The Impact of Cooperative Membership on Fish Farm Households’ Income: The Case of Ghana
Abstract
:1. Introduction
2. Conceptual Analysis
3. Methodology and Descriptive Analysis
3.1. Econometrics Model
Dealing with Potential Endogeneity in Cooperative Membership Status
3.2. Data Source
3.3. Descriptive Analysis
4. Results and Discussions
4.1. Determinants of Cooperative Membership
4.2. The Impact of Cooperative on Household and Farm Income
4.3. Heterogeneous Effect of Cooperative Membership on the Farm and Household Income
4.4. Robustness Test
5. Conclusions, Policy Implications, and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | First Stage Selection Equation | Household Income | |
---|---|---|---|
Cooperative Membership | Member | Non-Member | |
Chronic disease | −0.045 (0.033) | −0.118(0.135) * | −0.137(0.021) * |
Pond size | 0.053 (0.021) | 0.043 (0.011) ** | 0.022(0.007) |
Access to credit | 0.039 (0.012) ** | 0.181 (0.105) ** | 0.097(0.053) ** |
Access to extension service | −0.026 (0.109) | 1.033(0.122) * | 0.233(1.163) ** |
Off-farm employment | 0.027 (0.040) ** | 0.391 (0.155) ** | 0.271(0.193) * |
Education | 0.131 (0.017) *** | 0.065(0.019) *** | 0.053(0.044) * |
Age | −0.012 (0.003) | −0.043(0.021) | 0.124 (0.023) |
Experience | 0.108 (0.071) | 0.041(0.005) | 0.161(0.018) * |
Household size | 0.221(0.062) | 0.051(0.014) *** | 0.013(0.010) * |
Gender | −0.030 (0.057) | 0.021(0.025) | −0.071(0.031) |
Peer influence | 0.089 (0.052) *** | ||
Ashanti | 0.031(0.011) * | 0.055(0.004) | 0.017(0.008) ** |
Residual(access to extension services) | −0.071(0.032) | ||
Residual(access to credit) | 0.244(0.191) | ||
Constant | 1.032 (1.322) ** | 0.066(0.025) *** | 1.078(0.115) |
0.351(0.125) 0.349(0.089) 0.164(0.133) ** −0.127( 0.061) * | |||
LR test of indep. eqns.: chi2(1) = 119.41 Prob > chi2 = 0.0009 |
Variables | First Stage Selection Equation | Farm Income | |
---|---|---|---|
Cooperative Membership | Member | Non-Member | |
Chronic disease | −0.046 (0.031) | −0.013(0.050) | −1.145(0.117) * |
Pond size | 0.052 (0.019) | 0.152(0.102) ** | 0.068 (0.047) ** |
Access to credit | 0.041 (0.012) ** | 0.046(0.068) * | 0.042(1.045) * |
Access to extension service | −0.027 (0.118) | 0.147(0.022) *** | 0.184(0.060) ** |
Off-farm employment | 0.027 (0.040) ** | −0.044(0.15) | −0.163(0.094) ** |
Education | 0.131 (0.017) *** | 0.019 (0.004) ** | 0.004(0.000) * |
Age | −0.012 (0.003) | 0.149(1.185) | 0.075 (0.018) |
Experience | 0.105 (0.071) | 1.015(0.129) ** | 0.623 (0.002) * |
Household size | 0.221 (0.062) | 0.013(0.009) | 0.061(0.044) * |
Gender | −0.030 (0.057) | −2.417(1.101) | 1.314(1.186) |
Peer influence | 0.092 (0.052) *** | ||
Ashanti | 0.031 (0.011) * | 0.003(0.020) | −0.031(0.007) |
Residue(access to extension services) | −0.071 (0.032) | ||
Residue(access to credit) | 0.244 (0.191) | ||
Constant | 1.041 (1.322) ** | 0.156(1.085) ** | 0.065(0.037) |
0.542(1.017) * 0.417(0.122) 0.441(0.109) ** −0.316 (0.219) | |||
LR test of indep. eqns. chi2(1) = 89.71 Prob > chi2 = 0.0012 |
Items | Household Income | Farm Income |
---|---|---|
Coefficient | Coefficient | |
ATT | 1.22 * | 0.81 ** |
Control variable | Yes | Yes |
Regional dummies | Yes | Yes |
0.047(0.115) ** | 0.039(0.021) ** | |
0.109(0.106) | 0.102(0.106) | |
0.092(0.037) ** | 0.032(0.014) | |
−0.225(0.094) *** | −0.205(0.133) *** | |
LR test of indep. eqns | chi2(1) = 33.68 ** | chi2(1) = 51.32 ** |
References
- FAO. Fishery and Aquaculture Statistics. Global Aquaculture Production 1950–2016 (FishstatJ); FAO: Rome, Italy, 2018. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture. Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016. [Google Scholar]
- Nunoo, F.K.E.; Asiedu, B.; Amador, K.; Belhabib, D.; Lam, V.; Sumaila, R.; Pauly, D. Marine fisheries catches in Ghana: Historic reconstruction for 1950 to 2010 and current economic impacts. Rev. Fish. Sci. Aquac. 2014, 22, 274–283. [Google Scholar] [CrossRef]
- Asiedu, B.; Nunoo, F.K.E.; Iddrisu, S. Prospects and sustainability of aquaculture development in Ghana, West Africa. Cogent Food Agric. 2017, 3. [Google Scholar] [CrossRef]
- Kassam, L. Assessing the Contribution of Aquaculture to Poverty Reduction in Ghana. Ph.D. Thesis, University of London, London, UK, 2013. [Google Scholar]
- MoFAD. Annual Report 2018. Ministry of Fisheries and Aquaculture Development; MoFAD: Accra, Ghana, 2019. [Google Scholar]
- Mantey, V.; Mburu, J.; Chumo, C. Determinants of adoption and disadoption of cage tilapia farming in southern Ghana. Aquaculture 2020, 525, 735325. [Google Scholar] [CrossRef]
- Nunoo, F.K.E.; Asamoah, E.K.; Osei-Asare, Y.B. Economics of aquaculture production: A case study of pond and pen culture in southern Ghana. Aquac. Res. 2014, 45, 675–688. [Google Scholar] [CrossRef]
- Wossen, T.; Abdoulaye, T.; Alene, A.; Haile, M.G.; Feleke, S.; Olanrewaju, A.; Manyong, V. Impacts of extension access and cooperative membership on technology adoption and household welfare. J. Rural Stud. 2017, 54, 223–233. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Ma, W.; Valentinov, V. The effect of cooperative membership on agricultural technology adoption in Sichuan, China. China Econ. Rev. 2019. [Google Scholar] [CrossRef]
- Issahaku, G.; Abdulai, A. Can Farm Households Improve Food and Nutrition Security through Adoption of Climate-smart Practices? Empirical Evidence from Northern Ghana. Appl. Econ. Perspect. Policy 2020, 42, 559–579. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 9789251095515. [Google Scholar]
- Gurmessa, N.E. Smallholders’ Access to a nd Demand for Credit and Influencing Factors: Policy and Research Implications for Ethiopia. J. Bus. Econ. Policy 2017, 4, 49–60. [Google Scholar]
- Ucha, S.; Smiles, U.; Nnaji, J. Socioeconomic Determinants of Farmers’ Participation in Off-Farm Income Employment in Ezza South Local Government Area of Ebonyi State, Nigeria. Sustain. Agric. Food Environ. Res. 2020, 8, 155–170. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. IPM adoption, cooperative membership and farm economic performance: Insight from apple farmers in China. China Agric. Econ. Rev. 2019. [Google Scholar] [CrossRef]
- Bijman, J.; Iliopoulos, C. Farmers’ cooperatives in the EU: Policies, strategies, and organization. Ann. Public Coop. Econ. 2014, 85, 497–508. [Google Scholar] [CrossRef]
- Chagwiza, C.; Muradian, R.; Ruben, R. Cooperative membership and dairy performance among smallholders in Ethiopia. Food Policy 2016, 59, 165–173. [Google Scholar] [CrossRef]
- Hailu, G.; Weersink, A.; Minten, B. Rural Organizations, Agricultural Technologies and Production Efficiency of Teff in Ethiopia. In Proceedings of the International Association of Agricultural Economists (IAAE), Milan, Italy, 9–14 August 2015; ISBN 5198244120. [Google Scholar]
- Ma, W.; Abdulai, A. The economic impacts of agricultural cooperatives on smallholder farmers in rural China. Agribusiness 2017, 33, 537–551. [Google Scholar] [CrossRef]
- Mojo, D.; Fischer, C.; Degefa, T. The determinants and economic impacts of membership in coffee farmer cooperatives: Recent evidence from rural Ethiopia. J. Rural Stud. 2017, 50, 84–94. [Google Scholar] [CrossRef]
- Verhofstadt, E.; Maertens, M. Can agricultural cooperatives reduce poverty? Heterogeneous impact of cooperative membership on farmers’ welfare in Rwanda. Appl. Econ. Perspect. Policy 2015, 37, 86–106. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Abdulai, A.; Ma, C. The effects of off-farm work on fertilizer and pesticide expenditures in China. Rev. Dev. Econ. 2018. [Google Scholar] [CrossRef]
- Abebaw, D.; Haile, M.G. The impact of cooperatives on agricultural technology adoption: Empirical evidence from Ethiopia. Food Policy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Ofuoku, U.; Uzokwe, U.; Ideh, V. Comparative analysis of cooperative and non-cooperative fish farmers in the central agro-ecological zone of Delta State Nigeria. Ext. Farming Syst. J. 2006, 2, 97–104. [Google Scholar]
- Edun, O.M.; Akinrotimi, O.A.; Eshiett, I.M. Roles of Cooperative Societies in Aquaculture Development: A Case Study of Some Local Government Areas in Rivers State, Nigeria Roles of Cooperative Societies in Aquaculture Development: A Case Study of Some Local Government Areas in Rivers. Agric. Ext. J. 2018, 2, 132–138. [Google Scholar]
- Odetola, S.K.; Awoyemi, T.T.; Ajijola, S. Impact of cooperative society on fish farming comercialization in Lagos State, Nigeria. Afr. J. Agric. Res. 2015, 10, 1982–1988. [Google Scholar] [CrossRef]
- Stutzman, E.; Molnar, J.; Atukunda, G.; Walakira, J. Understanding the Role of Fish Farmer Associations as Intermediaries for the Commercialization of Aquaculture in Uganda. Fish. Aquac. J. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Kwadwo Frimpong, S.; Adwani, A. The Challenges and Prospects of Fish Farming in Ghana: A Project Management Perspective. Int. J. ICT Manag. 2015. [Google Scholar]
- Ma, W.; Abdulai, A. Does cooperative membership improve household welfare? Evidence from apple farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
- Tall, A.; Failler, P. Fishery and aquaculture industry in Ghana. Ser. Rep. Rev. Fish. Aquac. Ind. 22 ATLAFCO Memb. States 2012, 44. [Google Scholar]
- Twumasi, M.A. Determinants of credit constraint of artisanal fishermen in Ghana. Cienc. Rural 2020, 50, 1–10. [Google Scholar] [CrossRef]
- Siaw, A.; Jiang, Y.; Twumasi, M.A. The Impact of Internet Use on Income: The Case of Rural Ghana. Sustainability 2020, 12, 3255. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Renwick, A.; Nie, P.; Tang, J.; Cai, R. Off-farm work, smartphone use and household income: Evidence from rural China. China Econ. Rev. 2018. [Google Scholar] [CrossRef]
- Xu, F.; Fu, X.; Li, H. Analysis on the Income Increasing Effect of Farmers’ Professional Cooperatives in Poor Areas: A Case Study of Qinba Mountain Area of Sichuan Province. Adv. Econ. Bus. Manag. Res. 2020, 110, 736–740. [Google Scholar]
- Goyal, A. Information, direct access to farmers, and rural market performance in central india. Am. Econ. J. Appl. Econ. 2010. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liang, Q.; Huang, Z. Benefits and pitfalls of social capital for farmer cooperatives: Evidence from China. Int. Food Agribus. Manag. Rev. 2018, 21, 1137–1152. [Google Scholar] [CrossRef]
- Dong, F.; Lu, J.; Featherstone, A.M. Effects of credit constraints on household productivity in rural China. Agric. Financ. Rev. 2012, 72, 402–415. [Google Scholar] [CrossRef]
- Christensen, B.J.; Kallestrup-Lamb, M. The impact of health changes on labor supply: Evidence from merged data on individual objective medical diagnosis codes and early retirement behavior. Health Econ. 2012, 21, 56–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Zhou, X.; Renwick, A. Impact of off-farm income on household energy expenditures in China: Implications for rural energy transition. Energy Policy 2019, 127, 248–258. [Google Scholar] [CrossRef]
- Twumasi, M.A.; Jiang, Y.; Ameyaw, B.; Danquah, F.O.; Acheampong, M.O. The impact of credit accessibility on rural households clean cooking energy consumption: The case of Ghana. Energy Rep. 2020, 6, 974–983. [Google Scholar] [CrossRef]
- Rahut, D.B.; Ali, A.; Mottaleb, K.A. Understanding the determinants of alternate energy options for cooking in the Himalayas: Empirical evidence from the Himalayan region of Pakistan. J. Clean. Prod. 2017, 149, 528–539. [Google Scholar] [CrossRef]
- Heckman, J.J. Sample Selection Bias as a Specification Error. Econometrica 1979. [Google Scholar] [CrossRef]
- Tesfaye, S.; Bedada, B.; Mesay, Y. Impact of improved wheat technology adoption on productivity and income in Ethiopia. African Crop Sci. J. 2016, 24, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Cawley, A.; O’Donoghue, C.; Heanue, K.; Hilliard, R.; Sheehan, M. The impact of extension services on farm-level income: An instrumental variable approach to combat endogeneity concerns. Appl. Econ. Perspect. Policy 2018, 40, 585–612. [Google Scholar] [CrossRef]
- Tesfaye, W.; Tirivayi, N. The impacts of postharvest storage innovations on food security and welfare in Ethiopia. Food Policy 2018. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum Likelihood Estimation of Endogenous Switching Regression Models. Stata J. 2004. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Grafton, R.Q.; Renwick, A. Smartphone use and income growth in rural China: Empirical results and policy implications. Electron. Commer. Res. 2018, 18, 1–24. [Google Scholar] [CrossRef]
- Deng, X.; Zeng, M.; Xu, D.; Wei, F.; Qi, Y. Household Health and Cropland Abandonment in Rural China: Theoretical Mechanism and Empirical Evidence. Int. J. Environ. Res. Public Health 2019, 16, 3588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conger, A.D. The Cytogenic Effect of Sonic Energy Applied Simultaneously with X-Rays. Proc. Natl. Acad. Sci. USA 1948, 34, 470–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooldridge, J.M. Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Wooldridge, J.M. Control function methods in applied econometrics. J. Hum. Resour. 2015. [Google Scholar] [CrossRef]
- Hun, S.; Ito, S.; Isoda, H.; Amekawa, Y. Impacts of Agricultural Cooperatives on Farmers’ Revenues in Cambodia: A Case Study of Tram Kak District, Takeo Province. J. Agric. Sci. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Renwick, A.; Yuan, P.; Ratna, N. Agricultural cooperative membership and technical efficiency of apple farmers in China: An analysis accounting for selectivity bias. Food Policy 2018, 81, 122–132. [Google Scholar] [CrossRef]
- Mulokozi, D.P.; Mmanda, F.P.; Onyango, P.; Lundh, T.; Tamatamah, R.; Berg, H. Rural aquaculture: Assessment of its contribution to household income and farmers’ perception in selected districts, Tanzania. Aquac. Econ. Manag. 2020. [Google Scholar] [CrossRef]
- Leng, C.; Ma, W.; Tang, J.; Zhu, Z. ICT Adoption and Income Diversification among Rural Households in China ICT adoption and income diversification among rural households in China. Appl. Econ. 2020, 52, 3614–3628. [Google Scholar] [CrossRef]
- Ankrah Twumasi, M.; Jiang, Y.; Zhou, X.; Addai, B.; Darfor, K.N.; Akaba, S.; Fosu, P. Increasing Ghanaian fish farms’ productivity: Does the use of the internet matter? Mar. Policy 2021, 125, 104385. [Google Scholar] [CrossRef]
- Mitra, S.; Khan, M.A.; Nielsen, R. Credit constraints and aquaculture productivity. Aquac. Econ. Manag. 2019, 23, 410–427. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Impact of interventions on discrete outcomes: Maximum likelihood estimation of the binary choice models with binary endogenous regressors. Stata J. 2011, 11, 368–385. [Google Scholar] [CrossRef] [Green Version]
Variables | Description | Mean | Std. Dev. |
---|---|---|---|
Household income | Total net household income (in GH¢1000/capita) | 5.01 | 4.26 |
Farm income | Total net farm income (kg/ha in GH¢1000/capita) | 3.16 | 3.82 |
Cooperative membership | 1 if the household head is a member of a cooperative association and 0 otherwise | 0.66 | 0.47 |
Chronic disease | 1 if the household has a member with a chronic disease and 0 otherwise | 0.44 | 0.47 |
Pond size | Total fish farmland (in hectares) | 0.49 | 0.78 |
Access to credit | 1 if the household has access to credit and 0 otherwise | 0.52 | 0.46 |
Access to extension services | 1 if the household has access to extension services and 0 otherwise | 0.63 | 0.48 |
Off-farm employment | 1 if the household head has off-farm employment and 0 otherwise | 0.74 | 0.51 |
Education | Household head years of formal education | 10.90 | 4.51 |
Age | Respondents age | 40.13 | 7.72 |
Experience | Year of farming experience | 11.75 | 2.43 |
Household size | Total number of household size | 3.49 | 1.13 |
Gender | 1 if respondent is male; 0 otherwise | 0.72 | 0.51 |
Peer influence | 1 if the household head’s friend/relative is a farm cooperative member | 0.58 | 0.47 |
Ashanti | 1 if household resides in Ashanti; 0 otherwise | 0.53 | 0.48 |
Bono East | 1 if household resides in Bono East; 0 otherwise | 0.47 | 0.51 |
Variables | Member | Non-Member | Difference |
---|---|---|---|
Household income | 6.11 (3.44) | 3.91 (2.76) | 2.20 *** |
Farm income | 4.24 (2.97) | 2.08 (1.11) | 2.16 ** |
Chronic disease | 0.48 (0.49) | 0.40 (0.51) | 0.08 |
Pond size | 0.57 (0.47) | 0.41 (0.47) | 0.16 * |
Access to credit | 0.68 (0.55) | 0.36 (0.43) | 0.32 *** |
Access to extension service | 0.64 (0.48) | 0.62 (0.50) | 0.02 |
Off-farm employment | 0.79 (0.57) | 0.69 (0.49) | 0.10 |
Education | 12.68 (7.87) | 9.12 (5.91) | 3.56 ** |
Age | 39.51 (9.73) | 40.75 (9.51) | −1.24 |
Experience | 12.66 (3.98) | 10.84 (2.55) | 1.82 * |
Household size | 3.87 (0.97) | 3.11 (1.22) | 0.76 |
Gender | 0.71 (0.52) | 0.73 (0.49) | −0.02 |
Peer influence | 0.67 (0.50) | 0.49 (0.49) | 0.18 *** |
Ashanti | 0.56 (0.47) | 0.50 (0.46) | 0.06 ** |
Bono East | 0.53 (0.49) | 0.41 (0.45) | 0.12 ** |
Mean Outcome | |||||
---|---|---|---|---|---|
Outcome Variable | Members | Non-Members | ATTESR | t-Value | Change |
Household income | 6.26(4.15) | 4.87(2.70) | 1.39 | 6.18 *** | 28.54% |
Farm income | 4.77(2.71) | 3.54(1.98) | 1.23 | 4.94 *** | 34.75% |
Mean Household Incomes | ||||||
---|---|---|---|---|---|---|
Variables | Members | Non-Members | ATTESR | t-Value | Change | |
Chronic disease | Yes | 5.41(3.21) | 4.83(2.07) | 0.58 | 6.49 ** | 12.01% |
No | 6.96(3.95) | 5.72(2.14) | 1.04 | 4.77 *** | 18.18% | |
Access to off-farm job | Yes | 7.22(4.02) | 5.40(2.91) | 1.82 | 5.61 *** | 33.70% |
No | 5.87(3.18) | 4.69(2.08) | 1.18 | 3.38 ** | 25.16% | |
Income group | High | 7.81(3.71) | 6.19(3.52) | 1.62 | 8.76 ** | 26.17% |
Low | 5.53(2.01) | 4.61(1.84) | 0.92 | 5.41 *** | 19.96% | |
Mean Farm Income | ||||||
Chronic disease | Yes | 4.17(2.92) | 3.81(1.54) | 0.41 | 4.77 * | 9.45% |
No | 5.13(2.34) | 4.54(1.19) | 0.59 | 3.19 ** | 13% | |
Access to off-farm job | Yes | 5.47(3.93) | 5.19(3.09) | 0.28 | 6.07 | 4.52% |
No | 5.29(2.37) | 4.57(2.10) | 0.72 | 4.72 ** | 15.75% | |
Income group | High | 6.06(4.52) | 5.47(2.72) | 0.59 | 1.30 ** | 10.78% |
Low | 4.47(2.10) | 3.75(1.541) | 0.52 | 5.581 ** | 13.87% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ankrah Twumasi, M.; Jiang, Y.; Addai, B.; Ding, Z.; Chandio, A.A.; Fosu, P.; Asante, D.; Siaw, A.; Danquah, F.O.; Korankye, B.A.; et al. The Impact of Cooperative Membership on Fish Farm Households’ Income: The Case of Ghana. Sustainability 2021, 13, 1059. https://doi.org/10.3390/su13031059
Ankrah Twumasi M, Jiang Y, Addai B, Ding Z, Chandio AA, Fosu P, Asante D, Siaw A, Danquah FO, Korankye BA, et al. The Impact of Cooperative Membership on Fish Farm Households’ Income: The Case of Ghana. Sustainability. 2021; 13(3):1059. https://doi.org/10.3390/su13031059
Chicago/Turabian StyleAnkrah Twumasi, Martinson, Yuansheng Jiang, Bismark Addai, Zhao Ding, Abbas Ali Chandio, Prince Fosu, Dennis Asante, Anthony Siaw, Frank Osei Danquah, Bright Asiamah Korankye, and et al. 2021. "The Impact of Cooperative Membership on Fish Farm Households’ Income: The Case of Ghana" Sustainability 13, no. 3: 1059. https://doi.org/10.3390/su13031059
APA StyleAnkrah Twumasi, M., Jiang, Y., Addai, B., Ding, Z., Chandio, A. A., Fosu, P., Asante, D., Siaw, A., Danquah, F. O., Korankye, B. A., Ntim-Amo, G., Ansah, S., & Agbenyo, W. (2021). The Impact of Cooperative Membership on Fish Farm Households’ Income: The Case of Ghana. Sustainability, 13(3), 1059. https://doi.org/10.3390/su13031059