939. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Fan, Q.; Zhao, Y. High-pressure growth and magnetic and electrical properties of EuB6 nanowires. Phys. Status Solidi (RRL) Rapid Res. Lett. 2021, 15, 2100249. [Google Scholar] [CrossRef]
- Han, W.; Wang, Z.; Li, Q.; Liu, H.; Fan, Q.; Dong, Y.; Kuang, Q.; Zhao, Y. Autoclave growth, magnetic, and optical properties of GdB6 nanowires. J. Solid State Chem. 2017, 256, 53–59. [Google Scholar] [CrossRef]
- Han, W.; Wang, Z.; Li, Q.; Lian, X.; Liu, X.; Fan, Q.; Zhao, Y. Semiconductor-insulator transition in a YbB6 nanowire with boron vacancy. J. Solid State Chem. 2018, 262, 244–250. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Zhang, J.; Fan, Q.H.; Zhao, Y.M. Superconducting YB6 nanowires. Ceram. Int. 2021, 47, 23788–23793. [Google Scholar] [CrossRef]
- Kong, L.J.; Zhou, Y.; Liu, S.; Lin, Z.; Zhang, L.; Lin, F.; Tang, D.S.; Wu, H.C.; Liu, J.F.; Lu, H.Z.; et al. Spin-polarized surface state transport in a topological Kondo insulator SmB6 nanowire. Phys. Rev. B 2017, 95, 235410. [Google Scholar] [CrossRef]
- Zhou, L.; Ye, B.C.; Gan, H.B.; Tang, J.Y.; Chen, P.B.; Du, Z.Z.; Tian, Y.; Deng, S.Z.; Guo, G.P.; Lu, H.Z.; et al. Surface-induced positive planar Hall effect in topological Kondo insulator SmB6 microribbons. Phys. Rev. B 2019, 99, 155424. [Google Scholar] [CrossRef] [Green Version]
- He, X.S.; Gan, H.B.; Du, Z.Z.; Ye, B.C.; Zhou, L.; Tian, Y.; Deng, S.Z.; Guo, G.P.; Lu, H.Z.; Liu, F.; et al. Magnetoresistance anomaly in topological Kondo insulator SmB6 nanowires with strong surface magnetism. Adv. Sci. 2018, 5, 1700753. [Google Scholar] [CrossRef]
- Kong, L.J.; Zhou, Y.; Song, H.D.; Yu, D.P.; Liao, Z.M. Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire. Chin. Phys. B 2019, 28, 107501. [Google Scholar] [CrossRef]
- Gan, H.; Ye, B.; Zhou, L.; Zhang, T.; Tian, Y.; Deng, S.; He, H.; Liu, F. Controllable synthesis of Gd-doped SmB6 nanobelt arrays for modulating their surface transport behaviors. Mater. Today Nano 2020, 12, 100097. [Google Scholar] [CrossRef]
- Kang, C.J.; Denlinger, J.D.; Allen, J.W.; Min, C.H.; Reinert, F.; Kang, B.Y. Electronic structure of YbB6: Is it a topological insulator or not? Phys. Rev. Lett. 2016, 116, 116401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Kim, D.J.; Rosa, P.F.S.; Wu, Q.; Guo, J.; Zhang, S.; Wang, Z.; Kang, D.; Zhang, C.; Yi, W.; et al. Pressure-induced quantum phase transitions in a YbB6 single crystal. Phys. Rev. B 2015, 92, 241118. [Google Scholar] [CrossRef] [Green Version]
- Munarriz, J.; Robinson, P.J.; Alexandrova, A.N. Towards a single chemical model for understanding lanthanide hexaborides. Angew. Chem. 2020, 132, 22873–22878. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Yuan, J.S.; Yamauchi, Y.; Suzuki, T.T.; Shinya, N.; Nakajima, K.; Qin, L.C. An ultrabright and monochromatic electron point source made of a LaB6 nanowire. Nat. Nanotech. 2016, 11, 273. [Google Scholar] [CrossRef]
- Zhang, H.; Jimbo, Y.; Niwata, A.; Ikeda, A.; Yasuhara, A.; Ovidiu, C.; Kimoto, K.; Kasaya, T.; Miyazaki, H.T.; Tsujii, N.; et al. High-endurance micro-engineered LaB6 nanowire electron source for high-resolution electron microscopy. Nat. Nanotechnol. 2021, 1–6. [Google Scholar] [CrossRef]
- Tang, S.; Tang, J.; Wu, Y.M.; Chen, Y.-H.; Uzuhashi, J.; Ohkubo, T.; Qin, L.-C. Stable field-emission from a CeB6 nanoneedle point electron source. Nanoscale 2021, 13, 17156–17161. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lai, J.W.; Kong, L.J.; Ma, J.C.; Lin, Z.L.; Lin, F.; Zhu, R.; Xu, J.; Huang, S.M.; Tang, D.S.; et al. Single crystalline SmB6 nanowires for self-powered, broadband photodetectors covering mid-infrared. Appl. Phys. Lett. 2018, 112, 162106. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Tian, Y.; Deng, S.Z.; Huang, Y.; Zhu, M.S.; Pei, Z.X.; Li, H.F.; Liu, F.; Zhi, C.Y. LaB6 nanowires for supercapacitors. Mater. Today Energy 2018, 10, 28–33. [Google Scholar] [CrossRef]
- Lee, S.; Stanev, V.; Zhang, X.; Stasak, D.; Flowers, J.; Higgins, J.S.; Dai, S.; Blum, T.; Pan, X.; Yakoveno, V.M.; et al. Perfect Andreev reflection due to the Klein paradox in a topological superconducting state. Nature 2019, 570, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. iScience 2021, 24, 103229. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Han, W. Recent Developments on Rare-Earth Hexaboride Nanowires. Sustainability 2021, 13, 13970. https://doi.org/10.3390/su132413970
Wang Z, Han W. Recent Developments on Rare-Earth Hexaboride Nanowires. Sustainability. 2021; 13(24):13970. https://doi.org/10.3390/su132413970
Chicago/Turabian StyleWang, Zhen, and Wei Han. 2021. "Recent Developments on Rare-Earth Hexaboride Nanowires" Sustainability 13, no. 24: 13970. https://doi.org/10.3390/su132413970
APA StyleWang, Z., & Han, W. (2021). Recent Developments on Rare-Earth Hexaboride Nanowires. Sustainability, 13(24), 13970. https://doi.org/10.3390/su132413970