The Evaluation System of the Sustainable Development of Municipal Solid Waste Landfills and Its Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation Indices of the Stabilization Process of MSW Landfills
2.1.1. Degradation Stabilization Index, Λ1
2.1.2. Landfill Gas Stabilization Index, Λ2
2.1.3. Settlement Stabilization Index, Λ3
2.2. Evaluation Method of the Stabilization Process of MSW Landfills
2.2.1. Evaluation Method Combining Field Tests with Numerical Simulation
- MSW samples with different depths are drilled from the landfill. The C/L of borehole samples with different filling age are tested by the normal fiber washing method.
- The composition of fresh MSW at a shallow layer of the landfill is analyzed to obtain the initial C/L of MSW, landfill gas generation potential, and the ultimate settlement of the landfill by laboratory tests.
- The biochemical parameters of MSW are fitted according to the results of laboratory tests. The parameters of mechanical proprieties of MSW are estimated based on the component content of fresh MSW [21,22] or similar projects experience. If the conditions permit, the degradation-compression tests and the permeability test of leachate and landfill gas should be carried out by using borehole samples, which can obtain more reasonable mechanical parameters of MSW.
- The variation of three evaluation indices with time is predicted via the coupled model. The stabilization state of the landfill is evaluated according to numerical simulation results. Suggestions on accelerating the stabilization process of the landfill and the management measures of the landfill can be addressed based on the trends of variation of the evaluation indices.
2.2.2. Biochemical-Consolidation-Solute Migration Coupled Model
2.3. Prediction of the Stabilization Process of the Jiangcungou Landfill, in Xi’an, China
3. Results and Discussion
3.1. Change Processes of the Evaluation Indices of the Jiangcungou Landfill
3.1.1. Degradation Stabilization Process of the Jiangcungou Landfill
3.1.2. Landfill Gas Generation Process of the Jiangcungou Landfill
3.1.3. Settlement Process of the Jiangcungou Landfill
3.2. Comparison of Stabilization Process of Landfills with Different Kitchen Waste Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Wang, Z.; Guo, Q.; Wang, H.; Zhou, Y.; Ng, W.J. Pilot-scale landfill with leachate recirculation for enhanced stabilization. J. Biochem. Eng. 2016, 105, 437–445. [Google Scholar] [CrossRef]
- Matos, C.; Bentes, I.; Pereira, S.; Faria, D.; Briga-Sá, A. Energy consumption, CO2 emissions and costs related to baths water consumption depending on the temperature and the use of flow reducing valves. Sci. Total Environ. 2019, 646, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.-T.; Xu, H.; Chen, Y.; Lü, F.; Lan, J.; He, P.; Lin, W.-A.; He, P. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large-scale experiment. Waste Manag. 2017, 63, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Liu, H.-L.; Cleall, P.J.; Ke, H.; Bian, X. Influences of operational practices on municipal solid waste landfill storage capacity. Waste Manag. Res. 2013, 31, 273–282. [Google Scholar] [CrossRef]
- Wang, L.C.; Zhao, Y.C.; Lu, Y.-S. Overview on stabilization of refuse landfills. Urban Environ. Urban Ecol. 2000, 13, 36–39. [Google Scholar]
- Chen, Y.M. A fundamental theory of environmental geotechnics and its application. Chin. J. Geotech. Eng. 2014, 36, 1–46. [Google Scholar] [CrossRef]
- Białowiec, A.; Siudak, M.; Jakubowski, B.; Wiśniewski, D. The influence of leachate recirculation on biogas production in a landfill bioreactor. Environ. Prot. Eng. 2017, 43, 113–120. [Google Scholar] [CrossRef]
- Meng, K.; Cui, C.Y.; Li, H.J. An ontology framework for pile integrity evaluation based on analytical methodology. IEEE Access 2020, 8, 72158–72168. [Google Scholar] [CrossRef]
- Matos, C.; Briga-Sá, A.; Bentes, I.; Faria, D.; Pereira, S. In situ evaluation of water and energy consumptions at the end use level: The influence of flow reducers and temperature in baths. Sci. Total Environ. 2017, 586, 536–541. [Google Scholar] [CrossRef]
- Matos, C.; Sá, A.B.; Bentes, I.; Pereira, S.; Bento, R. An approach to the implementation of Low Impact Development measures towards an EcoCampus classification. J. Environ. Manag. 2019, 232, 654–659. [Google Scholar] [CrossRef]
- Wang, J.; Pei, J.Q. The evaluating method of stabilization of MSW dumping sites and its pollution controlling. China Resour. Compr. Util. 2006, 24, 21–24. [Google Scholar]
- Barlaz, M.A. Forest products decomposition in municipal solid waste landfills. Waste Manag. 2006, 26, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Shearer, B.D.; Kim, J.; Goldsmith, C.D.; Hater, G.R.; Novak, J.T. Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Manag. 2006, 26, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.S.; Pereira, P.; Ferreira, F.B.; Lopes, M.D.L. Pullout Behaviour of Geogrids Embedded in a Recycled Construction and Demolition Material. Effects of Specimen Size and Displacement Rate. Sustainability 2020, 12, 3825. [Google Scholar] [CrossRef]
- Wang, L.C.; Zhao, Y.C. The study on stabilization of refuse in large-scale landfills. Tech. Equip. Environ. Pollut. Control 2001, 2, 15–17. [Google Scholar]
- Jiang, J.; Zhang, C.; Huang, Y.; Yang, G.; Feng, X.; Huang, Z. Pilot experiment on evaluation parameters of landfill stabilization process. China Environ. Sci. 2008, 28, 58–62. [Google Scholar]
- Cui, C.Y.; Meng, K.; Wu, Y.J.; Chapman, D.; Liang, Z.M. Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation. Geomech. Eng. 2018, 16, 609–618. [Google Scholar]
- Abdallah, M.; Petriu, E.; Kennedy, K.; Narbaitz, R.; Warith, M. Application of fuzzy logic in modern landfills. In Proceedings of the 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings, Ottawa, ON, Canada, 19 September 2011; pp. 1–6. [Google Scholar]
- McDougall, J. A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Comput. Geotech. 2007, 34, 229–246. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kumar, G.; Giri, R.K. Modeling coupled processes in municipal solid waste landfills an overview with key engineering challenges. Int. J. Geosynth. Ground Eng. 2017, 3, 6. [Google Scholar] [CrossRef]
- Dixon, N.; Jones, D.R.V. Engineering properties of municipal solid waste. Geotext. Geomembr. 2005, 23, 205–233. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Ling, D.; Zhan, L.; Gao, W. A degradation–consolidation model for the stabilization behavior of landfilled municipal solid waste. Comput. Geotech. 2020, 118, 103341. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Ling, D.; Zhan, L.; Gao, W. Methane generation in tropical landfills Simplified methods and field results. Waste Manag. 2009, 29, 153–161. [Google Scholar] [CrossRef]
- Themelis, N.J.; Ulloa, P.A. Methane generation in landfills. Renew. Energy 2007, 32, 1243–1257. [Google Scholar] [CrossRef]
- Li, Y.; Park, S.Y.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Laner, D.; Crest, M.; Scharff, H.; Morris, J.W.; Barlaz, M.A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag. 2012, 32, 498–512. [Google Scholar] [CrossRef]
- Chen, Y.M.; Ke, H.; Fredlund, D.G.; Zhan, L.T.; Xie, Y. Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills. J. Geotech. Geoenviron. Eng. ASCE 2010, 136, 706–717. [Google Scholar] [CrossRef]
- Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. J. Soil Sci. Soc. Am. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Meng, K.; Cui, C.; Liang, Z.; Li, H.; Pei, H. A new approach for longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil considering the three-dimensional wave effects. Comput. Geotech. 2020, 128, 103840. [Google Scholar] [CrossRef]
- Xu, X.B.; Zhan, T.L.T.; Chen, Y.M.; Beaven, R.P. Intrinsic and relative permeabilities of shredded municipal solid wastes from the Qizishan landfill. Chinacan. J. Geotech. 2014, 51, 1243–1252. [Google Scholar] [CrossRef]
- Reddy, K.R.; Hettiarachchi, H.; Gangathulasi, J.; Bogner, J.E. Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manag. 2011, 31, 2275–2286. [Google Scholar] [CrossRef]
- He, P.; Qu, X.; Shao, L.-M.; Li, G.-J.; Lee, D.-J. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor. J. Hazard. Mater. 2007, 142, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.M.; He, P.J.; Qu, X. Effect of Ph and VFA concentration of recirculated leachate on methanogenesis in initial stage of bioreactor landfill. Acta Sci. Circumstantiae 2006, 26, 1451–1457. [Google Scholar] [CrossRef]
- Gollapalli, M.; Kota, S.H. Methane emissions from a landfill in north-east India Performance of various landfill gas emission models. Environ. Pollut. 2018, 234, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.S.; Lopes, M.L.; Caldeira, L.M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests. Geosynth. Int. 2013, 20, 26–38. [Google Scholar] [CrossRef]
- Koerner, R.M.; Soong, T.Y. Leachate in landfills the stability issues. Geotext. Geomembr. 2000, 18, 293–309. [Google Scholar] [CrossRef]
- Bookter, T.J.; Ham, R.K. Stabilization of solid waste in landfills. J. Environ. Eng. 1982, 108, 1089–1100. [Google Scholar]
- Ham, R.K.; Bookter, T.J. Decomposition of solid waste in test lysimeters. J. Environ. Eng. Div. 1982, 108, 1147–1170. [Google Scholar]
- Jones, K.L.; Grainger, J.M. The application of enzyme activity measurements to a study of factors affecting protein starch and cellulose fermentation in domestic refuse. Eur. J. Appl. Microbiol. Biotechnol. 1983, 18, 181–185. [Google Scholar] [CrossRef]
- Ham, R.K.; Norman, M.R.; Fritschel, P.R. Chemical characterization of fresh kills landfill refuse and extracts. J. Environ. Eng. 1993, 119, 1176–1195. [Google Scholar] [CrossRef]
- Wang, Y.S.; Byrd, C.S.; Barlaz, M.A. Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. J. Ind. Microbiol. 1994, 13, 147–153. [Google Scholar] [CrossRef]
- Mehta, R.; Barlaz, M.A.; Yazdani, R.; Augenstein, D.; Bryars, M.; Sinderson, L. Refuse decomposition in the presence and absence of leachate recirculation. J. Environ. Eng. 2002, 128, 228–236. [Google Scholar] [CrossRef]
Depth (m) | Filling Age (Year) | RC/L(t) | Λ1 |
---|---|---|---|
shallow layer | 0 | 2.8 | 1.00 |
3.8 | 1.0 | 1.21 | 0.43 |
6.8 | 1.0 | 1.16 | 0.41 |
16.8 | 2.5 | 0.85 | 0.30 |
19.8 | 2.5 | 0.82 | 0.29 |
25.8 | 3.5 | 0.71 | 0.25 |
28.8 | 3.5 | 0.68 | 0.24 |
39.8 | 12.5 | 0.41 | 0.15 |
Parameter | Unit | Value |
---|---|---|
Cellulose content in fresh MSW, mc (wet basis, wt/wt) | % | 59.9 |
Lignin content in fresh MSW, ml (wet basis, wt/wt) | % | 21.4 |
Maximum hydrolysis rate of cellulose, b | g/m3/day | 500 (kitchen waste) 100 (other) |
Inhibition constant of VFA, kh | m3/g | 0.1 |
Inhibition constant of substrate content, n | / | 2.8 |
Maximum growth rate constant of methanogen, kmmax | day−1 | 0.045 |
Inhibition constant of methanogen, km | m3/g | 0.06 |
Decay rate constant of methanogen, kd | day−1 | 0.01 |
Half-saturation constant of methanogen, ks | g/m3 | 4 |
Substrate yield coefficient, Y | / | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Luo, X.; Jiang, X.; Cui, C.; Huyan, Z. The Evaluation System of the Sustainable Development of Municipal Solid Waste Landfills and Its Application. Sustainability 2021, 13, 1150. https://doi.org/10.3390/su13031150
Liu H, Luo X, Jiang X, Cui C, Huyan Z. The Evaluation System of the Sustainable Development of Municipal Solid Waste Landfills and Its Application. Sustainability. 2021; 13(3):1150. https://doi.org/10.3390/su13031150
Chicago/Turabian StyleLiu, Hailong, Xiang Luo, Xingyao Jiang, Chunyi Cui, and Zhen Huyan. 2021. "The Evaluation System of the Sustainable Development of Municipal Solid Waste Landfills and Its Application" Sustainability 13, no. 3: 1150. https://doi.org/10.3390/su13031150
APA StyleLiu, H., Luo, X., Jiang, X., Cui, C., & Huyan, Z. (2021). The Evaluation System of the Sustainable Development of Municipal Solid Waste Landfills and Its Application. Sustainability, 13(3), 1150. https://doi.org/10.3390/su13031150