Nutrient Enriched Municipal Solid Waste Compost Increases Yield, Nutrient Content and Balance in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Nutrient-Enriched MSW Compost
2.2. Field Experiment
2.2.1. Location and Site
2.2.2. Soil Characteristics
2.2.3. Treatments and Design
2.2.4. Crop Management
2.2.5. Nutrient Analysis
2.2.6. Statistical Analysis
3. Results
3.1. Crop Yield
3.2. Growth and Yield Parameters
3.3. Nutrient Concentrations of Rice Grain and Straw
3.4. Nutrient Level of Post-Harvest Soil
3.5. Nutrient Balance
4. Discussion
4.1. Effects of Amended Composts on Rice Yield
4.2. Relationship of Grain Yield With Yield Components
4.3. Effects of Amended Composts on Grain Nutrient Concentrations
4.4. Effects of Amended Compost on Changes in Soil Properties
4.5. Effects of Amended Composts on Nutrient Balance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clayton, S. 50 Years of Rice Science for a Better World—and It’s Just the Start! Rice Today; International Rice Research Institute (IRRI): Los Baños, Philippines, 2016. [Google Scholar]
- Eissa, M.A. Phosphate and organic amendments for safe production of okra from metal-contaminated soils. Agron. J. 2016, 108, 540–547. [Google Scholar] [CrossRef]
- Torkashvand, A.M. Improvement of compost quality by addition of some amendments. Aust. J. Crop. Sci. 2010, 4, 252–257. [Google Scholar]
- Achiba, W.B.; Gabteni, N.; Lakhdar, A.; Laing, G.D.; Verloo, M.; Jedidi, N.; Gallali, T. Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agric. Ecosyst. Environ. 2009, 130, 156–163. [Google Scholar] [CrossRef]
- Jahiruddin, M.; Rahman, M.A.; Haque, M.A.; Rahman, M.M.; Islam, M.R. Integrated nutrient management for sustainable crop production in Bangladesh. Acta Hortic. 2012, 958, 85–90. [Google Scholar] [CrossRef]
- Kanton, R.A.L.; Prasad, P.V.V.; Mohammed, A.M.; Bidzakin, J.K.; Ansoba, E.Y.; Asungre, P.A.; Lamini, S.; Mahama, G.; Kusi, F.; Sugri, I. Organic and inorganic fertilizer effects on the growth and yield of maize in a dry agro-ecology in northern Ghana. J. Crop. Improv. 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Youssef, M.A.; Eissa, M.A. Comparison between organic and inorganic nutrition for tomato. J. Plant. Nutr. 2017, 40, 1900–1907. [Google Scholar] [CrossRef]
- Aktar, S.; Islam, M.S.; Hossain, M.S.; Akter, S.; Maula, S.S.; Hossain, S.S.F. Effects of municipal solid waste compost and fertilizers on the biomass production and yield of BRRI dhan 50. Progress. Agric. 2018, 29, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.; Mohi, S.M.; Htwei, A.Z.; Kajihara, Y.; Yamakawa, T. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci. 2019, 26, 309–318. [Google Scholar] [CrossRef]
- Liu, M.; Hu, F.; Chen, X.; Huang, Q.; Jiao, J.; Zhang, B.; Li, H. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Appl. Soil Ecol. 2009, 42, 166–175. [Google Scholar] [CrossRef]
- Rekaby, S.A.; Mahrous, Y.M.A.; Hegab, S.A.; Eissa, M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant. Nutr. 2020, 43, 12. [Google Scholar] [CrossRef]
- Chen, X.; Yaa, O.; Wu, J. Effects of different organic materials application on soil physicochemical properties in a primary saline-alkali soil. Eurasian Soil Sci. 2020, 53, 798–808. [Google Scholar] [CrossRef]
- Oluwa, O.E.A.; AdeOluwa, O.O.; Aduramigba-Modupe, V.O. Nutrient release dynamics of an accelerated compost: A case study in an Alfisol and Ultisol. Eurasian J. Soil Sci. 2017, 6, 350–356. [Google Scholar]
- FAO/UNDP. Land Resources Appraisal of Bangladesh for Agricultural Development; FAO: Rome, Italy, 1988; Volume 2, pp. 1–570. [Google Scholar]
- Nelson, D.W.; Sommer, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Part 2; ASA and SSSA: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Part 2; ASA and SSSA: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Sommer, L.E. Phosphorus. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Part 2; ASA and SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, sodium and potassium. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Part 2; ASA and SSSA: Madison, WI, USA, 1982; pp. 225–245. [Google Scholar]
- Fox, R.L.; Olson, R.A.; Rhoades, H.F. Evaluating the sulfur status of soils by plants and soil tests. Soil Sci. Soc. Am. Proc. 1964, 28, 243–246. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for Zn, Fe, Mn and Cu. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Bingham, F.T. Boron. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Part 2; ASA and SSSA: Madison, WI, USA, 1982; pp. 431–448. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Chemical and Microbiological Properties. In Methods of Soil Analysis; Part 2; Agronomy Series No 9; ASA and SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Son: New York, NY, USA, 1984. [Google Scholar]
- Saleque, M.A.; Abedin, M.J.; Bhuiyan, N.I.; Zaman, S.K.; Panaullah, G.M. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crops Res. 2004, 86, 3–65. [Google Scholar] [CrossRef]
- Masarirambi, M.T.; Mandisodza, F.C.; Ashingaidze, A.B.; Bhebhe, E. Influence of plant population and seed tuber size on growth and yield components of potato (Solanum tuberosum). Int. J. Agr. Biol. 2012, 14, 545–549. [Google Scholar]
- Pengthamkeerati, P.; Motavalli, P.P.; Kremer, R.J. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil. Appl. Soil Ecol. 2011, 48, 71–80. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Singh, R.; Agarwal, S.K. Analysis of growth and productivity of wheat in relation to levels of FYM and nitrogen. Indian J. Plant Physiol. 2001, 6, 279–283. [Google Scholar]
- Muhammad, I.; Hassan, A.U.; Muhammad, I.; Ehsan, E.V. Response of wheat growth and yield to various levels of compost and organic manure. Pak. J. Bot. 2008, 40, 2135–2141. [Google Scholar]
- Mamun, M.A.A.; Haque, M.M.; Saleque, M.A.; Khaliq, Q.A.; Karim, A.J.M.S.; Karim, M.A. Evaluation of different fertilizer management guidelines for boro rice cultivation in south central coastal region of Bangladesh. Ann. Agrar. Sci. 2018, 16, 466–475. [Google Scholar] [CrossRef]
- Malik, S.S.; Chauhan, R.C. Impact of organic farming on soil chemical properties. J. Int. Acad. Res. Multidiscip. 2014, 2, 349–360. [Google Scholar]
- Bilkis, S. Mineralization of Different Types of Manure and Their Field Performances in the Potato-Mungbean-Rice and Rice-Fallow-Rice Cropping Patterns. Ph.D. Thesis, Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2015. [Google Scholar]
- Haque, M.A. Mineralization of Bioslurry and Its Integrated Use with Fertilizers in the Rice Based Cropping Systems. Ph.D. Thesis, Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2014. [Google Scholar]
- Timsina, J.; Panaullah, G.M.; Saleque, M.A.; Ishaque, M.; Pathan, A.B.M.B.U.; Connor, D.J.; Saha, P.K.; Quayyum, M.A.; Humphreys, H.; Meisner, C.A. Nutrient uptake and apparent balances for rice-wheat sequences. I. Nitrogen. J. Plant Nutr. 2006, 29, 137–155. [Google Scholar] [CrossRef]
- Saleque, M.A.; Timsina, J.; Panaullah, G.M.; Ishaque, M.; Pathan, A.B.M.B.U.; Connor, D.J.; Saha, P.K.; Quayyum, M.A.; Humphreys, H.; Meisner, C.A. Nutrient uptake and apparent balances for rice-wheat sequences. II. Phosphorus J. Plant. Nutr. 2006, 29, 157–172. [Google Scholar] [CrossRef]
- Panaullah, G.M.; Timsina, J.; Saleque, M.A.; Ishaque, M.; Pathan, A.B.M.B.U.; Connor, D.J.; Saha, P.K.; Quayyum, M.A.; Humphreys, H.; Meisner, C.A. Nutrient uptake and apparent balances for rice-wheat sequences. III. Potassium. J. Plant. Nutr. 2006, 29, 173–187. [Google Scholar] [CrossRef]
- Liu, X.U.; Wang, H.Y.; Zhou, J.M.; Hu, F.Q.; Zhu, D.J.; Chen, Z.M.; Liu, Y.Z. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River basin, China. PLoS ONE 2016, 11, e0166002. [Google Scholar] [CrossRef] [Green Version]
- Akoumianakis, K.A.; Karapanos, I.C.; Giakoumaki, M.; Alexopoulos, A.A.; Passam, H.C. Nitrogen, season and cultivar affect radish growth, yield, sponginess and hollowness. Int. J. Plant. Prod. 2011, 5, 111–120. [Google Scholar]
Organic Material | %N | %P | %K | %S |
---|---|---|---|---|
MSW compost | 1.14 | 0.23 | 0.87 | 0.27 |
Mustard oil cake | 4.70 | 1.06 | 0.91 | 0.93 |
Cow dung | 1.07 | 0.57 | 0.54 | 0.32 |
Poultry manure | 1.33 | 0.80 | 0.89 | 0.42 |
Sugarcane press mud | 1.59 | 0.091 | 0.64 | 0.51 |
Types Compost | %N | %P | %K | %S |
---|---|---|---|---|
Compost 1 | 1.41 | 0.33 | 1.01 | 0.41 |
Compost 2 | 3.14 | 0.84 | 0.84 | 0.52 |
Compost 3 | 2.91 | 0.62 | 0.77 | 0.45 |
Compost 4 | 3.22 | 0.40 | 0.81 | 0.32 |
Treatments | N | P | K | S | ||||
---|---|---|---|---|---|---|---|---|
CF | Compost | CF | Compost | CF | Compost | CF | Compost | |
T1: Control | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
T2: 100% CF | 140 | 0 | 20 | 0 | 90 | 0 | 12 | 0 |
T3: Compost 1 | 0 | 71 | 0 | 33 | 0 | 101 | 0 | 41 |
T4: Compost 2 | 0 | 157 | 0 | 84 | 0 | 84 | 0 | 52 |
T5: Compost 3 | 0 | 146 | 0 | 62 | 0 | 77 | 0 | 45 |
T6: Compost 4 | 0 | 161 | 0 | 40 | 0 | 81 | 0 | 32 |
T7: 50% CF + T3 | 70 | 71 | 10 | 33 | 45 | 101 | 6 | 41 |
T8: 50% CF + T4 | 70 | 157 | 10 | 84 | 45 | 84 | 6 | 52 |
T9: 50% CF + T5 | 70 | 146 | 10 | 62 | 45 | 77 | 6 | 45 |
T10: 50% CF + T6 | 70 | 161 | 10 | 40 | 45 | 81 | 6 | 32 |
Treatments | Plant Height (cm) | Tillers Hill−1 | Panicle Length (cm) | Grains Panicle−1 | 1000-Grain Weight (g) | Straw Yield (t ha−1) |
---|---|---|---|---|---|---|
T1: Control | 72.7 e | 11.3 c | 19.1 e | 59.0 b | 21.5 b | 4.18 e |
T2: 100% CF | 84.7 c | 14.3 abc | 21.0 cd | 69.6 ab | 23.6 ab | 5.67 c |
T3: Compost 1 | 76.8 de | 12.0 bc | 20.5 de | 72.7 ab | 25.3 ab | 4.93 d |
T4: Compost 2 | 93.9 ab | 14.7 abc | 21.8 bcd | 77.1 ab | 25.8 ab | 6.29 bc |
T5: Compost 3 | 87.7 bc | 15.7 ab | 21.9 bcd | 74.3 ab | 24.7 ab | 5.76 c |
T6: Compost 4 | 90.6 bc | 15.7 ab | 21.1 bcd | 77.4 ab | 25.1 ab | 6.51 b |
T7: 50% CF + T3 | 83.8 cd | 16.7 a | 20.4 de | 82.3 a | 23.5 ab | 6.83 b |
T8: 50% CF + T4 | 98.8 a | 17.7 a | 22.9 ab | 82.4 a | 26.3 a | 6.83 b |
T9: 50% CF + T5 | 95.1 ab | 16.3 a | 22.5 abc | 82.4 a | 24.3 ab | 7.33 ab |
T10: 50% CF + T6 | 100.7 a | 17.7 a | 24.1 a | 84.2 a | 25.3 ab | 7.80 a |
Level of sig. | ** | * | ** | * | * | * |
CV (%) | 4.89 | 5.49 | 4.82 | 6.11 | 8.65 | 7.99 |
SE (±) | 0.38 | 0.58 | 0.85 | 0.71 | 0.58 | 0.54 |
Treatments | Rice Grain | Rice Straw | ||||||
---|---|---|---|---|---|---|---|---|
N (%) | P (%) | K (%) | S (%) | N (%) | P (%) | K (%) | S (%) | |
T1: Control | 1.08 b | 0.195 c | 0.129 c | 0.110 b | 0.280 e | 0.050 c | 0.672 e | 0.021 d |
T2: 100% CF | 1.17 b | 0.208 bc | 0.195 b | 0.112 b | 0.578 d | 0.054 bc | 1.214 d | 0.039 c |
T3: Compost 1 | 1.27 a | 0.223 bc | 0.201 b | 0.112 bc | 0.691 cd | 0.058 bc | 1.486 c | 0.044 c |
T4: Compost 2 | 1.32 a | 0.366 a | 0.202 b | 0.115 b | 0.821 ab | 0.098 a | 1.806 b | 0.061 abc |
T5: Compost 3 | 1.24 a | 0.242 bc | 0.203 b | 0.118 ab | 0.784 bc | 0.064 bc | 1.882 b | 0.066 ab |
T6: Compost 4 | 1.35 a | 0.301 abc | 0.227 ab | 0.125 a | 0.765 bc | 0.080 abc | 1.836 b | 0.075 ab |
T7: 50% CF + T3 | 1.31 a | 0.25 bc | 0.205 b | 0.112 b | 0.616 d | 0.066 bc | 1.571 c | 0.055 bc |
T8: 50% CF + T4 | 1.35 a | 0.299 abc | 0.233 a | 0.118 ab | 0.802 bc | 0.079 abc | 1.925 ab | 0.066 ab |
T9: 50% CF + T5 | 1.32 a | 0.255 bc | 0.243 a | 0.121 a | 0.933 a | 0.067 abc | 2.239 a | 0.071 ab |
T10: 50% CF + T6 | 1.34 a | 0.311 ab | 0.243 a | 0.127 a | 0.858 ab | 0.082 ab | 2.059 a | 0.077 a |
Significance | * | * | ** | ** | ** | * | ** | * |
CV (%) | 6.53 | 4.33 | 6.46 | 7.46 | 4.54 | 5.57 | 6.66 | 7.51 |
SE (±) | 1.096 | 1.21 | 0.219 | 0.578 | 0.95 | 0.358 | 0.953 | 0.575 |
Treatments | % N | Available P | Available K | Available S |
---|---|---|---|---|
T1: Control | 0.114 c | 6.12 d | 3.13 d | 4.81 e |
T2: 100% CF | 0.178 ab | 9.52 b | 7.38 c | 7.16 bc |
T3: Compost 1 | 0.120 b | 9.60 b | 6.36 c | 5.74 d |
T4: Compost 2 | 0.138 b | 7.50 c | 6.36 c | 7.59 bc |
T5: Compost 3 | 0.148 b | 9.08 b | 8.41 b | 6.85 c |
T6: Compost 4 | 0.190 a | 6.25 c | 9.78 b | 8.15 b |
T7: 50% CF + T3 | 0.152 b | 11.79 a | 12.18 a | 4.69 e |
T8: 50% CF + T4 | 0.169 ab | 10.92 a | 11.83 a | 6.79 c |
T9: 50% CF + T5 | 0.174 ab | 11.45 a | 9.78 b | 6.67 cd |
T10: 50% CF + T6 | 0.195 a | 12.41 a | 12.86 a | 10.1 a |
Level of significance | ** | ** | ** | ** |
CV (%) | 6.98 | 3.86 | 8.63 | 8.89 |
SE (±) | 0.07 | 1.13 | 1.41 | 0.98 |
Initial status | 0.120 | 4.08 | 3.47 | 7.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, M.; Jahiruddin, M.; Islam, M.R.; Rahman, M.M.; Abedin, M.A.; Solaiman, Z.M. Nutrient Enriched Municipal Solid Waste Compost Increases Yield, Nutrient Content and Balance in Rice. Sustainability 2021, 13, 1047. https://doi.org/10.3390/su13031047
Sultana M, Jahiruddin M, Islam MR, Rahman MM, Abedin MA, Solaiman ZM. Nutrient Enriched Municipal Solid Waste Compost Increases Yield, Nutrient Content and Balance in Rice. Sustainability. 2021; 13(3):1047. https://doi.org/10.3390/su13031047
Chicago/Turabian StyleSultana, Marufa, M. Jahiruddin, M. Rafiqul Islam, M. Mazibur Rahman, Md Anwarul Abedin, and Zakaria M. Solaiman. 2021. "Nutrient Enriched Municipal Solid Waste Compost Increases Yield, Nutrient Content and Balance in Rice" Sustainability 13, no. 3: 1047. https://doi.org/10.3390/su13031047
APA StyleSultana, M., Jahiruddin, M., Islam, M. R., Rahman, M. M., Abedin, M. A., & Solaiman, Z. M. (2021). Nutrient Enriched Municipal Solid Waste Compost Increases Yield, Nutrient Content and Balance in Rice. Sustainability, 13(3), 1047. https://doi.org/10.3390/su13031047