Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Entropy Balancing
2.2. Sample Selection Model
2.2.1. Selection Equation
2.2.2. Stochastic Frontier Approach (SFA)
2.3. Empirical Application and Data Source
3. Results and Discussion
3.1. Descriptive Analysis and Entropy Balancing
3.2. Production Elasticities
3.3. Technical Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample Selection
Variable | Marginal Effect (dy/dx) | Standard-Error | Estat. Z | p-Value |
---|---|---|---|---|
Gender | 0.00206 | 0.0003690 | 5.58 | 0.0001 |
Age | 0.00077 | 0.0000480 | 15.97 | 0.0001 |
Age2 | −7.43 × 10−6 | 0.0000005 | −16.37 | 0.0001 |
Read and write | −0.01132 | 0.0007554 | −14.99 | 0.0001 |
Do not read and write | −0.02243 | 0.0007223 | −31.06 | 0.0001 |
Literate | −0.01635 | 0.0008422 | −19.41 | 0.0001 |
Incomplete elementary | −0.00668 | 0.0006614 | −10.1 | 0.0001 |
Complete Elementary | 0.00315 | 0.0007123 | 4.43 | 0.0001 |
Agric. Technician | 0.00956 | 0.0010204 | 9.37 | 0.0001 |
High School | 0.00586 | 0.0007204 | 8.14 | 0.0001 |
Exp_1 | 0.00519 | 0.0007868 | 6.6 | 0.0001 |
Exp_1to5 | 0.00661 | 0.0003350 | 19.73 | 0.0001 |
Exp_5to10 | 0.00277 | 0.0003199 | 8.67 | 0.0001 |
Private Extension | −0.00856 | 0.0003608 | −23.72 | 0.0001 |
Governmental Extension | 0.01973 | 0.0003453 | 57.14 | 0.0001 |
Co-op Membership | −0.00795 | 0.0002336 | −34.05 | 0.0001 |
Television | 0.00561 | 0.0002690 | 20.84 | 0.0001 |
Telephone | 0.01805 | 0.0002662 | 67.81 | 0.0001 |
Internet | 0.01820 | 0.0007853 | 23.17 | 0.0001 |
Energy | 0.03873 | 0.0003172 | 122.12 | 0.0001 |
Financing | −0.00883 | 0.0002826 | −31.23 | 0.0001 |
Qualif. | 0.01529 | 0.0004906 | 31.17 | 0.0001 |
Urban | −0.00293 | 0.0003558 | −8.25 | 0.0001 |
Agr. Practice | 0.00186 | 0.0002423 | 7.67 | 0.0001 |
Water Resource | 0.03337 | 0.0003220 | 103.63 | 0.0001 |
Agrochemicals | 0.04416 | 0.0002558 | 172.61 | 0.0001 |
Soil pH | 0.02455 | 0.0003287 | 74.68 | 0.0001 |
Fertilizers | 0.09043 | 0.0002928 | 308.81 | 0.0001 |
Value of Land | −1.42 × 10−9 | 0.0000000 | −16.66 | 0.0001 |
Agr. Family | −0.00713 | 0.0003031 | −23.51 | 0.0001 |
Owner | −0.00319 | 0.0004382 | −7.28 | 0.0001 |
Tenant | 0.00736 | 0.0006383 | 11.53 | 0.0001 |
Partner | −0.00113 | 0.0007716 | −1.46 | 0.145 |
Summer precipitation | −0.00024 | 0.0000031 | −78.41 | 0.0001 |
Winter precipitation | −0.00038 | 0.0000056 | −68.87 | 0.0001 |
Summer temperature | −0.00560 | 0.0001974 | −28.39 | 0.0001 |
Winter temperature | 0.00473 | 0.0001185 | 39.91 | 0.0001 |
Summer Prec. Stand. Dev. | 0.00022 | 0.0000062 | 35.91 | 0.0001 |
Winter Prec. Stand. Dev. | −0.00045 | 0.0000101 | −43.91 | 0.0001 |
Summer Temp. Stand. Dev. | 0.01652 | 0.0004981 | 33.16 | 0.0001 |
Winter Temp. Stand. Dev. | −0.06200 | 0.0006704 | −92.48 | 0.0001 |
N° Obs. | 4,259,865 | |||
Log Likelihood | −798,547.93 | |||
Chi2 | 389230.58 | 0.0001 | ||
Pseudo R2 | 0.196 |
References
- Cunha, D.A.; Coelho, A.B.; Feres, J.G.; Braga, M.J. Effects of climate change on irrigation adoption in Brazil. Acta Sci. Agron. 2014, 36, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dridi, C.; Khanna, M. Irrigation Technology Adoption and Gains From Water Trading under Asymmetric Information. Am. J. Agric. Econ. 2005, 87, 289–301. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; Fosu, K.Y.; Gbetibouo, G.; Jain, S.; et al. Will African agriculture survive climate change? World Bank Econ. Rev. 2006, 20, 367–388. [Google Scholar] [CrossRef] [Green Version]
- Tubiello, N.N. Climate variability and agriculture: Perspectives on current and future challenges. In Impact of Climate Change, Variability and Weather Fluctuations on Crops and Their Produce Markets; B. Knight: Cambridge, UK, 2005; pp. 47–66. [Google Scholar]
- Marra, M.; Pannell, D.J.; Ghadim, A.A. The Economics of Risk, Uncertainty and Learning in the Adoption of New Agricultural Technologies: Where are we on the Learning Curve? Agric. Syst. 2003, 75, 215–234. [Google Scholar] [CrossRef]
- Cunha, D.A.; Coelho, A.B.; Féres, J.G. Irrigation as an adaptive strategy to climate change: An economic perspective on Brazilian agriculture. Environ. Dev. Econ. 2015, 20, 57–79. [Google Scholar] [CrossRef] [Green Version]
- Finger, R.; Hediger, W.; Schmid, S. Irrigation as adaptation strategy to climate change—A biophysical and economic appraisal for Swiss maize production. Clim. Chang. 2011, 105, 509–528. [Google Scholar] [CrossRef] [Green Version]
- Van Passel, S.; Massetti, E.; Mendelsohn, R. A Ricardian analysis of the impact of climate change on European agriculture. Environ. Resour. Econ. 2017, 67, 725–760. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Schaible, D.G.; Aillery, P.M. Water Conservation in Irrigated Agriculture: Trends and Challenges in the Face of Emerging Demands; EIB-99, U.S. Departament of Agriculture, Economic Research Service: Washington, DC, USA, 2012.
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology. Am. J. Agric. Econ. 2006, 88, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Njuki, E.; Bravo-Ureta, B.E. Climatic Variability and Irrigation: An Analysis of Irrigation Efficiency Patterns in U.S. Counties. In Proceedings of the Agricultural & Applied Economics Association Annual Meeting, Boston, MA, USA, 31 July–2 August 2016. [Google Scholar]
- Pereira, L.S. Irrigation demand management to cope with drought and water scarcity. In Tools for Drought Mitigation in Mediterranean Regions; Rossi, G., Cancelliere, A., Pereira, L.S., Oweis, T., Shatanawi, M., Zairi, A., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 44. [Google Scholar]
- Sepaskhah, A.R.; Akbari, D. Deficit irrigation under variable seasonal rainfall. Biosyst. Eng. 2005, 92, 97–106. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.A.K. The structure of technical efficiency. Scand. J. Econ. 1983, 85, 181–190. [Google Scholar] [CrossRef]
- Farrell, M. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Ganjegunte, G.; Clark, J. Improved irrigation scheduling for freshwater conservation in the desert southwest U.S. Irrig. Sci. 2017, 35, 315–326. [Google Scholar] [CrossRef]
- Mantovani, E.C.; Bernardo, S.; Palaretti, L.F. IRRIGAÇÃO: Princípios e Métodos, 2nd ed.; Editora UFV: Viçosa, Brazil, 2012; pp. 13–40. [Google Scholar]
- United Nations (UN). Sustainable Development Goals and targets. In Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015; pp. 14–28. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística—IBGE (English: Brazilian Institute of Geographic and Statistics). Censo Agropecuário—2006; IBGE: Rio de Janeiro, Brazil, 2009; pp. 1–777. Available online: http://biblioteca.ibge.gov.br/visualizacao/periodicos/51/agro_2006.pdf (accessed on 20 May 2017).
- Instituto Brasileiro de Geografia e Estatística—IBGE (English: Brazilian Institute of Geographic and Statistics). Censo Agropecuário—2017: Resultados Preliminares; IBGE: Rio de Janeiro, Brazil, 2018; pp. 1–108. Available online: https://biblioteca.ibge.gov.br/visualizacao/periodicos/3093/agro_2017_resultados_preliminares.pdf (accessed on 25 December 2020).
- Trifonov, P.; Lazarovitch, N.; Arye, G. Increasing water productivity in arid regions using low-discharge drip irrigation: A case study on potato growth. Irrig. Sci. 2017, 35, 287–295. [Google Scholar] [CrossRef]
- Vanschoenwinkel, J.; Van Passel, S. Climate response of rainfed versus irrigated farms: The bias of farm heterogeneity in irrigation. Clim. Chang. 2018, 147, 225. [Google Scholar] [CrossRef] [Green Version]
- Rada, N.; Helfand, S.; Magalhães, M. Agricultural productivity growth in Brazil: Large and small farms excel. Food Policy 2019, 84, 176–185. [Google Scholar] [CrossRef]
- Agência Nacional de Águas (ANA), Brazil. (English: National Water Agency). Conjuntura dos Recursos Hídricos no Brasil: Informe 2009; National Water Agency: Brasília, Brazil, 2009. [Google Scholar]
- Bravo-Ureta, B.E.; Greene, W.; Solís, D. Technical efficiency analysis correcting for biases from observed and unobserved variables: An application to a natural resource management project. Empir. Econ. 2012, 43, 55–72. [Google Scholar] [CrossRef]
- Freitas, C.O. Three Essays on the Effect of Rural Extension in the Brazilian Agricultural Sector. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2017. [Google Scholar]
- Helfand, S.M.; Levine, E.S. Farm size and the determinants of productive efficiency in the Brazilian Center-West. Agric. Econ. 2004, 31, 241–249. [Google Scholar] [CrossRef]
- Villano, R.; Bravo-Ureta, B.E.; Solís, D.; Fleming, E. Modern rice Technologies and productivity in the Phillippines: Disentangling technology from managerial gaps. J. Agric. Econ. 2015, 66, 129–154. [Google Scholar] [CrossRef]
- Anang, B.T.; Backman, S.; Rezitis, A. Production technology and technical efficiency: Irrigated and rain-fed rice farms in northern Ghana. Eurasian Econ. Rev. 2017, 7, 95–113. [Google Scholar] [CrossRef]
- Babatunde, R.O.; Salami, M.F.; Muhammed, B.A. Determinants of yield gap in rain-fed and irrigated rice production systems—Evidence from household survey in Kwara State, Nigeria. J. Agribus. Rural Dev. 2017, 1, 25–33. [Google Scholar] [CrossRef]
- Opata, P.I.; Nweze, N.J.; Ezeibe, A.B.; Mallam, M. Efficiency of irrigated and rain-fed rice (oryza sativa) producers in fadama agriculture, nigeria. Exp. Agric. 2018, 55, 597–609. [Google Scholar] [CrossRef]
- Mkanthama, J.; Makombe, G.; Kihoro, J.; Ateka, E.M.; Kanjere, M. Technical efficiency of rain-fed and irrigated rice production in Tanzania. Irrig. Drain. 2018, 67, 233–241. [Google Scholar] [CrossRef]
- Makombe, G.; Kelemework, D.; Aredo, D. A comparative analysis of rainfed and irrigated agricultural production in Ethiopia. Irrig. Drain. Syst. 2007, 21, 35–44. [Google Scholar] [CrossRef]
- Gebrehaweria, G.; Regassa, E.N.; Stein, H. Technical Efficiency of Irrigated and Rain-Fed Smallholder Agriculture in Tigray, Ethiopia: A Comparative Stochastic Frontier Production Function Analysis. Q. J. Int. Agric. 2012, 51, 203–226. [Google Scholar]
- Melesse, K.A.; Ahmed, M.H. A comparative stochastic frontier analysis of irrigated and rain-fed potato farms in Eastern Ethiopia. J. Agribus. Rural Dev. 2015, 4, 769–781. [Google Scholar] [CrossRef]
- Tiruneh, W.G.; Chindi, A.; Woldegiorgis, G. Technical efficiency determinants of potato production: A study of rain-fed and irrigated smallholder farmers in Welmera district, Oromia, Ethiopia. J. Dev. Agric. Econ. 2017, 9, 217–223. [Google Scholar]
- Makombe, G.; Namara, R.E.; Awulachew, S.B.; Hagos, F.; Ayana, M.; Kanjere, M. An analysis of the productivity and technical efficiency of smallholder irrigation in Ethiopia. Water SA 2017, 43. [Google Scholar] [CrossRef] [Green Version]
- Vrachioli, M.; Stefanou, S.; Tzouvelekas, V. Impact Evaluation of New Irrigation Technology in Crete: Correcting for Selectivity Bias. In Proceedings of the 30th International Conference of Agricultural Economists, Vancouver, BC, Canada, 28 July–2 August 2018. [Google Scholar]
- Adhikari, S.P.; Ghimire, Y.N.; Timsina, K.P.; Gairhe, S. Impact of Variety Type and Irrigation on Technical Efficiency of Potato Farmers: The Case of Terai Region of Nepal. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Adelodun, B.; Mohammed, A.A.; Adeniran, K.A.; Akanbi, S.O.; Abdulkadir, T.S.; Kyung Sook Choi, K.S. Comparative assessment of technical efficiencies of irrigated crop production farms: A case study of the large-scale Kampe-Omi irrigation scheme, Nigeria. Afr. J. Sci. Technol. Innov. Dev. 2020. [Google Scholar] [CrossRef]
- Adams, A.; Balana, B.; Lefore, N. Efficiency of Small-scale Irrigation Farmers in Northern Ghana: A Data Envelopment Analysis Approach. J. Appl. Econ. Res. 2020, 14, 332–352. [Google Scholar] [CrossRef]
- Yusuf, B.I.; Mustapha, M.B. Socio-Economic Determinants of Technical Efficiency in Rainfed Rice Production in Sokoto State, Nigeria. Greener J. Agric. Sci. 2019, 9, 344–349. [Google Scholar] [CrossRef]
- De Souza Barros, E.; De Farias Costa, E.; Sampaio, Y. Análise de eficiência das empresas agrícolas do pólo Petrolina/Juazeiro utilizando a fronteira paramétrica Translog. Rev. Econ. Sociol. Rural. 2004, 42, 597–614. [Google Scholar] [CrossRef]
- Mariano, J.L.; Pinheiro, G.M.T.L. Eficiência técnica da agricultura familiar no projeto de irrigação do baixo Açu (RN). Rev. Econômica Nordeste 2009, 40, 283–296. [Google Scholar]
- De Sousa, E.P.; Justo, W.R.; Campos, A.C. Eficiência Técnica da Fruticultura Irrigada no Ceará. Rev. Econ. Nordeste 2013, 44, 851–866. [Google Scholar]
- Watto, M.; Mugera, A. Wheat farming system performance and irrigation efficiency in Pakistan: A bootstrapped metafrontier approach. Int. Trans. Oper. Res. 2019, 26, 686–706. [Google Scholar] [CrossRef]
- Heckman, J. Sample selection bias as a specification error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
- Sipiläinen, T.; Oude Lansink, A. Learning in switching to organic farming. In NJF-Seminar 369: Organic Farming for a New Millennium; NJF Report; Nordic Association of Agricultural Scientists (NJF): Stockholm, Sweden, 2005; Volume 1, pp. 169–172. [Google Scholar]
- Battese, G.E.; Coelli, T.J. A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Sharp, B. Technical efficiency and technological gap of New Zealand dairy farms: A stochastic meta-frontier model. J. Product. Anal. 2015, 44, 39–49. [Google Scholar] [CrossRef]
- Hainmueller, J. Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies. Political Anal. 2012, 20, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Greene, W. A stochastic frontier model with correction for sample selection. J. Product. Anal. 2010, 34, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Battese, G.E. Frontier production functions and technical efficiency: A survey of empirical applications in agricultural economics. Agric. Econ. 1992, 7, 185–208. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Ureta, B.E.; Solis, D.; Moreira, V.H.; Maripani, J.; Thiam, A.; Rivas, T. Technical efficiency in faming: A meta-regression analysis. J. Product. Anal. 2007, 27, 57–72. [Google Scholar] [CrossRef]
- Mekonnen, D.K.; Spielman, D.J.; Fonsah, E.G.; Dorfman, J.H. Innovation systems and technical efficiency in developing-country agriculture. Agric. Econ. 2015, 46, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Thiam, A.; Bravo-Ureta, B.E.; Rivas, T.E. Technical efficiency in developing country agriculture: A meta-analysis. Agric. Econ. 2001, 25, 235–243. [Google Scholar] [CrossRef]
- Tegegne, B.; Tadesse, G.; Zemedu, L. Technical efficiency in irrigated small-scale agriculture: Empirical evidence from onion farming in Kobo district of Northeast Ethiopia. J. Agric. Econ. Dev. 2014, 3, 35–46. [Google Scholar]
- Battese, G.E.; Coelli, T.J. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J. Econ. 1988, 38, 387–399. [Google Scholar] [CrossRef]
- Hughes, N.; Lawson, K.; Davidson, A.; Jackson, T.; Sheng, Y. Productivity Pathways: Climate Adjusted Production Frontiers for the Australian Broadacre Cropping Industry; ABARES Research Report 11.5; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2011. [Google Scholar]
- Landau, E.C.; da Cruz, R.K.M.; Hirsch, A.; Pimenta, F.; Guimaraes, D. Variação Geográfica do Tamanho dos Módulos Fiscais no Brasil; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2012; p. 199. ISSN 1518-4277. [Google Scholar]
- Climatic Research Unit (CRU), School of Environmental Sciences, Faculty of Science, University of East Anglia (UEA). Available online: https://lr1.uea.ac.uk/cru/data (accessed on 18 July 2019).
- Schoengold, K.; Zilberman, D. The Economics of Water, Irrigation, and Development. In Handbook of Agricultural Economics; Evenson, R., Pingali, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Chapter 58; pp. 2933–2977. [Google Scholar]
- Ullah, A.; Perret, S.R. Technical- and environmental-efficiency analysis of irrigated cotton-cropping systems in Punjab, Pakistan using data envelopment analysis. Environ. Manag. 2014, 54, 288–300. [Google Scholar] [CrossRef]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects. Am. J. Agric. Econ. 2014, 96, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Speelman, S.; D’haese, M.; Buysse, J.; D’haese, L. A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa. Agric. Syst. 2008, 98, 31–39. [Google Scholar] [CrossRef]
- Karagiannis, G.; Tzouvelekas, V.; Xepapadeas, A. Measuring irrigation water efficiency with a stochastic production frontier. Environ. Resour. Econ. 2003, 26, 57–72. [Google Scholar] [CrossRef]
- Haji, J. Production efficiency of smallholders’ vegetable-dominated mixed farming system in Eastern Ethiopia: A non-parametric approach. J. Afr. Econ. 2007, 16, 1–27. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture. J. Political Econ. 1995, 103, 1176–1209. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Microeconomics of Technology Adoption. Annu. Rev. Econ. 2010, 2, 395–424. [Google Scholar] [CrossRef] [Green Version]
- Alves, E.; Sousa, G.S.; Rocha, D.P. Lucratividade na Agricultura. Rev. Política Agrícola 2012, 21, 45–63. [Google Scholar]
- Schultz, T.W. A transformação da agricultura brasileira. In Translation of J. C. Teixeira Rocha; Zahar Editores: Rio de Janeiro, Brazil, 1965; p. 207. [Google Scholar]
Non Balanced Sample | Balanced Sample | |||
---|---|---|---|---|
Variables | Rain-Fed (Control) | Irrigators | Rain-Fed (Control) | Irrigators |
Gender | 0.876 | 0.912 *** | 0.912 | 0.912 ns |
Age | 50.36 | 49.32 *** | 49.32 | 49.32 ns |
Read and write | 0.096 | 0.084 *** | 0.084 | 0.084 ns |
Do not read and write | 0.252 | 0.151 *** | 0.151 | 0.151 ns |
Literate | 0.054 | 0.038 *** | 0.038 | 0.038 ns |
Incomplete elementary | 0.424 | 0.458 *** | 0.458 | 0.458 ns |
Complete Elementary | 0.081 | 0.112 *** | 0.112 | 0.112 ns |
Agric. Technician | 0.012 | 0.022 *** | 0.022 | 0.022 ns |
High School | 0.057 | 0.090 *** | 0.09 | 0.090 ns |
Higher Education | 0.025 | 0.045 *** | - | - |
Exp_1 | 0.026 | 0.019 *** | - | - |
Exp_1to5 | 0.166 | 0.162 *** | 0.162 | 0.162 ns |
Exp_5to10 | 0.169 | 0.165 *** | 0.165 | 0.165 ns |
Exp_10 | 0.639 | 0.654 *** | 0.654 | 0.654 ns |
Private Extension | 0.123 | 0.185 *** | 0.185 | 0.185 ns |
Governmental Extension | 0.084 | 0.170 *** | 0.170 | 0.170 ns |
Co-op Membership | 0.409 | 0.443 *** | 0.443 | 0.443 ns |
Television | 0.198 | 0.240 *** | 0.240 | 0.240 ns |
Telephone | 0.230 | 0.401 *** | 0.401 | 0.401 ns |
Internet | 0.011 | 0.030 *** | 0.030 | 0.030 ns |
Energy | 0.684 | 0.876*** | 0.876 | 0.876 ns |
Financing | 0.181 | 0.230 *** | 0.230 | 0.230 ns |
Qualification | 0.037 | 0.075*** | 0.075 | 0.075 ns |
Urban | 0.133 | 0.146 *** | 0.146 | 0.146 ns |
Agr. Practice | 0.581 | 0.699 *** | 0.699 | 0.699 ns |
Water Resource | 0.742 | 0.868 *** | 0.868 | 0.868 ns |
Agrochemicals | 0.259 | 0.573 *** | 0.573 | 0.573 ns |
Soil pH | 0.068 | 0.237 *** | 0.237 | 0.237 ns |
Fertilizers | 0.314 | 0.745 *** | 0.745 | 0.745 ns |
Value of Land | 71,784.18 | 91,683.00 *** | 91,683.00 | 91,683.00 ns |
Agr. Family | 0.852 | 0.779 *** | 0.778 | 0.778 ns |
Owner | 0.838 | 0.852 *** | 0.852 | 0.852 ns |
Tenant | 0.046 | 0.534 *** | - | - |
Partner | 0.028 | 0.278 *** | 0.278 | 0.278 ns |
Occupant | 0.087 | 0.665 *** | 0.665 | 0.665 ns |
Summer precipitation | 161.01 | 162.69 *** | 162.69 | 162.69 ns |
Winter precipitation | 53.07 | 43.02 *** | 43.02 | 43.02 ns |
Summer temperature | 25.7 | 25.43 *** | 25.43 | 25.43 ns |
Winter temperature | 21.87 | 21.38 *** | 21.38 | 21.38 ns |
Summer Prec. S. Dev. | 81.23 | 82.96 *** | 82.96 | 82.96 ns |
Winter Prec. S. Dev. | 30.37 | 25.14 *** | 25.14 | 25.14 ns |
Summer Temp. S. Dev. | 0.718 | 0.812 *** | 0.812 | 0.812 ns |
Winter Temp. S. Dev. | 0.790 | 0.797 *** | 0.797 | 0.797 ns |
GVP | 10,900.92 | 31,225.24 | - | - |
Labor | 2.65 | 3.55 | - | - |
Land | 42.21 | 42.6 | - | - |
Capital | 86,426.93 | 125,403.53 | - | - |
Purchased Inputs | 3629.29 | 8721.85 | - | - |
N° Obs. | 3,994,641 | 265,224 | 3,994,641 | 265,224 |
Cobb–Douglas | Translog | X2 Statistic | X2 0.99 Value | Decision | Choice | |
---|---|---|---|---|---|---|
Pooled | −8.613 × 106 | −8.521 × 106 | −0.02147 | 67.357 (df = 36) | Acept H0 | CD |
Irrigators | −5.308 × 105 | −5.250 × 105 | −0.02197 | Acept H0 | CD | |
Rain-Fed | −8.055 × 106 | −7.981 × 106 | −0.01845 | Acept H0 | CD |
Ly(GVP) | Total Sample (Pooled) | Irrigators | Rain-Fed |
---|---|---|---|
lx1 (Land) | 0.215 *** | 0.221 *** | 0.278 *** |
(0.00999) | (0.0154) | (0.00694) | |
lx2 (Labor) | 0.284 *** | 0.264 *** | 0.268 *** |
(0.00738) | (0.0111) | (0.00657) | |
lx3 (Purchased Inputs) | 0.385 *** | 0.335 *** | 0.333 *** |
(0.00639) | (0.00899) | (0.00530) | |
lx4 (Capital) | 0.0575 *** | 0.0291 * | 0.0722 *** |
(0.0115) | (0.0171) | (0.00472) | |
Mills Irrigators | - | 2.548 *** | - |
- | (0.2016) | - | |
Mills Rain-Fed | - | - | 1.149 *** |
- | - | (0.0605) | |
Constant | 3.915 | 16.29 | −8.469 |
(7.6080) | (12.1063) | (8.6966) | |
Inefficiency (Usigma) | |||
Read and write | −0.625 *** | −0.543 *** | −0.742 *** |
(0.0281) | (0.0483) | (0.0261) | |
Do not read and write | −0.609 *** | −0.516 *** | −0.785 *** |
(0.0281) | (0.0487) | (0.0250) | |
Literate | −0.313 *** | −0.218 *** | −0.442 *** |
(0.0409) | (0.0740) | (0.0340) | |
Incomplete Elementary | −0.681 *** | −0.638 *** | −0.746 *** |
(0.0232) | (0.0407) | (0.0224) | |
Complete Elementary | −0.522 *** | −0.514 *** | −0.529 *** |
(0.0236) | (0.0413) | (0.0242) | |
Agricultural Technician | −0.155 *** | −0.200 *** | −0.124 *** |
(0.0297) | (0.0490) | (0.0345) | |
High School | −0.327 *** | −0.328 *** | −0.317 *** |
(0.0213) | (0.0379) | (0.0230) | |
exp_1 | 1.008 *** | 1.046 *** | 0.990 *** |
(0.0249) | (0.0433) | (0.0238) | |
exp_1to5 | 0.453 *** | 0.456 *** | 0.460 *** |
(0.0149) | (0.0267) | (0.0141) | |
exp_5to10 | 0.238 *** | 0.242 *** | 0.237 *** |
(0.0146) | (0.0285) | (0.0124) | |
Technical Assistance | −0.261 *** | −0.170 *** | −0.282 *** |
(0.0222) | (0.0417) | (0.0167) | |
Financing | −0.591 *** | −0.557 *** | −0.639 *** |
(0.0153) | (0.0253) | (0.0152) | |
Constant | 2.606 *** | 2.419 *** | 2.753 *** |
(0.0245) | (0.0422) | (0.0237) | |
Vsigma | 0.00500 | 0.0680 ** | −0.148 *** |
(0.0250) | (0.0347) | (0.0192) | |
E(Sigma_u) | 2.775 | 2.5696 | 2.8501 |
Sigma_v | 1.0025 *** | 1.0346 *** | 0.9284 *** |
(0.0125) | (0.0179) | (0.0088) | |
Lambda (λ) | 0.734 | 0.713 | 0.754 |
Log-Likelihood | −8.613 × 106 | −530,808 | −8.055 × 106 |
Wald Test | 42,683.85 | 22,400.31 | 64,020.64 |
Chi2 | 42,684 *** | 22,400 *** | 64,021 *** |
N° Obs. | 4,259,865 | 265,224 | 3,994,641 |
Balanced Sample | Mean | Very Small | Small | Medium | Large |
---|---|---|---|---|---|
Total Sample (Pooled) | 0.2730 | 0.2439 | 0.2629 | 0.2528 | 0.2408 |
(0.1974) | (0.1865) | (0.1776) | (0.1825) | (0.1862) | |
{4,259,865} | {3,283,910} | {694,116} | {208,881} | {72,959} | |
Irrigators | 0.2965 | 0.2909 | 0.3155 | 0.3063 | 0.3019 |
(0.1702) | (0.1744) | (0.1540) | (0.1609) | (0.1655) | |
{265,224} | {196,078} | {47,999} | {15,337} | {5810} | |
Rain-Fed | 0.2714 | 0.2721 | 0.2740 | 0.2602 | 0.2474 |
(0.1990) | (0.2014) | (0.1891) | (0.1935) | (0.1976) | |
{3,994,642} | {3,087,832} | {646,117} | {193,544} | {67,149} |
Total Sample | Irrigators | Rain-Fed | ||||
---|---|---|---|---|---|---|
Diff. | t-test | Diff. | t-test | Diff. | t-test | |
Very Small x Small | −0.0190 *** | −77.7469 | −0.0245 *** | −28.2470 | −0.0019 *** | −7.1581 |
(0.0002) | (0.0008) | (0.0002) | ||||
Very Small x Medium | −0.0088 *** | −21.1575 | −0.0154 *** | −10.5884 | 0.0118 *** | 25.1434 |
(0.0004) | (0.0014) | (0.0004) | ||||
Very Small x Large | 0.0030 *** | 4.3718 | −0.0109 *** | −4.7174 | 0.0246 *** | 31.4414 |
(0.0006) | (0.0023) | (0.0007) | ||||
Small x Medium | 0.0101 *** | 22.6568 | 0.0091 *** | 6.3279 | 0.0137 *** | 27.9911 |
(0.0004) | (0.0014) | (0.0004) | ||||
Small x Large | 0.0220 *** | 31.7548 | 0.0136 *** | 6.3062 | 0.0266 *** | 34.5956 |
(0.0006) | (0.0021) | (0.0007) | ||||
Medium x Large | 0.0119 *** | 15.1403 | 0.0044 * | 1.7862 | 0.0128 *** | 14.7484 |
(0.0007) | (0.0024) | (0.0008) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, G.A.S.; Silva, F.F.; Freitas, C.O.d.; Braga, M.J. Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil. Sustainability 2021, 13, 1132. https://doi.org/10.3390/su13031132
Morais GAS, Silva FF, Freitas COd, Braga MJ. Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil. Sustainability. 2021; 13(3):1132. https://doi.org/10.3390/su13031132
Chicago/Turabian StyleMorais, Gabriel A. Sampaio, Felipe F. Silva, Carlos Otávio de Freitas, and Marcelo José Braga. 2021. "Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil" Sustainability 13, no. 3: 1132. https://doi.org/10.3390/su13031132
APA StyleMorais, G. A. S., Silva, F. F., Freitas, C. O. d., & Braga, M. J. (2021). Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil. Sustainability, 13(3), 1132. https://doi.org/10.3390/su13031132