Willingness to Pay for Public Benefit Functions of Daecheong Dam Operation: Moderating Effects of Climate Change Perceptions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Literature Review
2.3. Setting Attributes and Levels
2.4. Development of a Measurement Instrument
2.5. Sample Collection
2.6. Analytical Method
3. Results and Discussion
3.1. Demographic Profile of the Sample
3.2. Estimating Conditional Logit Model
3.3. Measuring Climate Change Perceptions and Segmenting Respondents
3.4. Estimating Implicit Prices by Cluster
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Factors and Items | Loading |
---|---|
Level of understanding of climate change | |
Understanding the causes (EFA α = 0.776; Eigen value = 2.568; Variance explained = 21.40%) | |
Recent catastrophic events have been caused by the climate change. | 0.792 |
Scientific information about the climate change should be provided to every citizen. | 0.776 |
This is the time to discuss how to adapt to climate change, not to argue. | 0.723 |
The national counter strategy against the climate change is too passive. | 0.629 |
Understanding the measures (EFA α = 0.795; Eigen value = 2.555; Variance explained = 21.30%) | |
Preparation for the climate change must be a primary objective of national policy | 0.852 |
Recent catastrophic events have been caused by the climate change. | 0.797 |
Scientific information about the climate change should be provided to every citizen. | 0.776 |
This is the time to discuss how to adapt to climate change, not to argue. | 0.740 |
Understanding the results (EFA α = 0.808; Eigen value = 2.363; Variance explained = 19.69%) | |
Recent catastrophic events have been caused by the climate change. | 0.808 |
Scientific information about the climate change should be provided to every citizen. | 0.767 |
This is the time to discuss how to adapt to climate change, not to argue. | 0.692 |
The national counterstrategy against the climate change is too passive. | 0.621 |
KMO = 0.860; Bartlett’s test of sphericity: χ2 = 2489.81; df = 66; p = 0.000 | |
Level of awareness of the behavioral pattern (EFA α = 0.817; Eigen value = 3.166; Variance explained = 52.76%) | |
The environmental protection helps improve the quality of life. | 0.770 |
With the environmental protection, everybody wins eventually. | 0.765 |
The health threat of air pollution is more serious than people perceive it to be | 0.721 |
Global warming is still ongoing. | 0.715 |
Protecting the environment is beneficial to my health. | 0.694 |
The climate change is affecting everyone in real time. | 0.690 |
KMO = 0.820; Bartlett’s test of sphericity: χ2 = 1171.84; df = 28; p = 0.000 | |
Level of behavioral style (EFA α = 0.677; Eigen value = 2.363; Variance explained = 39.33%) | |
The environmental protection helps improve the quality of life. | 0.784 |
With the environmental protection, everybody wins eventually. | 0.749 |
The health threat of air pollution is more serious than people perceive it to be | 0.602 |
Global warming is still ongoing. | 0.562 |
Protecting the environment is beneficial to my health. | 0.535 |
The climate change is affecting everyone in real time. | 0.468 |
KMO = 0.678; Bartlett’s test of sphericity: χ2 = 664.285; df = 15; p = 0.000 |
References
- Kim, B.T.; Brown, C.L.; Kim, D.H. Assessment on the vulnerability of Korean aquaculture to climate change. Mar. Policy 2019, 99, 111–122. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Carvalho-Santos, C.; Monteiro, A.T.; Azevedo, J.C.; Honrado, J.P.; Nunes, J.P. Climate change impacts on water resources and reservoir management: Uncertainty and adaptation for a mountain catchment in northeast Portugal. Water Resour. Manag. 2017, 31, 3355–3370. [Google Scholar] [CrossRef] [Green Version]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Franczyk, J.; Kim, C. What is responsible for increasing flood risks? The case of Gangwon Province, Korea. Nat. Hazards 2009, 48, 339. [Google Scholar] [CrossRef]
- Kim, B.S.; Chang, I.G.; Sung, J.H.; Han, H.J. Projection in future drought hazard of South Korea based on RCP climate change scenario 8.5 using SPEI. Adv. Meteorol. 2016, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Jang, S.; Kim, H.; Kang, H. Improving Reservoir Operation Criteria to Stabilize Water Supplies in a Multipurpose Dam: Focused on Nakdong River Basin in Korea. Water 2018, 10, 1236. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Kim, S.J. Potential impacts of climate change on the reliability of water and hydropower supply from a multipurpose dam in South Korea. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1273–1288. [Google Scholar] [CrossRef]
- Park, S.Y.; Yoo, S.H. Necessity of changing the dam management policy in preparation for climate change. J. Water Policy Econ. 2018, 30, 67–78. [Google Scholar]
- Gleick, P.H. China dams. In The World’s Water; Island Press: Washington, DC, USA, 2012; pp. 127–142. [Google Scholar]
- Lempérière, F. The role of dams in the XXI century: Achieving a sustainable development target. Int. J. Hydropower Dams 2006, 13, 99–108. [Google Scholar]
- Loomis, J. Quantifying recreation use values from removing dams and restoring free-flowing rivers: A contingent behavior travel cost demand model for the Lower Snake River. Water Resour. Res. 2002, 38, 2-1–2-8. [Google Scholar] [CrossRef]
- Waitt, G.; Lane, R.; Head, L. The boundaries of nature tourism. Ann. Tour. Res. 2003, 30, 523–545. [Google Scholar] [CrossRef] [Green Version]
- Koontz, T.M.; Steelman, T.A.; Carmin, J.; Korfmacher, K.S.; Moseley, C.; Thomas, C.W. Collaborative Environmental Management: What Roles for Government-1; Routledge: London, UK, 2010. [Google Scholar]
- Arrow, K.J.; Cropper, M.L.; Eads, G.C.; Hahn, R.W.; Lave, L.B.; Noll, R.G.; Portney, P.R.; Russell, M.; Schmalensee, R.; Smith, V.K.; et al. Is there a role for benefit-cost analysis in environmental, health, and safety regulation? Science 1996, 272, 221–222. [Google Scholar] [CrossRef] [PubMed]
- May, P.J. Politics and policy analysis. Political Sci. Q. 1986, 101, 109–125. [Google Scholar] [CrossRef]
- Choo, T.H.; Huh, J.Y.; Yoon, H.C.; Yun, G.S.; Son, J.K. Method for new conceptual securing water resources: A case study of the Miryang multipurpose dam in Korea. Environ. Earth Sci. 2016, 75, 857. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, H.N.; Jeon, C.H.; Jo, M.W.; Nguyen, T.T.; Tenhunen, J. Benefit transfer for water management along the Han River in South Korea using Meta-Regression Analysis. Water 2016, 8, 492. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, J.; Liang, T.; Shao, Q. Impact of water projects on river flow regimes and water quality in Huai River Basin. Water Resour. Manag. 2010, 24, 889–908. [Google Scholar] [CrossRef]
- Bostrom, A.; O’Connor, R.E.; Böhm, G.; Hanss, D.; Bodi, O.; Ekström, F.; Halderf, P.; Jeschkeg, S.; Mackh, B.; Qu, M.; et al. Causal thinking and support for climate change policies: International survey findings. Glob. Environ. Chang. 2012, 22, 210–222. [Google Scholar] [CrossRef]
- Carlton, S.J.; Jacobson, S.K. Climate change and coastal environmental risk perceptions in Florida. J. Environ. Manag. 2013, 130, 32–39. [Google Scholar] [CrossRef]
- Leiserowitz, A. Climate change risk perception and policy preferences: The role of affect, imagery, and values. Clim. Chang. 2006, 77, 45–72. [Google Scholar] [CrossRef] [Green Version]
- Back, S.; Park, J.; Park, J. Modeling for estimation of algal bloom in Daecheong Lake using the satellite imagery. In Proceedings of the 2015 International Conference on Environmental Engineering and Remote Sensing, Phuket, Thailand, 23–24 August 2015; Atlantis Press: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Huh, J.H.; Choi, Y.H.; Lee, H.J.; Choi, W.J.; Ramakrishna, C.; Lee, H.W.; Lee, S.-H.; Ahn, J.W. The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal. J. Korean Ceram. Soc. 2016, 53, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.M.; Jung, K.Y.; Shin, D. Effects of coordinated operation of weirs and reservoirs on the water quality of the Geum River. Water 2017, 9, 423. [Google Scholar] [CrossRef]
- Chung, S.W.; Hipsey, M.R.; Imberger, J. Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea. Environ. Model. Softw. 2009, 24, 1467–1482. [Google Scholar] [CrossRef]
- Liu, Z.; Joo, J.C.; Choi, S.H.; Jang, N.H.J.; Hur, J.W. Assessment of Surface Water Quality in Geum River Basin, Korea using Multivariate Statistical Techniques. Int. J. Appl. Eng. Res. 2018, 13, 6723–6732. [Google Scholar]
- Min, S.H.; Lim, S.Y.; Yoo, S.H. The environmental benefits of reducing thermal discharge from nuclear power generation. Energy Environ. 2017, 28, 885–894. [Google Scholar] [CrossRef]
- Xu, Z.; Shan, J. The effect of risk perception on willingness to pay for reductions in the health risks posed by particulate matter 2.5: A case study of Beijing, China. Energy Environ. 2018, 29, 1319–1337. [Google Scholar] [CrossRef]
- Adamowicz, W.; Louviere, J.; Williams, M. Combining revealed and stated preference methods for valuing environmental amenities. J. Environ. Econ. Manag. 1994, 26, 271–292. [Google Scholar] [CrossRef]
- Hanley, N.; Wright, R.E.; Adamowicz, V. Using choice experiments to value the environment. Environ. Resour. Econ. 1998, 11, 413–428. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yum, J.E.; Lee, K.I.; Sung, H.C.; Jeon, S.W. Application of the HEC-HMS Model for Prediction of Future Rainfall Runoff in the Daecheong Dam Basin of the Geum River. J. Clim. Chang. Res. 2020, 11, 609–619. [Google Scholar] [CrossRef]
- Ministry of Environment. Final Report on the Establishment of the Foundation for Underground Water Quality Management in 2015. Available online: https://sgis.nier.go.kr/newsgis/do?board_uid=1363&A=20&C=BBS&bbsId=pdsboard&searchCategory=P03 (accessed on 5 February 2021).
- Alam, S.; Ali, M.; Rahaman, A.Z.; Islam, Z. Multi-model ensemble projection of mean and extreme streamflow of Brahmaputra River Basin under the impact of climate change. J. Water Clim. Chang. 2021, 12, 2026–2044. [Google Scholar] [CrossRef]
- Kwon, O.S. Valuing Recreational Benefits of Dam Lakes Using a Choice Experiment Approach. Environ. Resour. Econ. Rev. 2006, 15, 555–574. [Google Scholar]
- Ryoo, K.S.; Cha, K.U.; Kim, J.S.; Park, J.H. Economic Effects of Rainfall in Dam Operations. In Proceedings of the 35th Annual Conference and 2009 Civil Exposition, Gangwon, Korea, 21–23 October 2009; Korea Society of Civil Engineers Publication: Seoul, Korea, 2009. [Google Scholar]
- Korea Water Resources Corporation (K-Water). Performance Prediction for Gyung-in Ara Waterway Projects; Korea Water Resources Corporation: Daejeon, Korea, 2012. [Google Scholar]
- Batsell, R.R.; Louviere, J.J. Experimental analysis of choice. Mark. Lett. 1991, 2, 199–214. [Google Scholar] [CrossRef]
- Louviere, J.J. Conjoint analysis modelling of stated preferences: A review of theory, methods, recent developments and external validity. J. Transp. Econ. Policy 1988, 93–119. [Google Scholar]
- Han, S.Y.; Kwak, S.J.; Yoo, S.H. Valuing environmental impacts of large dam construction in Korea: An application of choice experiments. Environ. Impact Assess. Rev. 2008, 28, 256–266. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; Kramer, R.A. Pricing ecological services: Willingness to pay for drought mitigation from watershed protection in eastern Indonesia. Water Resour. Res. 2001, 37, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.; Shore, N.; Train, K. Water supply security and willingness to pay to avoid drought restrictions. Econ. Rec. 2006, 82, 56–66. [Google Scholar] [CrossRef]
- Abugri, S.A.; Amikuzuno, J.; Daadi, E.B. Looking out for a better mitigation strategy: Smallholder farmers’ willingness to pay for drought-index crop insurance premium in the Northern Region of Ghana. Agric. Food Secur. 2017, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, P.; Baker, W. Willingness to Pay to Avoid Drought Water Use Restrictions; London School of Economics and Political Science Working Paper: London, UK, 2011. [Google Scholar]
- Zhai, G.; Sato, T.; Fukuzono, T.; Ikeda, S.; Yoshida, K. Willingness to pay for flood risk reduction and its determinants in Japan. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 927–940. [Google Scholar] [CrossRef]
- Brouwer, R.; Akter, S.; Brander, L.; Haque, E. Economic valuation of flood risk exposure and reduction in a severely flood prone developing country. Environ. Dev. Econ. 2009, 14, 397–417. [Google Scholar] [CrossRef]
- Abbas, A.; Amjath-Babu, T.S.; Kächele, H.; Müller, K. Non-structural flood risk mitigation under developing country conditions: An analysis on the determinants of willingness to pay for flood insurance in rural Pakistan. Nat. Hazards 2015, 75, 2119–2135. [Google Scholar] [CrossRef]
- Gravitiani, E.; Susilowati, F. Vulnerability and Willingness to Pay for coping with flood in Klaten Regency, Central Java, Indonesia. J. Bus. Econ. Rev. 2017, 2, 38–44. [Google Scholar]
- Vásquez, W.F.; Mozumder, P.; Hernández-Arce, J.; Berrens, R.P. Willingness to pay for safe drinking water: Evidence from Parral, Mexico. J. Environ. Manag. 2009, 90, 3391–3400. [Google Scholar] [CrossRef]
- Casey, J.F.; Kahn, J.R.; Rivas, A. Willingness to pay for improved water service in Manaus, Amazonas, Brazil. Ecol. Econ. 2006, 58, 365–372. [Google Scholar] [CrossRef]
- Polyzou, E.; Jones, N.; Evangelinos, K.I.; Halvadakis, C.P. Willingness to pay for drinking water quality improvement and the influence of social capital. J. Socio-Econ. 2011, 40, 74–80. [Google Scholar] [CrossRef]
- Chatterjee, C.; Triplett, R.; Johnson, C.K.; Ahmed, P. Willingness to pay for safe drinking water: A contingent valuation study in Jacksonville, FL. J. Environ. Manag. 2017, 203, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.S.; Um, M.J.; Kim, T.Y. Evaluating the enhancement of the future water shortage situation using CVM in Korea. In Proceedings of the International Conference on Water, Environment, Ecology, Socio-Economics and Health Engineering (WEESHE), Seoul National University, Seoul, Korea, 18–21 October 1999; Water Resources Publication: Seoul, Korea, 1999. [Google Scholar]
- Choi, M.J.; Lee, J.W. Hedonic valuation of flood. WIT Trans. Ecol. Environ. 2016, 204, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Chang, H.; Hong, Y. Is a costly river restoration project beneficial to the public? Empirical evidence from the Republic of Korea. Desalination Water Treat. 2015, 54, 3696–3703. [Google Scholar] [CrossRef]
- Kwak, S.Y.; Yoo, S.H.; Kim, C.S. Measuring the willingness to pay for tap water quality improvements: Results of a contingent valuation survey in Pusan. Water 2013, 5, 1638–1652. [Google Scholar] [CrossRef] [Green Version]
- Um, M.J.; Kwak, S.J.; Kim, T.Y. Estimating willingness to pay for improved drinking water quality using averting behavior method with perception measure. Environ. Resour. Econ. 2002, 21, 285–300. [Google Scholar] [CrossRef]
- Chae, Y.R.; Kang, J.; Bae, H.; Lee, J.; Cho, K.; Jo, H. Prioritization of Climate Change Adaptation Measures by Sector; Korea Environment Institute: Sejong, Korea, 2012. [Google Scholar]
- Lee, H.C. Valuing the Gyung-an Stream Space Using a Choice Experiment. Korea J. Tour. Res. 2015, 39, 47–60. [Google Scholar] [CrossRef]
- Lee, H.C.; Kang, J.W.; Han, S.P.; Kim, K.H. Valuating the Mangyeong River Space Using a Choice Experiment. J. Environ. Policy Adm. 2016, 24, 1–24. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, H.C.; Choi, S.Y. Valuing the Functionality of Leisure in Gyungin Ara Waterway Using Choice Experiment Method. Korea J. Tour. Res. 2013, 37, 33–54. [Google Scholar]
- Hanemann, M.; Kanninen, B. The statistical analysis of discrete-response CV Data147. In Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EU, and Developing Countries; Oxford University Press: Oxford, UK, 2001; p. 302. [Google Scholar] [CrossRef] [Green Version]
- Zwerina, K.; Huber, J.; Kuhfeld, W.F. A General Method for Constructing Efficient Choice Designs; Durh. NC: Fuqua Sch. Bus. Duke Univ. 1996, pp. 39–59. Available online: https://www.semanticscholar.org/paper/A-General-Method-for-Constructing-Efficient-Choice-Zwerina-Huber/c68f0b58abf2b60a0b39b49ed9742bfd424a8f0c (accessed on 5 March 2021).
- Greene, W.H. Econometric Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003; pp. 89–140. [Google Scholar]
- Sueyoshi, T.; Goto, M. Returns to scale, damages to scale, marginal rate of transformation and rate of substitution in DEA environmental assessment. Energy Econ. 2012, 34, 905–917. [Google Scholar] [CrossRef]
- KEMC. Development of Climate Change Perceptions Index; Korean Energy Management Corporation: Yongin, Korea, 2008. [Google Scholar]
- Yoo, S.H.; Kwak, S.J. Measuring the economic benefits of protecting the Tong River in Korea: A contingent valuation study. Int. J. Environ. Pollut. 2009, 39, 142–158. [Google Scholar] [CrossRef]
- Brau, R. Demand-driven sustainable tourism? A choice modelling analysis. Tour. Econ. 2008, 14, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Loomis, J.; King, M. Comparison of mail and telephone-mail contingent valuation surveys. J. Environ. Manag. 1994, 41, 309–324. [Google Scholar] [CrossRef]
- Allison, P.D. Comparing Logit and Probit Coefficients across groups. Sociol. Methods Res. 1999, 28, 186–208. [Google Scholar] [CrossRef]
- Krinsky, I.; Robb, A.L. On Approximating the Statistical Properties of Elasticities. Rev. Econ. Stat. 1986, 68, 715–719. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Goded, M.; Barreiro-Hurlé, J.; Ruto, E. What do farmers want from agri-environmental scheme design? A choice experiment approach. J. Agric. Econ. 2010, 61, 259–273. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Han, S.I.; Lee, J.B. Pollution loadings in DaeChungHo watershed. J. Korean Soc. Water Wastewater 2002, 16, 581–595. [Google Scholar]
- Penn, J.; Hu, W. Cheap talk efficacy under potential and actual Hypothetical Bias: A meta-analysis. J. Environ. Econ. Manag. 2019, 96, 22–35. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Cherry, T.L. Willingness to pay for a green energy program: A comparison of ex-ante and ex-post hypothetical bias mitigation approaches. Resour. Energy Econ. 2007, 29, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Jacquemet, N.; Joule, R.V.; Luchini, S.; Shogren, J.F. Preference elicitation under oath. J. Environ. Econ. Manag. 2013, 65, 110–132. [Google Scholar] [CrossRef] [Green Version]
- Fry, T.R.; Harris, M.N. A Monte Carlo study of tests for the independence of irrelevant alternatives property. Transp. Res. Part B Methodol. 1996, 30, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Fry, T.R.; Harris, M.N. Testing for independence of irrelevant alternatives: Some empirical results. Sociol. Methods Res. 1998, 26, 401–423. [Google Scholar] [CrossRef]
- Cheng, S.; Long, J.S. Testing for IIA in the multinomial logit model. Sociol. Methods Res. 2007, 35, 583–600. [Google Scholar] [CrossRef]
- Shi, H.; Yin, G. Boosting conditional logit model. J. Choice Model. 2018, 26, 48–63. [Google Scholar] [CrossRef]
Attributes | Improvement Levels | ||
---|---|---|---|
Low | Medium | High | |
Drought Management | (Status quo) Maintaining current techniques to prevent drought disaster | (Partial improvement) Complementing existing techniques to prevent drought disaster | (Substantial improvement) Complementing existing techniques and developing new techniques to prevent drought disaster |
Flood Control | (Status quo) Maintaining current techniques to prevent flood disaster | (Partial improvement) Complementing existing techniques to prevent flood disaster | (Substantial improvement) Complementing existing techniques and developing new techniques to prevent flood disaster |
Water quality Monitoring | (Status quo) Maintaining current purification techniques to prevent water pollution | (Partial improvement) Complementing existing techniques to prevent water pollution | (Substantial improvement) Complementing existing techniques and developing new techniques to prevent water pollution |
Categories | Type A | Type B | Type C | χ2-Test p-Value | |||
---|---|---|---|---|---|---|---|
Frequency | % | Frequency | % | Frequency | % | ||
Gender | |||||||
Male | 106 | 52.2 | 106 | 52.5 | 102 | 51.5 | 0.980 |
Female | 97 | 47.8 | 96 | 47.5 | 96 | 48.5 | |
Age | |||||||
20–29 | 57 | 49.8 | 55 | 44.6 | 57 | 47.0 | 0.950 |
30–39 | 60 | 50.2 | 63 | 55.4 | 60 | 53.0 | |
40–49 | 55 | 28.1 | 54 | 27.2 | 54 | 28.8 | |
50–59 | 21 | 29.6 | 22 | 31.2 | 23 | 30.3 | |
60s or older | 10 | 27.1 | 8 | 26.7 | 4 | 27.3 | |
Marital status | |||||||
Single | 101 | 10.3 | 90 | 10.9 | 93 | 11.6 | 0.694 |
Married | 102 | 4.9 | 112 | 4.0 | 105 | 2.0 | |
Education | |||||||
Middle school or less | 6 | 3.0 | 2 | 1.0 | 6 | 2.9 | 0.061 |
High school | 78 | 38.4 | 53 | 26.2 | 74 | 35.6 | |
College degree | 94 | 46.3 | 120 | 59.4 | 94 | 45.2 | |
Postgraduate degree | 25 | 12.3 | 27 | 13.4 | 34 | 16.3 | |
Occupation | |||||||
Profession | 16 | 55.2 | 26 | 56.9 | 19 | 57.1 | 0.497 |
Clerical work | 69 | 26.6 | 78 | 25.2 | 70 | 24.7 | |
Production | 14 | 18.2 | 10 | 17.8 | 18 | 18.2 | |
Service | 17 | 7.9 | 11 | 12.9 | 15 | 9.6 | |
Civil servant | 5 | 34.0 | 5 | 38.6 | 3 | 35.4 | |
Teaching staff | 4 | 6.9 | 3 | 5.0 | 4 | 9.1 | |
Self-ownership | 16 | 8.4 | 7 | 5.4 | 17 | 7.6 | |
Student | 30 | 2.5 | 31 | 2.5 | 28 | 1.5 | |
Unemployed | 15 | 2.0 | 12 | 1.5 | 5 | 2.0 | |
Housewife | 17 | 7.9 | 19 | 3.5 | 19 | 8.6 | |
Residence area | |||||||
Daejeon | 112 | 14.8 | 115 | 15.3 | 113 | 14.1 | 0.994 |
Chungbuk | 54 | 7.4 | 51 | 5.9 | 49 | 2.5 | |
Chungnam | 37 | 8.4 | 36 | 9.4 | 36 | 9.6 | |
Monthly household income (unit: 10,000 won) | |||||||
99 or less | 7 | 3.4 | 5 | 2.5 | 5 | 2.5 | 0.051 |
100–199 | 29 | 14.3 | 19 | 9.4 | 16 | 8.1 | |
200–299 | 35 | 17.2 | 29 | 14.4 | 48 | 24.2 | |
300–399 | 38 | 18.7 | 42 | 20.8 | 29 | 14.6 | |
400–499 | 36 | 17.7 | 41 | 20.3 | 32 | 16.2 | |
500–599 | 16 | 7.9 | 24 | 11.9 | 28 | 14.1 | |
600–699 | 14 | 6.9 | 6 | 3.0 | 16 | 8.1 | |
700–799 | 9 | 4.4 | 16 | 7.9 | 13 | 6.6 | |
800 or more | 19 | 9.4 | 20 | 9.9 | 11 | 5.6 | |
Total | 203 | 100 | 202 | 100 | 198 | 100 | - |
n = 603 |
Model | Model I | Model II | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Coef. | S.E. | t-Ratio | Coef. | S.E. | t-Ratio | ||||
ASC | 0.151 | 0.082 | 1.83 | * | 0.790 | 0.316 | 2.50 | ** | ||
DM_Mid | 0.454 | 0.065 | 7.02 | *** | 0.453 | 0.065 | 7.00 | *** | ||
DM_High | 0.626 | 0.059 | 10.57 | *** | 0.627 | 0.059 | 10.57 | *** | ||
FC_Mid | 0.273 | 0.059 | 4.59 | ** | 0.274 | 0.060 | 4.60 | *** | ||
FlC_High | 0.391 | 0.060 | 6.46 | *** | 0.393 | 0.061 | 6.49 | *** | ||
WM_Mid | 0.567 | 0.061 | 9.31 | *** | 0.568 | 0.061 | 9.32 | *** | ||
WM_High | 0.818 | 0.060 | 13.58 | *** | 0.818 | 0.060 | 13.59 | *** | ||
Bid | −0.938 | 0.043 | −21.58 | *** | −0.939 | 0.044 | −21.58 | *** | ||
ASC*Gender | 0.023 | 0.076 | 0.30 | |||||||
ASC*Age | −0.010 | 0.004 | −2.50 | ** | ||||||
ASC*Income | 0.047 | 0.019 | 2.46 | ** | ||||||
ASC*Education | −0.025 | 0.017 | −1.47 | |||||||
ASC*Marital Status | −0.016 | 0.077 | −0.21 | |||||||
ASC*Occupation | −0.123 | 0.089 | −1.38 | |||||||
ASC*Residence Area | 0.050 | 0.077 | 0.65 | |||||||
LLF | −3515.53 | −3506.31 | ||||||||
Adj. Pseudo R2 | 0.110 | 0.113 | ||||||||
No. of Obs. | 3618 | 3618 | ||||||||
IIA test | Alternative dropped | χ2 (df=7) | p-value | |||||||
Option 1 | 9.166 | 0.241 | ||||||||
Option 2 | 6.589 | 0.473 | ||||||||
Option 3 | 12.613 | 0.082 |
Clusters Factors | Cluster 1: High Involvement | Cluster 2: Low Involvement | t-Ratio | |
---|---|---|---|---|
Mean(S.D.) | Mean(S.D.) | |||
Level of understanding of climate change: | Understanding the causes | 3.46(0.36) H | 2.94(0.43) L | 15.82 *** |
Understanding the measure | 3.50(0.38) H | 2.88(0.35) L | 19.97 *** | |
Understanding the results | 2.74(0.56) H | 2.35(0.51) L | 8.74 *** | |
Level of awareness of the behavioral pattern | 4.16(0.51) H | 3.42(0.56) L | 16.29 *** | |
Level of behavioral style | 3.54(0.54) H | 2.90(0.50) L | 14.68 *** |
Model | High-Involvement Group | Low-Involvement Group | Coef. Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Coef. | S.E. | t-Ratio | Coef. | S.E. | t-Ratio | ||||
ASC | 0.873 | 0.523 | 1.67 | * | 0.981 | 0.407 | 2.41 | ** | - | |
DM_Mid | 0.637 | 0.108 | 5.92 | *** | 0.361 | 0.082 | 4.42 | *** | 4.17 | ** |
DM_High | 0.846 | 0.098 | 8.61 | *** | 0.499 | 0.075 | 6.64 | *** | 7.89 | *** |
FC_Mid | 0.274 | 0.096 | 2.86 | *** | 0.280 | 0.076 | 3.67 | *** | 0.00 | |
FC_High | 0.389 | 0.098 | 3.98 | *** | 0.394 | 0.078 | 5.08 | *** | 0.00 | |
WM_Mid | 0.638 | 0.099 | 6.47 | *** | 0.522 | 0.078 | 6.70 | *** | 0.84 | |
WM_High | 1.005 | 0.097 | 10.33 | *** | 0.702 | 0.077 | 9.08 | *** | 5.95 | ** |
Bid | −0.986 | 0.072 | −13.78 | *** | −0.922 | 0.055 | −16.69 | *** | 0.49 | |
ASC*Gender | 0.095 | 0.126 | 0.75 | 0.051 | 0.098 | 0.51 | 0.08 | |||
ASC*Age | −0.014 | 0.007 | −2.09 | ** | −0.009 | 0.005 | −1.75 | * | 0.36 | |
ASC*Income | 0.140 | 0.032 | 4.33 | *** | −0.001 | 0.024 | −0.05 | 12.20 | *** | |
ASC*Education | −0.009 | 0.027 | −0.32 | −0.042 | 0.022 | −1.90 | * | 0.87 | ||
ASC*Marital Status | −0.009 | 0.120 | −0.07 | 0.000 | 0.101 | 0.00 | 0.00 | |||
ASC*Occupation | −0.761 | 0.164 | −4.65 | *** | 0.151 | 0.110 | 1.38 | 21.46 | *** | |
ASC*Residence Area | −0.348 | 0.133 | −2.62 | *** | 0.227 | 0.098 | 2.31 | ** | 12.15 | *** |
LLF | −1335.46 | −2138.04 | - | |||||||
Adj. Pseudo R2 | 0.147 | 0.103 | ||||||||
No. of Obs. | 1440 | 2178 |
Attribute | Level | Implicit Prices (t-Ratio) | Confidence Interval 95% | Implicit Prices (t-Ratio) | Confidence Interval 95% |
---|---|---|---|---|---|
Drought Management | Low → Mid | 6467 (5.75) *** | [4261–8673] | 3924 (4.33) *** | [2139–5693] |
Mid → High | 2121 (2.39) ** | [382–3860] | 1486 (1.81) n.s. | [−114–3098] | |
Flood Control | Low → Mid | 2783 (2.81) *** | [842–4725] | 3036 (3.64) *** | [1407–4672] |
Mid → High | 1162 (1.25) n.s. | [−662–2986] | 1228 (6.27) n.s. | [−353–2824] | |
Water-quality Monitoring | Low → Mid | 6471 (5.82) *** | [4290–8652] | 5661 (5.81) *** | [3898–7432] |
Mid → High | 3728 (3.89) *** | [1848–5609] | 1951 (2.38) ** | [342–3555] | |
Total MWTP | 21,570 (10.26) *** | [17,450–25,691] | 14,569 (8.75) *** | [11,306–17,832] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.; Yun, S.; Lee, H. Willingness to Pay for Public Benefit Functions of Daecheong Dam Operation: Moderating Effects of Climate Change Perceptions. Sustainability 2021, 13, 14060. https://doi.org/10.3390/su132414060
Oh H, Yun S, Lee H. Willingness to Pay for Public Benefit Functions of Daecheong Dam Operation: Moderating Effects of Climate Change Perceptions. Sustainability. 2021; 13(24):14060. https://doi.org/10.3390/su132414060
Chicago/Turabian StyleOh, Heekyun, Seongjun Yun, and Heechan Lee. 2021. "Willingness to Pay for Public Benefit Functions of Daecheong Dam Operation: Moderating Effects of Climate Change Perceptions" Sustainability 13, no. 24: 14060. https://doi.org/10.3390/su132414060
APA StyleOh, H., Yun, S., & Lee, H. (2021). Willingness to Pay for Public Benefit Functions of Daecheong Dam Operation: Moderating Effects of Climate Change Perceptions. Sustainability, 13(24), 14060. https://doi.org/10.3390/su132414060