Theoretical Investigation of Equilibrium Dynamics in Braided Gravel Beds for the Preservation of a Sustainable Fluvial Environment
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mosley, M.P. Analysis of the effect of changing discharge on channel morphology and instream uses in a braided river, Ohau River, New Zealand. Water Resour. Res. 1982, 18, 800–812. [Google Scholar] [CrossRef]
- Bertoldi, W.; Ashmore, P.; Tubino, M. A method for estimating the mean bed load flux in braided rivers. Geomorphology 2009, 103, 330–340. [Google Scholar] [CrossRef]
- De Vincenzo, A.; Brancati, F.; Pannone, M. An experimental analysis of bed load transport in gravel-bed braided rivers with high grain Reynolds numbers. Adv. Water Resour. 2016, 94, 160–173. [Google Scholar] [CrossRef]
- Redolfi, M.; Tubino, M.; Bertoldi, W.; Brasington, J. Analysis of reachscale elevation distribution in braided rivers: Definition of a new morphologic indicator and estimation of mean quantities. Water Resour. Res. 2016, 52, 5951–5970. [Google Scholar] [CrossRef] [Green Version]
- Mirauda, D.; De Vincenzo, A.; Pannone, M. Statistical characterization of flow field structure in evolving braided gravel beds. Spat. Stat. 2019, 34, 100268–doi10. [Google Scholar] [CrossRef]
- Ashmore, P. Channel morphology and bed load pulses in braided, gravel-bed streams. Geogr. Ann. 1991, 73, 37–52. [Google Scholar] [CrossRef]
- Germanoski, D.; Schumm, S.A. Changes in Braided River Morphology Resulting from Aggradation and Degradation. J. Geol. 1993, 101, 451–466. [Google Scholar] [CrossRef]
- Pitlick, J.; Mueller, E.R.; Segura, C.; Cress, R.; Torizzo, M. Relation between flow, surface-layer armoring and sediment transport in gravel-bed rivers. Earth Surf. Process. Landf. 2008, 33, 1192–1209. [Google Scholar] [CrossRef]
- Garcia, C.; Laronne, J.B.; Sala, M. Continuous monitoring of bedload flux in a mountain gravel-bed river. Geomorphology 2000, 34, 23–31. [Google Scholar] [CrossRef]
- Habersack, H.; Hauer, C.; Liedermann, M.; Tritthart, M. Modelling and monitoring and management of the Austrian Danube. Proc. Water 2008, 21, 29–31. [Google Scholar]
- Downs, P.W.; Soar, P.J.; Taylor, A. The anatomy of effective discharge: The dynamics of coarse sediment transport revealed using continuous bedload monitoring in a gravel-bed river during a very wet year. Earth Surf. Process. Landf. 2016, 41, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Gomez, B.; Naff, R.L.; Hubbell, D.W. Temporal variations in bedload transport rates associated with the migration of bedforms. Earth Surf. Process. Landf. 1989, 14, 135–156. [Google Scholar] [CrossRef]
- Singh, A.; Fienberg, K.; Jerolmack, D.J.; Marr, J.; Foufoula-Georgiou, E. Experimental evidence for statistical scaling and intermittency in sediment transport rates. J. Geophys. Res. 2009, 114, F01025. [Google Scholar] [CrossRef] [Green Version]
- Heyman, J.; Mettra, F.; Ma, H.B.; Ancey, C. Statistics of bedload transport over steep slopes: Separation of time scales and collective motion. Geophys. Res. Lett. 2013, 40, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Heyman, J.; Fu, X.; Mettra, F.; Ancey, C.; Parker, G. Bed load transport over a broad range of timescales: Determination of three regimes of fluctuations. J. Geophys. Res. Earth Surf. 2014, 119, 2653–2673. [Google Scholar] [CrossRef]
- Nikora, V.; Habersack, H.M.; Huber, T.; McEwan, I.K. On bed particle diffusion in gravel-bed flows. Water Resour. Res 2002, 38, 17/1–17/9. [Google Scholar] [CrossRef]
- Pyrce, R.S.; Ashmore, P.E. Particle path length distributions in meandering gravel-bed streams: Results from physical models. Earth Surf. Process. Landf. 2003, 28, 951–966. [Google Scholar] [CrossRef]
- Ganti, V.; Meerschaert, M.M.; Foufoula-Georgiou, E.; Viparelli, E.; Parker, G. Normal and anomalous diffusion of gravel tracer particles in rivers. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Ancey, C.; Heyman, J. A microstructural approach to bed load transport: Mean behaviour and fluctuations of particle transport rates. J. Fluid Mech. 2014, 744, 129–168. [Google Scholar] [CrossRef] [Green Version]
- Hoey, T.B. Temporal variations in bedload transport rates and sediment storage in gravel-bed rivers. Prog. Phys. Geogr. 1992, 16, 319–338. [Google Scholar] [CrossRef]
- Kuhnle, R.A.; Southard, J.B. Bed load transport fluctuations in a gravel bed laboratory channel. Water Resour. Res. 1988, 24, 247–260. [Google Scholar] [CrossRef]
- Recking, A.; Frey, P.; Paquier, A.; Belleudy, P. An experimental investigation of mechanisms involved in bed load sheet production and migration. J. Geophys. Res. Earth Surf. 2009, 114, F03010. [Google Scholar] [CrossRef]
- Hoey, T.B.; Cudden, J.R.; Shvidchenko, A.B. The consequences of unsteady sediment transport in braided rivers. In Gravel-Bed Rivers V.; Mosley, M.P., Ed.; The New Zealand Hydrological Society: Thorndon, Wellington, New Zealand, 2001; pp. 121–142. [Google Scholar]
- Kasprak, A.; Wheaton, J.M.; Ashmore, P.E.; Hensleigh, J.W.; Peirce, S. The relationship between particle travel distance and channel morphology: Results from physical models of braided rivers. J. Geophys. Res. Earth Surf. 2015, 120, 55–74. [Google Scholar] [CrossRef]
- Ehrenberger, R. Direct bedload mesurements on the Danube at Vienna and their results to date. Die Wasserwirtsch. 1931, 34, 1–9. [Google Scholar]
- Mühlofer, L. Investigation into suspended load and bedload of the river Inn, near Kirchbichl, Tirol. Die Wasserwirtsch. 1933, 26, 1–6. [Google Scholar]
- Einstein, H.A. The calibration of bedload trap used in the Rhine. Schweuzerische Bauztg. 1937, 110, 29–32. [Google Scholar]
- Nesper, F. Results of bedload and silt movement observations on the Rhine at the Brugg Bridge. Schweuzerische Bauztg. 1937, 110, 143–148, 161–164. [Google Scholar]
- Emmett, W.W. The Channels and Waters of the Upper Salmon River Area, Idaho; USGS Professional Paper 870A; United States Government Printing Office: Washington, DC, USA, 1975. [CrossRef]
- Reid, I.; Frostick, L.E.; Layman, J.T. The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels. Earth Surf. Process. Landf. 1985, 10, 33–44. [Google Scholar] [CrossRef]
- Whiting, P.J.; Dietrich, W.E.; Leopold, L.B.; Drake, T.G.; Shreve, R.L. Bedload sheets in heterogeneous sediment. Geology 1988, 16, 105. [Google Scholar] [CrossRef]
- Cudden, J.R.; Hoey, T.B. The causes of bedload pulses in a gravel channel: The implications of bedload grain-size distributions. Earth Surf. Process. Landf. 2003, 28, 1411–1428. [Google Scholar] [CrossRef]
- Hoey, T.B.; Sutherland, A.J. Channel morphology and bedload pulses in braided rivers: A laboratory study. Earth Surf. Process. Landf. 1991, 16, 447–462. [Google Scholar] [CrossRef]
- Liedermann, M.; Tritthart, M.; Habersack, H. Particle path characteristics at the large gravel-bed river Danube: Results from a tracer study and numerical modelling. Earth Surf. Process. Landf. 2013, 38, 512–522. [Google Scholar] [CrossRef]
- Bolla Pittaluga, M.; Luchi, R.; Seminara, G. On the equilibrium profile of river beds. J. Geophys. Res. Earth Surf. 2014, 119, 317–332. [Google Scholar] [CrossRef]
- Jang, C.L.; Shimizu, Y. Numerical simulation of relatively wide, shallow channels with erodible banks. J. Hydraulic Eng. 2005, 131, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Fahnestock, R.K. Morphology and hydrology of a glacial stream—White River, Mount Rainier, Washington. U.S. Geol. Surv. 1963, 422, 70. [Google Scholar]
- Schumm, S.A.; Khan, H.R. Experimental study of channel patterns. Geol. Soc. Am. Bull. 1972, 83, 1755–1770. [Google Scholar] [CrossRef]
- Boothroyd, J.C.; Ashley, G.M. Processes, bar morphology, and sedimentary structures on braided outwash fans, Northeastern Gulf of Alaska. In Glaciofluvial and Glaciolacustrine Sedimentation; Jopling, A.V., McDonald, C., Eds.; Special publication—Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1975; pp. 193–222. [Google Scholar]
- Ergenzinger, P. Chaos and order: The channel geometry of gravel bed braided rivers. In Geomorphological Models; Ahnert, F., Ed.; Catena Verlag: Cremlingen-Destedt, Germany, 1987; Catena Suppl. 10; pp. 85–98. [Google Scholar]
- Grant, G.E. Critical flow constrains flow hydraulics in mobile-bed streams. Water Resour. Res. 1997, 33, 349–358. [Google Scholar] [CrossRef]
- Viparelli, M.; Pica, M. Streams in Large Alluvial Beds of High Slope, xii iahr. International Congress, Fort Collins. 1967. Available online: http://www.diia.unina.it/collana02.html (accessed on 15 December 2020).
- Young, W.; Davies, T. Bedload transport in braided gravel-bed river model. Earth Surf. Process. Landf. 1991, 16, 499–511. [Google Scholar] [CrossRef]
- Zarn, B. Einfluss der flussbettbreite auf die wechselwirkung zwischen abfluss, morphologie und geschiebetransportkapazität. In VAW Mit-Teilung 154; Vischer, D., Ed.; Laboratory of Hydraulics, Hydrology and Glaciology (VAW): ETH Zurich, Switzerland, 1997. (In German) [Google Scholar]
- Church, M.; Rood, K. Catalogue of alluvial river channel regime data, Natural Sciences and Engineering Research Council of Canada. Rep. Dept. Geol. Univ. Br. Columbia 1983. Available online: http://www.nced.umn.edu/ (accessed on 15 December 2020).
- Hey, R.D.; Thorne, C.R. Stable channels with mobile gravel beds. J. Hydraulic Eng. 1986, 112, 671–689. [Google Scholar] [CrossRef]
- Viparelli, C. Corsi d’acqua naturali e leggi che ne regolano il modellamento. In Quaderno n.4; Istituto di Idraulica e Costruzioni Idrauliche: Napoli, Italy, 1972. (In Italian) [Google Scholar]
- Meyer-Peter, E.; Müller, R. Formulas for bed-load transport. In Meeting of the International Association for Hydraulic Structures Research, 2nd ed.; International Association Hydraulic Research: Stockholm, Sweden, 1948; pp. 39–64. [Google Scholar]
- Hunziker, R.P. Fraktionsweiser Geschiebetransport. Mitteilungen der Versuch-sanstalt fur Wasserbau. In Hydrologie und Glaziologie, 138; Eidgenossische Technische Hochschule (ETH): Zurich, Switzerland, 1995; p. 209. (In German) [Google Scholar]
- Wong, M.; Parker, G. Re-analysis and correction of bed-load relation of Meyer-Peter and Muller using their own database. J. Hydraulic Eng. 2006, 132, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T. Open-Channel Hydraulics; Mc Graw-Hill: New York, NY, USA, 1959; p. 680. [Google Scholar]
- Parker, G.; Andrews, E.D. Sorting of bed load sediment by flow in meandering bends. Water Resour. Res. 1985, 21. [Google Scholar] [CrossRef]
- Tealdi, S.; Camporeale, C.; Ridolfi, L. Long-term morphological river response to hydrological changes. Adv. Water Resour. 2011, 34, 1643–1655. [Google Scholar] [CrossRef]
- Pannone, M. Transient Hydrodynamic Dispersion in Rough Open Channels: Theoretical Analysis of Bed-Form Effects. J. Hydr. Eng. 2010, 136, 155–164. [Google Scholar] [CrossRef]
- Pannone, M. Longitudinal Dispersion in River Flows Characterized by Random Large-Scale Bed Irregularities: First-Order Analytical Solution. J. Hydr. Eng. 2012, 138, 400–411. [Google Scholar] [CrossRef]
- Pannone, M.; De Vincenzo, A.; Brancati, F. A mathematical model for the flow resistance and the related hydrodynamic dispersion induced by river dunes. J. Appl. Math. 2013, 432610. [Google Scholar] [CrossRef] [Green Version]
- De Saint-Venant, B. Comptes Rendus De L’académie Des Sciences; Sciences Academy of France Institute: Paris, France, 1871; pp. 3–4. [Google Scholar]
- Pannone, M. Effect of nonlocal transverse mixing on river flows dispersion: A numerical study. Water Resour. Res. 2010, 46, W08534. [Google Scholar] [CrossRef]
- Pannone, M. Predictability of tracer dilution in large open channel flows: Analytical solution for the coefficient of variation of the depth-averaged concentration. Water Resour. Res. 2014, 50, 2617–2635. [Google Scholar] [CrossRef]
- Pannone, M.; De Vincenzo, A. Stochastic numerical analysis of anomalous longitudinal dispersion and dilution in shallow decelerating stream flows. Stoch. Env. Res. Risk Assess. 2015, 29, 2087–2100. [Google Scholar] [CrossRef]
- Pannone, M.; Mirauda, D.; De Vincenzo, A.; Molino, B. Longitudinal Dispersion in Straight Open Channels: Anomalous Breakthrough Curves and First-Order Analytical Solution for the Depth-Averaged Concentration. Water 2018, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Leopold, L.B.; Wolman, M.G. River channel patterns: Braided, meandering, and straight. U.S. Geol. Surv. Prof. Pap. 1957, 282-B, 39–84. [Google Scholar]
- Schumm, S.A. Patterns of alluvial rivers. Annu. Rev. Earth Planet. Sci. 1985, 13, 5–27. [Google Scholar] [CrossRef]
- Rosgen, D.L. A Classification of Natural Rivers. Catena 1994, 22, 169–199. Available online: http://www.science.earthjay.com/instruction/HSU/2016_fall/GEOL_332/labs/lab_04/Rosgen_1994_Classification_Rivers.pdf (accessed on 15 December 2020). [CrossRef] [Green Version]
- Montgomery, D.R.; Buffington, J.M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Church, M. Bed material transport and the morphology of alluvial rivers. Annu. Rev. Earth Planet. Sci. 2006, 34, 325–354. [Google Scholar] [CrossRef]
- Bialik, R.J.; Nikora, V.I.; Rowinski, P.M. 3-D Lagrangian modeling of saltating particles diffusion in turbulent water flow. Acta Geophys. 2012, 60, 1639. [Google Scholar] [CrossRef]
- Taylor, G.I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. 1954, 223, 446–468. [Google Scholar] [CrossRef]
- Pannone, M. On the exact analytical solution for the spatial moments of the cross-sectional average concentration in open channel flows. Water Resour. Res. 2012, 48, W08511. [Google Scholar] [CrossRef]
- Mirauda, D.; De Vincenzo, A.; Pannone, M. Simplified entropic model for the evaluation of suspended load concentration. Water 2018, 10, 378. [Google Scholar] [CrossRef] [Green Version]
- De Vincenzo, A.; Molino, A.J.; Molino, B.; Scorpio, V. Reservoir rehabilitation: The new methodological approach of Economic Environmental Defence. Int. J. Sediment Res. 2017, 32, 288–294. [Google Scholar] [CrossRef]
- De Vincenzo, A.; Covelli, C.; Molino, A.J.; Pannone, M.; Ciccaglione, M.; Molino, B. Long-Term Management Policies of Reservoirs: Possible Re-Use of Dredged Sediments for Coastal Nourishment. Water 2019, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Assani, A.A.; Petit, F. Impact of hydroelectric power releases on the morphology and sedimentology of the bed of the Warche River (Belgium). Earth Surf. Process. Landf. 2004, 29, 133–143. [Google Scholar] [CrossRef]
- Ock, G.; Gaeuman, D.; McSloy, J.; Kondolf, G.M. Ecological functions of restored gravel bars, the Trinity River, California. Ecol. Eng. 2015, 83, 49–60. [Google Scholar] [CrossRef]
- Zeng, Q.; Shi, L.; Wen, L.; Chen, J.; Duo, H.; Lei, G. Gravel Bars Can Be Critical for Biodiversity Conservation: A Case Study on Scaly-Sided Merganser in South China. PLoS ONE 2015, 10, e0127387. [Google Scholar] [CrossRef] [PubMed]
- Rempel, L.L.; Healey, M.; Richardson, J.R. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwat. Biol. 2000, 45, 57–73. [Google Scholar] [CrossRef]
- Gilvear, D.; Francis, R.; Will, N.; Gurnell, A. 26 Gravel bars: A key habitat of gravel-bed rivers for vegetation. Dev. Earth Surf. Process. 2007, 11, 677–700. [Google Scholar] [CrossRef]
Run | Q (m3/s) | S0 | S0SB | Seq | teq (h) |
---|---|---|---|---|---|
R1 | 0.0444 | 0.014 | 0.084 | 0.007 | 46 |
R2 | 0.031 | 0.013 | 0.067 | 0.012 | 167 |
R3 | 0.036 | 0.0135 | 0.067 | 0.011 | 168 |
R4 | 0.0254 | 0.027 | 0.0566 | 0.015 | 261 |
R5 | 0.0304 | 0.014 | 0.041 | 0.015 | 208 |
R6 | 0.040 | 0.01 | 0.0331 | 0.012 | 96 |
R7 | 0.045 | 0.0192 | 0.0491 | 0.009 | 144 |
R8 | 0.048 | 0.01 | 0.0331 | 0.011 | 197 |
R9 | 0.053 | 0.0104 | 0.032 | 0.01 | 261 |
R10 | 0.035 | 0.022 | 0.0145 | 0.015 | 72 |
Run | Λ/B | τd (s) | Pe | BI |
---|---|---|---|---|
R1 | 1/8 | 32.74 | 210.52 | 8.8 |
R2 | 1/4 | 130.96 | 105.33 | 4.5 |
R3 | 1/2 | 523.83 | 52.67 | 2.8 |
R4 | 1 | 2095.34 | 26.47 | 2.3 |
R5 | 2 | 8381.35 | 13.24 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannone, M.; Vincenzo, A.D. Theoretical Investigation of Equilibrium Dynamics in Braided Gravel Beds for the Preservation of a Sustainable Fluvial Environment. Sustainability 2021, 13, 1246. https://doi.org/10.3390/su13031246
Pannone M, Vincenzo AD. Theoretical Investigation of Equilibrium Dynamics in Braided Gravel Beds for the Preservation of a Sustainable Fluvial Environment. Sustainability. 2021; 13(3):1246. https://doi.org/10.3390/su13031246
Chicago/Turabian StylePannone, Marilena, and Annamaria De Vincenzo. 2021. "Theoretical Investigation of Equilibrium Dynamics in Braided Gravel Beds for the Preservation of a Sustainable Fluvial Environment" Sustainability 13, no. 3: 1246. https://doi.org/10.3390/su13031246
APA StylePannone, M., & Vincenzo, A. D. (2021). Theoretical Investigation of Equilibrium Dynamics in Braided Gravel Beds for the Preservation of a Sustainable Fluvial Environment. Sustainability, 13(3), 1246. https://doi.org/10.3390/su13031246