Current Trends of Arsenic Adsorption in Continuous Mode: Literature Review and Future Perspectives
Abstract
:1. Introduction
2. Methodology
3. Adsorption of Arsenic in Continuous Mode: Adsorbents Type
3.1. Metal (hydr)oxides
3.2. Zero-Valent Iron (ZVI)
3.3. Minerals
3.4. Soil and Rock
3.5. Carbon-Based Adsorbents
3.6. Biosorbents
3.6.1. Aquatic Biomaterials
Chitosan
Alginate
Fish Scale
3.6.2. Agricultural Waste
Rice-Based Adsorbents
Cotton-Based Adsorbents
3.6.3. Biochar
3.6.4. Fungal Biomass
3.6.5. Plant Biomass
3.7. Industrial Waste and By-Products
3.8. Nanocomposites
3.9. GFH and Commercial Adsorbents
3.10. Layered Double Hydroxides (LDH)
4. Recovery and Regeneration
5. Disposal of Contaminated Adsorbents
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villaescusa, I.; Bollinger, J.-C. Arsenic in drinking water: Sources, occurrence and health effects (a review). Rev. Environ. Sci. Bio/Technol. 2008, 7, 307–323. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Q.; Yang, Y.; Xie, C.; Ma, H. Hydrogeochemical controls on arsenic contamination potential and health threat in an intensive agricultural area, northern China. Environ. Pollut. 2020, 256, 113455. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vieira, B.R.C.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Arsenate and arsenite adsorption onto iron-coated cork granulates. Sci. Total Environ. 2018, 642, 1075–1089. [Google Scholar] [CrossRef]
- Patel, H. Fixed-bed column adsorption study: A comprehensive review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Yu, Y.; Wang, F.; Zhang, J.; Li, D. Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids Surf. Phys. Eng. Asp. 2020, 585, 124036. [Google Scholar] [CrossRef]
- Hao, L.; Liu, M.; Wang, N.; Li, G. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef]
- Bhakta, J.N.; Ali, M.M. Biosorption of Arsenic: An Emerging Eco-technology of Arsenic Detoxification in Drinking Water. In Arsenic Water Resources Contamination: Challenges and Solutions; Fares, A., Singh, S.K., Eds.; Springer International Publishing: Cham, switzerland, 2020. [Google Scholar] [CrossRef]
- Lata, S.; Samadder, S.R. Removal of arsenic from water using nano adsorbents and challenges: A review. J. Environ. Manag. 2016, 166, 387–406. [Google Scholar] [CrossRef]
- Bullen, J.C.; Lapinee, C.; Salaün, P.; Vilar, R.; Weiss, D.J. On the application of photocatalyst-sorbent composite materials for arsenic(III) remediation: Insights from kinetic adsorption modelling. J. Environ. Chem. Eng. 2020, 104033. [Google Scholar] [CrossRef]
- Streat, M.; Hellgardt, K.; Newton, N.L.R. Hydrous ferric oxide as an adsorbent in water treatment: Part 1. Preparation and physical characterization. Process Saf. Environ. Prot. 2008, 86, 1–9. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Song, K.-H.; Yang, J.-K. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand. J. Hazard. Mater. 2008, 150, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.A.; Zaidi, Z.; Siddiqui, S.I. Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. J. Mol. Liq. 2017, 229, 230–240. [Google Scholar] [CrossRef]
- Guo, H.; Stüben, D.; Berner, Z. Arsenic removal from water using natural iron mineral–quartz sand columns. Sci. Total Environ. 2007, 377, 142–151. [Google Scholar] [CrossRef]
- Khan, A.H.; Rasul, S.B.; Munir, A.K.M.; Habibuddowla, M.; Alauddin, M.; Newaz, S.S.; Hussam, A. Appraisal of a simple arsenic removal method for ground water of Bangladesh. J. Environ. Sci. Health Part A 2000, 35, 1021–1041. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Han, T.; Si, Y.; Wang, R. Arsenite and arsenate leaching and retention on iron (hydr)oxide-coated sand column. J. Soils Sediments 2016, 16, 486–496. [Google Scholar] [CrossRef]
- Thirunavukkarasu, O.S.; Viraraghavan, T.; Subramanian, K.S.; Tanjore, S. Organic arsenic removal from drinking water. Urban Water 2002, 4, 415–421. [Google Scholar] [CrossRef]
- Manna, B.R.; Dey, S.; Debnath, S.; Ghosh, U.C. Removal of Arsenic from Groundwater using Crystalline Hydrous Ferric Oxide (CHFO). Water Qual. Res. J. 2003, 38, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.; Ghosh, U.C. Arsenic removal using hydrous nanostructure iron(III)–titanium(IV) binary mixed oxide from aqueous solution. J. Hazard. Mater. 2009, 161, 884–892. [Google Scholar] [CrossRef]
- Chaudhry, S.A.; Khan, T.A.; Ali, I. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egypt. J. Pet. 2017, 26, 553–563. [Google Scholar] [CrossRef]
- He, X.; Deng, F.; Shen, T.; Yang, L.; Chen, D.; Luo, J.; Luo, X.; Min, X.; Wang, F. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. J. Colloid Interface Sci. 2019, 539, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Ouvrard, S.; Simonnot, M.-O.; Sardin, M. Reactive behavior of natural manganese oxides toward the adsorption of phosphate and arsenate. Ind. Eng. Chem. Res. 2002, 41, 2785–2791. [Google Scholar] [CrossRef]
- Manna, B.; Ghosh, U.C. Adsorption of arsenic from aqueous solution on synthetic hydrous stannic oxide. J. Hazard. Mater. 2007, 144, 522–531. [Google Scholar] [CrossRef]
- Biterna, M.; Arditsoglou, A.; Tsikouras, E.; Voutsa, D. Arsenate removal by zero valent iron: Batch and column tests. J. Hazard. Mater. 2007, 149, 548–552. [Google Scholar] [CrossRef]
- Melitas, N.; Wang, J.; Conklin, M.; O’Day, P.; Farrell, J. Understanding Soluble Arsenate Removal Kinetics by Zerovalent Iron Media. Environ. Sci. Technol. 2002, 36, 2074–2081. [Google Scholar] [CrossRef]
- Biterna, M.; Antonoglou, L.; Lazou, E.; Voutsa, D. Arsenite removal from waters by zero valent iron: Batch and column tests. Chemosphere 2010, 78, 7–12. [Google Scholar] [CrossRef]
- Leupin, O.X.; Hug, S.J. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 2005, 39, 1729–1740. [Google Scholar] [CrossRef]
- Ludwig, R.D.; Smyth, D.J.A.; Blowes, D.W.; Spink, L.E.; Wilkin, R.T.; Jewett, D.G.; Weisener, C.J. Treatment of Arsenic, Heavy Metals, and Acidity Using a Mixed ZVI-Compost PRB. Environ. Sci. & Technol. 2009, 43, 1970–1976. [Google Scholar] [CrossRef]
- Su, C.; Puls, R.W. Significance of Iron(II, III) Hydroxycarbonate Green Rust in Arsenic Remediation Using Zerovalent Iron in Laboratory Column Tests. Environ. Sci. Technol. 2004, 38, 5224–5231. [Google Scholar] [CrossRef]
- Deliyanni, E.A.; Bakoyannakis, D.N.; Zouboulis, A.I.; Peleka, E. Removal of Arsenic and Cadmium by Akaganeite Fixed-Beds. Sep. Sci. Technol. 2003, 38, 3967–3981. [Google Scholar] [CrossRef]
- Yin, H.; Kong, M.; Gu, X.; Chen, H. Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes. J. Clean. Prod. 2017, 166, 88–97. [Google Scholar] [CrossRef]
- Ayoob, S.; Gupta, A.K.; Bhakat, P.B. Analysis of breakthrough developments and modeling of fixed bed adsorption system for As(V) removal from water by modified calcined bauxite (MCB). Sep. Purif. Technol. 2007, 52, 430–438. [Google Scholar] [CrossRef]
- Ayoob, S.; Gupta, A.K.; Bhakat, P.B. Performance evaluation of modified calcined bauxite in the sorptive removal of arsenic(III) from aqueous environment. Colloids Surf. Phys. Eng. Asp. 2007, 293, 247–254. [Google Scholar] [CrossRef]
- Bhakat, P.B.; Gupta, A.K.; Ayoob, S. Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB). J. Hazard. Mater. 2007, 139, 286–292. [Google Scholar] [CrossRef]
- Bhakat, P.B.; Gupta, A.K.; Ayoob, S.; Kundu, S. Investigations on arsenic(V) removal by modified calcined bauxite. Colloids Surf. Phys. Eng. Asp. 2006, 281, 237–245. [Google Scholar] [CrossRef]
- Ramirez-Muñiz, K.; Perez-Rodriguez, F.; Rangel-Mendez, R. Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite. J. Mol. Liq. 2018, 264, 253–260. [Google Scholar] [CrossRef]
- Guo, H.; Stüben, D.; Berner, Z.; Kramar, U. Adsorption of arsenic species from water using activated siderite–hematite column filters. J. Hazard. Mater. 2008, 151, 628–635. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, S.; Liu, J.; Frost, R.L. Adsorption kinetic and species variation of arsenic for As(V) removal by biologically mackinawite (FeS). Chem. Eng. J. 2018, 354, 237–244. [Google Scholar] [CrossRef]
- Navarathna, C.M.; Karunanayake, A.G.; Gunatilake, S.R.; Pittman, C.U.; Perez, F.; Mohan, D.; Mlsna, T. Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. J. Environ. Manag. 2019, 250, 109429. [Google Scholar] [CrossRef]
- Shahid, M.K.; Phearom, S.; Choi, Y.-G. Evaluation of arsenate adsorption efficiency of mill-scale derived magnetite particles with column and plug flow reactors. J. Water Process Eng. 2019, 28, 260–268. [Google Scholar] [CrossRef]
- Shahid, M.K.; Phearom, S.; Choi, Y.-G. Adsorption of arsenic (V) on magnetite-enriched particles separated from the mill scale. Environ. Earth Sci. 2019, 78, 65. [Google Scholar] [CrossRef]
- Shahid, M.K.; Phearom, S.; Choi, Y.-G. Packed Bed Column for Adsorption of Arsenic on Mixed-Valent Iron [Fe(II)-Fe(III)] Oxide Synthesized from Industrial Waste. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020002. [Google Scholar] [CrossRef]
- Guo, H.; Stüben, D.; Berner, Z. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. J. Colloid Interface Sci. 2007, 315, 47–53. [Google Scholar] [CrossRef]
- Dou, X.; Mohan, D.; Pittman, C.U. Arsenate adsorption on three types of granular schwertmannite. Water Res. 2013, 47, 2938–2948. [Google Scholar] [CrossRef]
- Baskan, M.B.; Pala, A. Batch and Fixed-Bed Column Studies of Arsenic Adsorption on the Natural and Modified Clinoptilolite. Water Air Soil Pollut. 2013, 225, 1798. [Google Scholar] [CrossRef]
- Jeon, C.-S.; Baek, K.; Park, J.-K.; Oh, Y.-K.; Lee, S.-D. Adsorption characteristics of As(V) on iron-coated zeolite. J. Hazard. Mater. 2009, 163, 804–808. [Google Scholar] [CrossRef]
- Guo, H.; Stüben, D.; Berner, Z. Removal of arsenic from aqueous solution by natural siderite and hematite. Appl. Geochem. 2007, 22, 1039–1051. [Google Scholar] [CrossRef]
- Maji, S.K.; Pal, A.; Pal, T. Arsenic removal from real-life groundwater by adsorption on laterite soil. J. Hazard. Mater. 2008, 151, 811–820. [Google Scholar] [CrossRef]
- Maji, S.K.; Pal, A.; Pal, T.; Adak, A. Modeling and fixed bed column adsorption of As(III) on laterite soil. Sep. Purif. Technol. 2007, 56, 284–290. [Google Scholar] [CrossRef]
- Maji, S.K.; Pal, A.; Pal, T.; Adak, A. Modeling and fixed bed column adsorption of As(V) on laterite soil. J. Environ. Sci. Health Part A 2007, 42, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; DasGupta, S.; Basu, J.K.; De, S. Batch and Column Study: Adsorption of Arsenate Using Untreated Laterite as Adsorbent. Ind. Eng. Chem. Res. 2008, 47, 1620–1629. [Google Scholar] [CrossRef]
- Mondal, R.; Mondal, S.; Kurada, K.V.; Bhattacharjee, S.; Sengupta, S.; Mondal, M.; Karmakar, S.; De, S.; Griffiths, I.M. Modelling the transport and adsorption dynamics of arsenic in a soil bed filter. Chem. Eng. Sci. 2019, 210, 115205. [Google Scholar] [CrossRef]
- Williams, L.E.; Barnett, M.O.; Kramer, T.A.; Melville, J.G. Adsorption and Transport of Arsenic(V) in Experimental Subsurface Systems. J. Environ. Qual. 2003, 32, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.A.L.; Dutra, A.J.B.; Martins, A.H. Adsorptive removal of arsenic from river waters using pisolite. Miner. Eng. 2007, 20, 52–59. [Google Scholar] [CrossRef]
- Sosa, A.; Armienta, M.A.; Aguayo, A.; Cruz, O. Evaluation of the influence of main groundwater ions on arsenic removal by limestones through column experiments. Sci. Total Environ. 2020, 727, 138459. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Min, S.H.; Kim, T.H.; Park, J.K. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environ. Sci. Technol. 2006, 40, 1636–1643. [Google Scholar] [CrossRef] [Green Version]
- Maji, S.K.; Kao, Y.-H.; Wang, C.-J.; Lu, G.-S.; Wu, J.-J.; Liu, C.-W. Fixed bed adsorption of As(III) on iron-oxide-coated natural rock (IOCNR) and application to real arsenic-bearing groundwater. Chem. Eng. J. 2012, 203, 285–293. [Google Scholar] [CrossRef]
- Maji, S.K.; Kao, Y.-H.; Wang, Y.-B.; Liu, C.-W. Dynamic column adsorption of As on iron-oxide-coated natural rock (IOCNR) and sludge management. Desalination Water Treat. 2015, 55, 2171–2182. [Google Scholar] [CrossRef]
- Chen, W.; Parette, R.; Zou, J.; Cannon, F.S.; Dempsey, B.A. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41, 1851–1858. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Z.; Lei, Z.; Sugiura, N. Preparation of iron-impregnated tablet ceramic adsorbent for arsenate removal from aqueous solutions. Desalination 2012, 286, 56–62. [Google Scholar] [CrossRef]
- Kalaruban, M.; Loganathan, P.; Nguyen, T.V.; Nur, T.; Hasan Johir, M.A.; Nguyen, T.H.; Trinh, M.V.; Vigneswaran, S. Iron-impregnated granular activated carbon for arsenic removal: Application to practical column filters. J. Environ. Manag. 2019, 239, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, M.E.; Brusa, L.; Beldomenico, H.R.; Dosso, L.; Tsendra, O.M.; González, M.B.; Pieck, C.L.; Vera, C.R. Influence of the iron content on the arsenic adsorption capacity of Fe/GAC adsorbents. J. Environ. Chem. Eng. 2014, 2, 927–934. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Lin, Y.C.; Chen, X.; Gao, N.Y. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. J. Hazard. Mater. 2007, 148, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.M.; Hobenshield, E.; Walsh, T. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating. Environ. Technol. 2008, 29, 401–411. [Google Scholar] [CrossRef]
- Gu, Z.; Fang, J.; Deng, B. Preparation and Evaluation of GAC-Based Iron-Containing Adsorbents for Arsenic Removal. Environ. Sci. Technol. 2005, 39, 3833–3843. [Google Scholar] [CrossRef]
- Igwe, J.; Abia, A. A bioseparation process for removing heavy metals from waste water using biosorbents. Afr. J. Biotechnol. 2006, 5, 1167–1179. [Google Scholar] [CrossRef]
- Saqib, A.N.S.; Waseem, A.; Khan, A.F.; Mahmood, Q.; Khan, A.; Habib, A.; Khan, A.R. Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecol. Eng. 2013, 51, 88–94. [Google Scholar] [CrossRef]
- Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D.; Haasch, R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res. 2008, 42, 633–642. [Google Scholar] [CrossRef]
- Brion-Roby, R.; Gagnon, J.; Deschênes, J.-S.; Chabot, B. Investigation of fixed bed adsorption column operation parameters using a chitosan material for treatment of arsenate contaminated water. J. Environ. Chem. Eng. 2018, 6, 505–511. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chung, Y.-C. Arsenic Removal Using a Biopolymer Chitosan Sorbent. J. Environ. Sci. Health Part A 2006, 41, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chang, T.-H.; Kuo, J.-T.; Chen, Y.-F.; Chung, Y.-C. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Bioresour. Technol. 2008, 99, 7487–7494. [Google Scholar] [CrossRef] [PubMed]
- Dhoble, R.M.; Maddigapu, P.R.; Rayalu, S.S.; Bhole, A.G.; Dhoble, A.S.; Dhoble, S.R. Removal of arsenic(III) from water by magnetic binary oxide particles (MBOP): Experimental studies on fixed bed column. J. Hazard. Mater. 2017, 322, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Chauhan, V.S.; Sankararamakrishnan, N. Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res. 2009, 43, 3862–3870. [Google Scholar] [CrossRef]
- Gupta, A.; Sankararamakrishnan, N. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water. Bioresour. Technol. 2010, 101, 2173–2179. [Google Scholar] [CrossRef]
- Kang, S.; Park, S.-M.; Park, J.-G.; Baek, K. Enhanced adsorption of arsenic using calcined alginate bead containing alum sludge from water treatment facilities. J. Environ. Manag. 2019, 234, 181–188. [Google Scholar] [CrossRef]
- Ociński, D.; Mazur, P. Highly efficient arsenic sorbent based on residual from water deironing—Sorption mechanisms and column studies. J. Hazard. Mater. 2020, 382, 121062. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Basu, A.; Islam, M.R. The removal of As(III) and As(V) from aqueous solutions by waste materials. Bioresour. Technol. 2008, 99, 2815–2823. [Google Scholar] [CrossRef]
- Roxanne, B.-R.; Jonathan, G.; Jean-Sébastien, D.; Bruno, C. Development and treatment procedure of arsenic-contaminated water using a new and green chitosan sorbent: Kinetic, isotherm, thermodynamic and dynamic studies. Pure Appl. Chem. 2018, 90, 63–77. [Google Scholar] [CrossRef]
- Saha, S.; Sarkar, P. Arsenic mitigation by chitosan based porous magnesia impregnated alumina: Performance evaluation in continuous packed bed column. Int. J. Environ. Sci. Technol. 2015, 13. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, P.; Pal, P.; Bhattacharyay, D.; Banerjee, S. Removal of arsenic from drinking water by ferric hydroxide microcapsule-loaded alginate beads in packed adsorption column. J. Environ. Sci. Health Part A 2010, 45, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yu, X.; Liu, C.; Ma, J.; Wei, S.; Chen, T.; Yin, K.; Liu, H.; Luo, S. Enhanced arsenite removal from water by radially porous Fe-chitosan beads: Adsorption and H2O2 catalytic oxidation. J. Hazard. Mater. 2019, 373, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, A.I.; Katsoyiannis, I.A. Arsenic Removal Using Iron Oxide Loaded Alginate Beads. Ind. Eng. Chem. Res. 2002, 41, 6149–6155. [Google Scholar] [CrossRef]
- Ghimire, K.N.; Inoue, K.; Makino, K.; Miyajima, T. ADSORPTIVE REMOVAL OF ARSENIC USING ORANGE JUICE RESIDUE. Sep. Sci. Technol. 2002, 37, 2785–2799. [Google Scholar] [CrossRef]
- Haque, M.N.; Morrison, G.M.; Perrusquía, G.; Gutierréz, M.; Aguilera, A.F.; Cano-Aguilera, I.; Gardea-Torresdey, J.L. Characteristics of arsenic adsorption to sorghum biomass. J. Hazard. Mater. 2007, 145, 30–35. [Google Scholar] [CrossRef]
- Hoshina, H.; Takahashi, M.; Kasai, N.; Seko, N. Adsorbent for Arsenic(V) Removal Synthesized by Radiation-Induced Graft Polymerization onto Nonwoven Cotton Fabric. Int. J. Org. Chem. 2012, 2, 173–177. [Google Scholar] [CrossRef]
- Hu, X.; Ding, Z.; Zimmerman, A.R.; Wang, S.; Gao, B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015, 68, 206–216. [Google Scholar] [CrossRef]
- Jaiswal, V.; Saxena, S.; Kaur, I.; Dubey, P.; Nand, S.; Naseem, M.; Singh, S.B.; Srivastava, P.K.; Barik, S.K. Application of four novel fungal strains to remove arsenic from contaminated water in batch and column modes. J. Hazard. Mater. 2018, 356, 98–107. [Google Scholar] [CrossRef]
- Kamala, C.T.; Chu, K.H.; Chary, N.S.; Pandey, P.K.; Ramesh, S.L.; Sastry, A.R.; Sekhar, K.C. Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass. Water Res. 2005, 39, 2815–2826. [Google Scholar] [CrossRef]
- Pang, D.; Wang, C.-C.; Wang, P.; Liu, W.; Fu, H.; Zhao, C. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers. Chemosphere 2020, 254, 126829. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Arsenic removal in an iron oxide-coated fungal biomass column: Analysis of breakthrough curves. Bioresour. Technol. 2008, 99, 2067–2071. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, D.; Talat, M.; Hasan, S.H. Rice Polish: An Alternative to Conventional Adsorbents for Treating Arsenic Bearing Water by Up-Flow Column Method. Ind. Eng. Chem. Res. 2009, 48, 10180–10185. [Google Scholar] [CrossRef]
- Roy, P.; Mondal, N.K.; Bhattacharya, S.; Das, B.; Das, K. Removal of arsenic(III) and arsenic(V) on chemically modified low-cost adsorbent: Batch and column operations. Appl. Water Sci. 2013, 3, 293–309. [Google Scholar] [CrossRef] [Green Version]
- Samad, A.; Fukumoto, T.; Dabwan, A.; Katsumata, H.; Suzuki, T.; Furukawa, M.; Knaeco, S. Enhanced Removal of Arsenite from Ground Water by Adsorption onto Heat-Treated Rice Husk. Open J. Inorg. Non-Met. Mater. 2016, 6, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wei, S.; Liu, C.; Chen, T.; Tang, Y.; Ma, J.; Yin, K.; Luo, S. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res. 2019, 167, 115107. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, M.; Wu, W.; Jin, W. Synthesis of the cotton cellulose based Fe(III)-loaded adsorbent for arsenic(V) removal from drinking water. Desalination 2009, 249, 1006–1011. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Zhong, L.; Wu, G. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 2009, 78, 251–255. [Google Scholar] [CrossRef]
- Hassan, A.F.; Abdel-Mohsen, A.M.; Elhadidy, H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 2014, 68, 125–130. [Google Scholar] [CrossRef]
- Yuan, T.; Yong Hu, J.; Ong, S.L.; Luo, Q.F.; Jun Ng, W. Arsenic removal from household drinking water by adsorption. J. Environ. Sci. Health Part A 2002, 37, 1721–1736. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.K.; Bajpai, J.; Bajpai, A.K.; Shrivastava, R.B. Iron crosslinked alginate as novel nanosorbents for removal of arsenic ions and bacteriological contamination from water. J. Mater. Res. Technol. 2014, 3, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Mustafiz, S.; Basu, A.; Islam, M.R.; Dewaidar, A.; Chaalal, O. A Novel Method for Heavy Metal Removal. Energy Sources 2002, 24, 1043–1051. [Google Scholar] [CrossRef]
- Basu, A.; Mustafiz, S.; Islam, M.R.; Bjorndalen, N.; Rahaman, M.S.; Chaalal, O. A comprehensive approach for modeling sorption of lead and cobalt ions through fish scales as an adsorbent. Chem. Eng. Commun. 2006, 193, 580–605. [Google Scholar] [CrossRef]
- Sud, D.; Mahajan, G.; Kaur, M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresour. Technol. 2008, 99, 6017–6027. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-W.; Kim, K.; Jeong, T.-U.; Ahn, K.-H. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour. Technol. 2016, 200, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Ali, I.; Al-Othman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A. Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ. Sci. Pollut. Res. 2014, 21, 3218–3229. [Google Scholar] [CrossRef]
- Gibbons, M.K.; Gagnon, G.A. Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids. Water Res. 2010, 44, 5740–5749. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A.K. Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement (IOCC). J. Colloid Interface Sci. 2005, 290, 52–60. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A.K. As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): Experimental and modeling studies. Chem. Eng. J. 2007, 129, 123–131. [Google Scholar] [CrossRef]
- Kundu, S.; Kavalakatt, S.S.; Pal, A.; Ghosh, S.K.; Mandal, M.; Pal, T. Removal of arsenic using hardened paste of Portland cement: Batch adsorption and column study. Water Res. 2004, 38, 3780–3790. [Google Scholar] [CrossRef]
- Liem-Nguyen, V.; Sjöberg, V.; Dinh, N.P.; Huy, D.H.; Karlsson, S. Removal mechanism of arsenic (V) by stainless steel slags obtained from scrap metal recycling. J. Environ. Chem. Eng. 2020, 8, 103833. [Google Scholar] [CrossRef]
- Christian, P.; Von der Kammer, F.; Baalousha, M.; Hofmann, T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology 2008, 17, 326–343. [Google Scholar] [CrossRef] [PubMed]
- Önnby, L.; Pakade, V.; Mattiasson, B.; Kirsebom, H. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res. 2012, 46, 4111–4120. [Google Scholar] [CrossRef] [PubMed]
- Ali, I. Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations. J. Mol. Liq. 2018, 271, 677–685. [Google Scholar] [CrossRef]
- Sharma, A.; Verma, N.; Sharma, A.; Deva, D.; Sankararamakrishnan, N. Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: Synthesis, characterization and application in arsenic removal. Chem. Eng. Sci. 2010, 65, 3591–3601. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Zheng, Y.; Zhang, N.; Zhang, C. Multi-functionalization of magnetic graphene by surface-initiated ICAR ATRP mediated by polydopamine chemistry for adsorption and speciation of arsenic. Appl. Surf. Sci. 2019, 478, 15–25. [Google Scholar] [CrossRef]
- Contreras, S.; Henríquez-Vargas, L.; Álvarez, P.I. Arsenic transport and adsorption modeling in columns using a copper nanoparticles composite. J. Water Process Eng. 2017, 19, 212–219. [Google Scholar] [CrossRef]
- Reddy, K.J.; McDonald, K.J.; King, H. A novel arsenic removal process for water using cupric oxide nanoparticles. J. Colloid Interface Sci. 2013, 397, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Blaney, L.M.; Gupta, A.; Ghosh, D.; SenGupta, A.K. Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. React. Funct. Polym. 2007, 67, 1599–1611. [Google Scholar] [CrossRef]
- Morillo, D.; Faccini, M.; Amantia, D.; Pérez, G.; García, M.A.; Valiente, M.; Aubouy, L. Superparamagnetic iron oxide nanoparticle-loaded polyacrylonitrile nanofibers with enhanced arsenate removal performance. Environ. Sci. Nano 2016, 3, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Flores, H.; Pariona, N.; Herrera-Trejo, M.; Hdz-García, H.M.; Mtz-Enriquez, A.I. Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal. J. Mol. Struct. 2018, 1171, 9–16. [Google Scholar] [CrossRef]
- Luo, J.; Meng, X.; Crittenden, J.; Qu, J.; Hu, C.; Liu, H.; Peng, P. Arsenic adsorption on α-MnO2 nanofibers and the significance of (100) facet as compared with (110). Chem. Eng. J. 2018, 331, 492–500. [Google Scholar] [CrossRef]
- Chu, K.H. Prediction of arsenic breakthrough in a pilot column of polymer-supported nanoparticles. J. Water Process Eng. 2014, 3, 117–122. [Google Scholar] [CrossRef]
- Savina, I.N.; English, C.J.; Whitby, R.L.D.; Zheng, Y.; Leistner, A.; Mikhalovsky, S.V.; Cundy, A.B. High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. J. Hazard. Mater. 2011, 192, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Pandi, K.; Lee, D.-W.; Choi, J. Facile synthesis of zirconium-organic frameworks@biomass-derived porous graphitic nanocomposites: Arsenic adsorption performance and mechanism. J. Mol. Liq. 2020, 314, 113552. [Google Scholar] [CrossRef]
- Danish, M.I.; Qazi, I.A.; Zeb, A.; Habib, A.; Awan, M.A.; Khan, Z. Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass Beads: Adsorption and Column Studies. J. Nanomater. 2013, 2013, 873694. [Google Scholar] [CrossRef]
- Hristovski, K.; Baumgardner, A.; Westerhoff, P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 2007, 147, 265–274. [Google Scholar] [CrossRef]
- Saldaña-Robles, A.; Damian-Ascencio, C.E.; Guerra-Sanchez, R.J.; Saldaña-Robles, A.L.; Saldaña-Robles, N.; Gallegos-Muñoz, A.; Cano-Andrade, S. Effects of the presence of organic matter on the removal of arsenic from groundwater. J. Clean. Prod. 2018, 183, 720–728. [Google Scholar] [CrossRef]
- Streat, M.; Hellgardt, K.; Newton, N.L.R. Hydrous ferric oxide as an adsorbent in water treatment: Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Saf. Environ. Prot. 2008, 21–30. [Google Scholar] [CrossRef]
- Genç-Fuhrman, H.; Wu, P.; Zhou, Y.; Ledin, A. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent. Desalination 2008, 226, 357–370. [Google Scholar] [CrossRef]
- Boldaji, M.R.; Nabizadeh, R.; Dehghani, M.H.; Nadafi, K.; Mahvi, A.H. Evaluating the performance of iron nanoparticle resin in removing arsenate from water. J. Environ. Sci. Health Part A 2010, 45, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Ciopec, M.; Negrea, A.; Lupa, L.; Davidescu, C.M.; Negrea, P. Studies Regarding As(V) Adsorption from Underground Water by Fe-XAD8-DEHPA Impregnated Resin. Equilibrium Sorption and Fixed-Bed Column Tests. Molecules 2014, 19, 16082–16101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabizha, A.; Bahr, C.; Kersten, M. Predicting breakthrough of vanadium in fixed-bed absorbent columns with complex groundwater chemistries: A multi-component granular ferric hydroxide−vanadate−arsenate−phosphate−silicic acid system. Water Res. X 2020, 9, 100061. [Google Scholar] [CrossRef] [PubMed]
- Badruzzaman, M.; Westerhoff, P.; Knappe, D.R.U. Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Res. 2004, 38, 4002–4012. [Google Scholar] [CrossRef]
- Fleming, D.E.B.; Eddy, I.S.; Gherase, M.R.; Gibbons, M.K.; Gagnon, G.A. Real-time monitoring of arsenic filtration by granular ferric hydroxide. Appl. Radiat. Isot. 2010, 68, 821–824. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Chen, W.-H.; Young, T.; Darby, J. Effect of interferences on the breakthrough of arsenic: Rapid small scale column tests. Water Res. 2011, 45, 4069–4080. [Google Scholar] [CrossRef]
- Sperlich, A.; Schimmelpfennig, S.; Baumgarten, B.; Genz, A.; Amy, G.; Worch, E.; Jekel, M. Predicting anion breakthrough in granular ferric hydroxide (GFH) adsorption filters. Water Res. 2008, 42, 2073–2082. [Google Scholar] [CrossRef]
- Sperlich, A.; Werner, A.; Genz, A.; Amy, G.; Worch, E.; Jekel, M. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: Modeling and experimental approaches. Water Res. 2005, 39, 1190–1198. [Google Scholar] [CrossRef]
- Streat, M.; Hellgardt, K.; Newton, N.L.R. Hydrous ferric oxide as an adsorbent in water treatment: Part 2. Adsorption studies. Process Saf. Environ. Prot. 2008, 86, 11–20. [Google Scholar] [CrossRef]
- Dias, A.C.; Fontes, M.P.F. Arsenic (V) removal from water using hydrotalcites as adsorbents: A critical review. Appl. Clay Sci. 2020, 191, 105615. [Google Scholar] [CrossRef]
- Nhat Ha, H.N.; Kim Phuong, N.T.; Boi An, T.; Mai Tho, N.T.; Ngoc Thang, T.; Quang Minh, B.; Van Du, C. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies. J. Environ. Sci. Health Part A 2016, 51, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhu, Z.; Zhang, H.; Zhu, J.; Qiu, Y. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chem. Eng. J. 2015, 276, 365–375. [Google Scholar] [CrossRef]
- Dadwhal, M.; Ostwal, M.M.; Liu, P.K.T.; Sahimi, M.; Tsotsis, T.T. Adsorption of Arsenic on Conditioned Layered Double Hydroxides: Column Experiments and Modeling. Ind. Eng. Chem. Res. 2009, 48, 2076–2084. [Google Scholar] [CrossRef]
- Mondal, M.K.; Garg, R. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials. Environ. Sci. Pollut. Res. 2017, 24, 13295–13306. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Arsenic Species | Influent Concentration (μg/L) | Max. Adsorption Capacity (mg/g) | BV to Breakthrough Point of 10 μg/L | Breakthrough Time at 10 μg/L (h) | Ref. |
---|---|---|---|---|---|---|
Manganese-coated sand (MCS) | As | 1000 | 0.079 | 250 pore volumes | 18 days 1 | [14] |
Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS) | As(V) | 125 | 25.09–28.95 | 0.5–0.75 | [15] | |
Natural iron mineral-quartz sand columns | As(V) | 500 | 7000 pore volumes | [16] | ||
Crystalline hydrous ferric oxide (CHFO) | As | 320–400 | 14,000 | [20] | ||
Zirconium oxide-coated sand | As(III) | 500 | 0.03310–0.04223 | 5.33–8.33 | [22] | |
Zirconium metal organic frameworks (UiO-66) | As(III) | 100 | 2270 | [23] | ||
As(V) | 100 | 1775 | [23] | |||
Hydrated stannic oxide (HSO) | As(III) | 1000 | 2400 | [25] | ||
As(V) | 1000 | 450 | [25] | |||
Zero valent iron (ZVI) | As(V) | 100 | 1900 | [26] | ||
500–12,600 PV 2 | [27] | |||||
20 | [28] |
Adsorbent | Arsenic Species | Influent Concentration (μg/L) | Max. Adsorption Capacity (mg/g) | BV to Breakthrough Point of 10 μg/L | Breakthrough Time at 10 μg/L (h) | Ref. |
---|---|---|---|---|---|---|
Iron modified calcined bauxite (MCB) | As(V) | 2000–8000 | 0.470–0.606 | 269.2–300.64 | 2.15–59 | [34] |
Iron modified calcined bauxite (MCB) | As(III) | 1000 | 428.02–489.17 | 28–96 | [35] | |
Iron modified calcined bauxite (MCB) | As(III) | 1000 | 0.392–0.459 | 427.85–489.17 | 28–96 | [36] |
Iron-modified clinoptilolite | As(V) | 100 | 300 | [47] | ||
Mill-scale derived magnetite particles | As(V) | 100 | 3.60–5.00 | >100 | [42] | |
Magnetite-enriched particles (MEP) | As(V) | 500 | 17–30 days | [43] | ||
Mixed-valent iron oxide/magnetite | As(V) | 100–1000 | 10 | 888–1032 | [44] | |
Natural siderite | As(III) + As(V) | 250 + 250 | 1.090–2.000 | 11,600–26,000 PV | [45] | |
Siderite-hematite | As(III) + As(V) | 250 + 250 | 7200 PV | [45] | ||
Activated siderite-hematite | Total As | 500 | 0.177–0.185 | 8160 PV | [39] | |
Goethite-polyacrylamide composite (goethite-P(AAm) | As | 300 | 400 1 | [38] | ||
Granular schwertmannite | As(V) | 200 | 0.33–0.93 | 120–8100 | [46] | |
Iron-coated zeolite (ICZ) | As(V) | 2000 | 0.69 | 300 | [48] | |
Iron impregnated charred granulated attapulgite | As(V) As(III) | 200 | 397 175 | [33] |
Adsorbent | Treatment | Arsenic Species | Influent Concentration (μg/L) | Breakthrough Time at 10 μg/L (h) | Max. Adsorption Capacity (mg/g) | BV to Breakthrough Point of 10 μg/L | Ref. |
---|---|---|---|---|---|---|---|
Laterite soil | None | As | 330 | 6.75 | [50] | ||
Laterite soil | None | As(III) | 500–1000 | 2.8–32 | [51] | ||
Laterite soil | None | As(V) | 500–1000 | 1.65–18.5 | 0.047 | [52] | |
Laterite soil | None | As(V) | 500–1002 | 4.95–8.12 | 0.112–0.147 | [53] | |
Laterite soil | None | As | 80–100 | [54] | |||
Iron-oxide containing soil | None | As(V) | 1000 | 15–875 | [55] | ||
Pisolite | Thermic (400 °C) | As(V) | 50,000 | 1.41–3.51 | [56] | ||
Limestones | None | As(V) | 1190–1340 | 3–15 weeks | [57] | ||
Iron-incorporated diatomite [Fe(25%)-diatomite)] | Fe(NO3)3·9H2O | As(V) As(III) | 500 500 | 1100 1100 | [58] | ||
Iron-oxide-coated natural rock (IOCNR) | Fe(NO3)3·9H2O | As(III) | 600 | 31–63 | [59] | ||
As(III) As(V) | 300–1000 1000–3000 | 20–65 5–18 | [60] | ||||
Iron-impregnated tablet ceramic (ITCA) | FeCl3 | As(V) | 1000 | 16 | [61] |
Adsorbent | Treatment | Arsenic Species | Influent Concentration (μg/L) | Max. Adsorption Capacity (mg/g) | BV to Breakthrough Point of 10 μg/L | Breakthrough Time at 10 μg/L (h) | Ref. |
---|---|---|---|---|---|---|---|
Iron-modified activated carbon | Fe(NO3)3·9H2O | As | 40–60 | 5600–34,000 | [62] | ||
Iron-impregnated granular activated carbon (GAC-Fe) | FeCl2 | As | 100–500 | 0.305–0.470 | 313–1494 | [63] | |
Granular activated carbon (GAC) | As | 100 | 0.118–0.133 | 380–388 | [63] | ||
Granular activated carbon doped with iron (Fe/GAC) | FeCl3 | As(V) | 180 | 2.873 | [64] | ||
Hydrous ferric oxide incorporated onto GAC with phenol formaldehyde resins coating (HFO-PF-coated GAC) | FeCl3/PF | As(V) | 1886 | 0.7117 | 180 | 1753 | [66] |
Iron-containing granular activated carbon | FeCl2 | As(V) As(III) | 57.2 56.1 | 7500 7500 | [67] |
Adsorbent | Arsenic Species | Influent Concentration (μg/L) | Breakthrough Time at 10 μg/L (h) | Max. Adsorption Capacity (mg/g) | BV to Breakthrough Point of 10 μg/L | Ref. |
---|---|---|---|---|---|---|
Aquatic Biomaterials | ||||||
Chitosan | As(V) | 30,000–120,000 | 424.7–4444.6 | 36–50 | [71] | |
Chitosan | As(V) | 120,000 | 4.33 | [80] | ||
Chitosan | As(V) As(III) | 10,000 10,000 | 1.9 1.78 | [72] | ||
Molybdate-impregnated chitosan (MICB) | As(V) As(III) | 10,000 10,000 | 1.99 1.96 | [73] | ||
Chitosan-based porous magnesia-impregnated alumina (MIPA) | As(V) | 300 | 42–100 | 17.2 | [81] | |
Porous Fe-chitosan beads (P/Fe-CB) | As(III) | 975 | 1.19 | 3000 | [83] | |
Iron chitosan spacer granules (ICS) | As(V) As(III) | 500–1000 500–1000 | 59.0–106.0 50.5–107.7 | 210 132 | [76] | |
Waste Fe/Mn oxides into chitosan beads (C-WTR) | As(V) As(III) As(III) + As(V) | 500 500 500 + 500 | 13.84–13.97 30.02–32.64 | 2700 | [78] | |
Magnetic binary oxide particles (MBOP) using chitosan | As(III) | 1000 | 26.15–72 | 0.436–0.477 | [74] | |
Granular adsorbent (GA) using back-wash residue material and chitosan | As(V) | 150 | 210 | [7] | ||
Iron oxide loaded alginate | As(V) As(III) | 50 | 0.0138 | 230 45 | [84] | |
Ferric hydroxidemicrocapsule loaded calcium alginate (FHMCA) | As(III) | 100 | 75 days | [82] | ||
Atlantic cod fish scale | As(V) | 342–520 | 21.75–25 | 4.87–38.36 | [79] | |
Agricultural Waste | ||||||
Iron(III)-loaded phosphorylated orange juice residue (POJR) | As(V) | 15,800 | 81.4 | [85] | ||
Fe-based metal-organic framework/cotton fibers composites | As(III) | 500 | 320–440 | [91] | ||
Rice polish | As(V) As(III) | 100–10,000 | 3–30.83 2.66–29 | 0.025–0.079 0.030–0.067 | [93] | |
Rice husk | As(III) | 50–500 | 0.016–0.022 | [95] | ||
Fe(III)-loaded ligand exchange cotton cellulose adsorbent [Fe(III)LECCA] | As(V) | 1000 | 5.3 | ~400 | [97] | |
Nonwoven cotton fabric | As(V) | 1000 | 0.749 | 270–1420 | [87] | |
Thioglycolated sugarcane carbon (TSCC) | As(V) As(III) | 1500 1500 | 0.084 0.085 | [94] | ||
Biochar | ||||||
Iron-impregnated biochar | As | 50,000 | 0.167 | [88] | ||
Magnetite precipitated onto Douglas fir biochar | As(III) | 10,000 | 2.85 | [41] | ||
Iron oxide nanoneedle array-decorated biochar fibers (Fe-NN/BFs) | As(V) As(III) | 275 275 | 1.80 1.55 | 1350 350 | [96] | |
Fungal and Plant Biomass | ||||||
Non-immobilized sorghrum biomass (NISB) | 5000 | 27 1 | 2.765 | 31 pore volumes 1 | [86] | |
Immobilized sorghum biomass (ISB) | 5000 | 24 1 | 2.437 | 27 pore volumes 1 | [86] | |
Novel fungal strains + alginate beads | As | 200,000 | 0.50–1.83 2 | 59.5–74.8 | [89] | |
Iron oxide-coated fungal biomass (IOCB) | As(V) As(III) | 100 100 | 1.080 1.210 3 | 800 340 3 | [92] |
Adsorbent | Treatm. | As Species | Influent Concentration (μg/L) | Max. Adsorption Capacity (mg/g) | As Remov. (%) | Breakth. Time at 10 μg/L (h) | BV to Breakth. Point of 10 μg/L | Ref. |
---|---|---|---|---|---|---|---|---|
Bagasse fly ash (BFA) | None | As(V) | 50 | 98.9 | [107] | |||
As(III) | 50 | 95.6 | [107] | |||||
Water treatment residual solids | None | As | 37.7 | 26,400 | [108] | |||
Iron oxide-coated cement (IOCC) | Fe(NO3)3·9H2O | As(V) | 2000–4000 | 3.8852 | 4.0–41.5 | [109] | ||
As(III) | 500–2700 | 0.1462–0.3082 | 54.04–84.77 | [110] | ||||
Hardened paste of Portland cement (HPPC) | Cement + water | As(V) | 500 | >90 | [111] | |||
Stainless steel slags | None | As(V) | 10,000 | 84% | [112] |
Adsorbent | Arsenic Species | Influent Concentration (μg/L) | Max. Adsorption Capacity (mg/g) | Breakthrough Time at 10 μg/L (h) | BV to Breakthrough Point of 10 μg/L | Ref. |
---|---|---|---|---|---|---|
Nanocomposites | ||||||
Microwave-assisted economic multi-walled carbon nanotubes (MWCNTs) | As(V) As(III) | 40 | 0.014 0.0135 | 50–100 | [115] | |
Iron doped phenolic resin-based activated carbon micro-nano particles | As(V) As(III) | 1000 1000–3000 | 2.78–3.24 2.60–3.30 | [116] | ||
Cupric oxide (CuO) nanoparticles | As | 109 | 7–15 | [119] | ||
α-MnO2 nanofibers | As(V) As(III) | 200 | 120 200 | [123] | ||
Concrete-maghemite nanocomposites | As(V) | 10,000 | 4.1–8.6 | [122] | ||
Metal-doped titania nanoparticles coated glass beads | As | 250–1000 | 0.477–0.61 | 1.67–6.5 | [127] | |
As(III) | 250 | 1–3.67 | [127] | |||
Zirconium-organic frameworks@biomass-derived porous graphitic nanocomposites (Ui | As(III) As(V) | 500 500 | 1.667 2.167 | 500 651 | [126] | |
Granular ferric hydroxide (GFH) and commercial adsorbents | ||||||
GFH | As(V) | 800 | 4.92–6.07 | [129] | ||
As | 10,000 | ~500 | [130] | |||
As | 500 | More than 40,000 | [130] | |||
Ferrosorp plus (FP) | 0.79 | 728 1 | [131] | |||
ArsenXnp—a hybrid anion exchanger | As | 85 | 29,000 2 | [120] | ||
Adsorbsia GTO | As | 28 | 3000–10,000 | [128] | ||
Iron nanoparticle resin (Lewatit FO36) | As(V) | 500 | 3.229 | 3512–4000 | [132] | |
Fe (III)-phosphorylated resin (Fe-XAD8-DEHPA | As | 80 | 6 (for 3 μg/L) | [133] |
Adsorbent | Arsenic Species | Influent Concentration (μg/L) | Breakthrough Time at 10 μg/L (h) | BV to Breakthrough Point of 10 μg/L | Ref. |
---|---|---|---|---|---|
Zn-Fe-LDH | As(V) | 1000 | ~300 | [143] | |
Mg-Al-Cl-LDH | Total As | 506 | 10 | [142] | |
Mg-Fe-Cl-LDH | Total As | 506 | 7 | [142] |
Type of Adsorbent | Adsorbent | Maximum Arsenic Leached (mg/L) | Under USEPA Limit? | Ref. |
---|---|---|---|---|
Biosorbent | Ferric hydroxide microcapsule-loaded alginate beads (FHMCA) | 0.3 | Yes | [82] |
Biosorbent | Iron doped chitosan spacer granules (ICS) | 0.02 | Yes | [76] |
Biosorbent | Magnetic binary oxide particles (MBOP) (solidified and stabilized) | 0.07 | Yes | [74] |
Carbon-based | Iron-containing granular activated carbon | 0.09 | Yes | [67] |
Carbon-based | HFO-PF-coated GAC | <0.1 | Yes | [66] |
Commercial | ArsenXnp—a hybrid anion exchanger | <1.0 | Yes | [120] |
Metal (hydr)oxide | Iron mineral-quartz sand | 0.4 | Yes | [16] |
Mineral | Natural siderite | 0.4 | Yes | [45] |
Mineral | Granular schwertmannite | 0.025 | Yes | [46] |
Mineral | Activated siderite-hematite | 0.3 | Yes | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Current Trends of Arsenic Adsorption in Continuous Mode: Literature Review and Future Perspectives. Sustainability 2021, 13, 1186. https://doi.org/10.3390/su13031186
Carneiro MA, Pintor AMA, Boaventura RAR, Botelho CMS. Current Trends of Arsenic Adsorption in Continuous Mode: Literature Review and Future Perspectives. Sustainability. 2021; 13(3):1186. https://doi.org/10.3390/su13031186
Chicago/Turabian StyleCarneiro, Mariko A., Ariana M. A. Pintor, Rui A. R. Boaventura, and Cidália M. S. Botelho. 2021. "Current Trends of Arsenic Adsorption in Continuous Mode: Literature Review and Future Perspectives" Sustainability 13, no. 3: 1186. https://doi.org/10.3390/su13031186
APA StyleCarneiro, M. A., Pintor, A. M. A., Boaventura, R. A. R., & Botelho, C. M. S. (2021). Current Trends of Arsenic Adsorption in Continuous Mode: Literature Review and Future Perspectives. Sustainability, 13(3), 1186. https://doi.org/10.3390/su13031186