Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies
Abstract
:1. Introduction
Aim and Scope
- Test the method and critically reflect upon its application and usefulness,
- Compare the different bus technologies, including buses driven on biomethane, ethanol, FAME, HVO and electricity, and diesel and natural gas as reference technologies.
2. Methods
2.1. Assessed Bus Technologies
2.2. Assessment Process
- ***; low uncertainty;
- **; some uncertainty;
- *; high uncertainty.
3. Results
3.1. Technical Performance
3.1.1. Technical Maturity
3.1.2. Daily Operational Availability
3.2. Economic Performance
3.2.1. Total Cost of Ownership
- Diesel—Satisfactory to Very Good.
- HVO scores a bit worse, mainly due to higher fuel costs—Poor to Very Good.
- FAME scores slightly better than diesel, mainly due to lower fuel costs—Good to Very Good.
- Ethanol seems to be the most expensive technology due to both higher maintenance costs and higher fuel costs—Very Poor to Satisfactory.
- Natural gas scores worse than diesel due to slightly higher purchase and fuel costs—Very Poor to Very Good.
- Biomethane scores a bit worse than natural gas due to slightly higher fuel costs—Very Poor to Good.
- Electricity has the largest spectrum due to large cost differences depending on the size of the battery. Electricity has the lowest fuel costs, but the total cost is very sensitive to the battery size and number of battery replacements. The lowest part of the span corresponds to a bus with a small battery (i.e., a large need for infrastructure) and no needed battery replacement; the highest part of the span corresponds to a bus with a large battery with several needed battery replacements. This results in Very Poor to Very Good.
3.2.2. Need for Investments in Infrastructure
3.2.3. Cost Stability
3.3. Environmental Performance
3.3.1. Non-Renewable Primary Energy Efficiency
3.3.2. Greenhouse Gas Emission Savings
3.3.3. Air Pollution
3.3.4. Noise
3.3.5. Local/Regional Impact on Land and Aquatic Environments
3.4. Social Performance
3.4.1. Energy Security
3.4.2. Sociotechnical System Services
4. Concluding Discussion
4.1. Discussion of the Assessment Results
4.2. Usability and Accuracy
4.3. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Project Participants (P, p (a Capital Letter Indicates Participation through the Whole MCA Method Establishment Process or a Large Contribution in Any Stage, while a Lowercase Letter Indicates a Smaller Contribution, Often in the Later Stages)) and Involved Stakeholders (S) | Relevance, Competences | Comment |
---|---|---|
Region Östergötland (P), part in BRC | Environmental strategist with long term experience regarding bus technologies, sustainability issues and public procurement processes | Has participated in the whole MCA establishment process and has been part of several workshops to establish what indicators and scales can be relevant for assessing bus technologies. The region is the case of study |
Other regions (p) | Long-term experience regarding public bus transports and other relevant issues | The regions of Gotland, Kalmar and Jönköping participated in later stages of the process (the last two years). They, e.g., provided input at a dedicated workshop |
Gasum (P), part in BRC | Represented by a business development specialist and a civil engineer specialized in environmental and energy management. Also represented by a business development manager | Participated in the whole MCA establishment process and has been part of several workshops to establish what indicators and scales can be relevant for assessing bus technologies |
Linköping University (P, p), part in BRC | Experts in: -environmental systems analysis and biofuels (P) -business administration (p) -socio-technical systems (p) | Four researchers participated through the whole MCA establishment process, the authors and two other colleagues. Researchers with expertise in business administration and socio-technical systems provided input in later stages |
Municipalities (p), part in BRC | Long term experience regarding public bus transports and other relevant issues | The municipalities of Linköping and Norrköping participated in later stages of the MCA establishment process (the last year) They, e.g., provided input at a dedicated workshop |
Tekniska Verken (p), part in BRC | A municipally owned utility company, e.g., with expertise in energy and waste management. Long-term experience in biogas production and use for public bus transports | Provided input at the later stages of the MCA establishment process (the last year) |
Scania (p), part in BRC | This company provides transport solutions. Manufacturer of buses and trucks, with expertise regarding all the studied vehicle types and fuels | Provided input at the later stages of the MCA establishment process (the last year). They, e.g., provided input at a dedicated workshop |
Borlänge energi (p), part in BRC | A municipally owned utility company, e.g., with expertise in energy and waste management. Experience in biogas production and use for public bus transports | They provided input at a dedicated workshop |
JES (S) | A management consultancy firm that has been working with, e.g., biogas and public transport | They provided input at a dedicated workshop |
Vattenfall (S) | A state-owned energy utility company operating in Europe. E.g. expertise in electrification | Took part in a research project called “Miljöbuss”, in which the authors participated. Provided input in relation to two presentations of the MCA method |
Other partners of BRC (S) | Other than the already listed organizations taking part in this transdisciplinary research center. Expertise within many areas related to socio-technical systems, fuels, transport, etc. | The project and MCA method were presented at large BRC meetings during poster sessions, which resulted in relevant input from people with different backgrounds and competences |
Competence Areas of Actors |
---|
Sustainability systems analysis
|
Transportation
|
Sociotechnical systems
|
Environmental innovations
|
Appendix B
Brand | Model | Technology | Motor | Noise |
---|---|---|---|---|
BYD | Ebus | Electricity | 250 kW | 71 dB |
MAN | Lion’s City | Methane | 228 kW | 77 dB |
Mercedes-Benz | Citaro | Methane | 222 kW | 73 dB |
Mercedes-Benz | Ecitaro | Electricity | 252 kW | 72 dB |
Scania | Citywide | Diesel | 235 kW | 77 dB |
Scania | Citywide | Methane | 235 kW | 77 dB |
Scania | Citywide | Electricity | 210/290 kW | 77 dB |
Volvo | 7900 | Electricity | 186 kW | 67 dB |
Volvo | 8900 | Diesel/Biodiesel | 240 kW | 73 dB |
Volvo | 9700 | Diesel | 285 kW | 76 dB |
References
- Banister, D.; Button, K. Transport, the Environment and Sustainable Development; Routledge: Oxfordshire, UK, 2015; ISBN 978-1-135-15517-9. [Google Scholar]
- Sims, R.; Schaeffer, R.; Creutzig, F.; Cruz-Núñez, X.; D’Agosto, M.; Dimitriu, D.; Figueroa Meza, M.J.; Fulton, L.; Kobayashi, S.; Lah, O.; et al. Transport. In Climate Change 2014: Mitication of Climate Change. Contribution of Working Group III fo the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Anenberg, S.; Miller, J.; Henze, D.; Minjares, R. A Global Snapshot of the Air Pollution-Related Health Impacts of Transportation Sector Emissions in 2010 and 2015; The International Council on Clean Transportation: Washington, DC, USA, 2019; p. 55. [Google Scholar]
- Xia, T.; Nitschke, M.; Zhang, Y.; Shah, P.; Crabb, S.; Hansen, A. Traffic-Related Air Pollution and Health Co-Benefits of Alternative Transport in Adelaide, South Australia. Environ. Int. 2015, 74, 281–290. [Google Scholar] [CrossRef]
- Braubach, M.; Tobollik, M.; Mudu, P.; Hiscock, R.; Chapizanis, D.; Sarigiannis, D.A.; Keuken, M.; Perez, L.; Martuzzi, M. Development of a Quantitative Methodology to Assess the Impacts of Urban Transport Interventions and Related Noise on Well-Being. Int. J. Environ. Res. Public Health 2015, 12, 5792–5814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lercher, P. Noise in Cities: Urban and Transport Planning Determinants and Health in Cities. In Integrating Human Health into Urban and Transport Planning: A Framework; Nieuwenhuijsen, M., Khreis, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 443–481. ISBN 978-3-319-74983-9. [Google Scholar]
- Li, T.; Shilling, F.; Thorne, J.; Li, F.; Schott, H.; Boynton, R.; Berry, A.M. Fragmentation of China’s Landscape by Roads and Urban Areas. Landsc. Ecol. 2010, 25, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Shannon, G.; Angeloni, L.M.; Wittemyer, G.; Fristrup, K.M.; Crooks, K.R. Road Traffic Noise Modifies Behaviour of a Keystone Species. Anim. Behav. 2014, 94, 135–141. [Google Scholar] [CrossRef]
- Danielsen, F.; Beukema, H.; Br, C.A.; Reijnders, L.; Struebig, M. Biofuel Plantations on Forested Lands: Double Jeopardy for Biodiversity and Climate. Conserv. Biol. 2009, 23, 12. [Google Scholar] [CrossRef]
- Xylia, M.; Silveira, S. On the Road to Fossil-Free Public Transport: The Case of Swedish Bus Fleets. Energy Policy 2017, 100, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Appolloni, A.; D’Amato, A.; Zhu, Q. Green Public Procurement, Missing Concepts and Future Trends—A Critical Review. J. Clean. Prod. 2018, 176, 770–784. [Google Scholar] [CrossRef]
- Testa, F.; Annunziata, E.; Iraldo, F.; Frey, M. Drawbacks and Opportunities of Green Public Procurement: An Effective Tool for Sustainable Production. J. Clean. Prod. 2016, 112, 1893–1900. [Google Scholar] [CrossRef]
- von Oelreich, K.; Philp, M. Green Procurement: A Tool for Achieving National Environmental Objectives (Translated); Swedish EPA: Stockholm, Sweden, 2013.
- Hüging, H.; Glensor, K.; Lah, O. Need for a Holistic Assessment of Urban Mobility Measures–Review of Existing Methods and Design of a Simplified Approach. Transp. Res. Procedia 2014, 4, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Lindfors, A.; Ammenberg, J. Using National Environmental Objectives in Green Public Procurement: Method Development and Application on Transport Procurement in Sweden. J. Clean. Prod. 2020, 124821. [Google Scholar] [CrossRef]
- Swedish Energy Agency. Drivmedel 2018; Swedish Energy Agency: Eskilstuna, Sweden, 2019.
- Swedish Energy Agency. Energiläget i Siffror 2019; Swedish Energy Agency: Eskilstuna, Sweden, 2019.
- Fridas Användarförening FRIDA Miljö-Och Fordonsdatabas. Available online: http://www.frida.port.se/hemsidan/default.cfm (accessed on 12 February 2020).
- Statistics Sweden Fordonsbestånd 2018 [Vehicle Stock 2018]. 2019. Available online: https://www.scb.se/contentassets/4bf97f768344433f85bd81fcf0ce9b7b/fordon_2018_20200311.xlsx (accessed on 12 February 2020).
- Trafikanalys. Lokal Och Regional Kollektivtrafik 2009; Trafikanalys: Stockholm, Sweden, 2010; p. 82. [Google Scholar]
- International Association of Public Transport Global Bus Survey. Available online: https://www.uitp.org/sites/default/files/cck-focus-papers-files/Statistics%20Brief_Global%20bus%20survey%20%28003%29.pdf (accessed on 6 February 2020).
- UNECE New Vehicle Registrations by Fuel Type, Type of Vehicle, Country and Year. Available online: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT__40-TRTRANS__03-TRRoadFleet/08_en_TRRoadNewVehF_r.px/table/tableViewLayout1/ (accessed on 22 April 2020).
- Bloomberg New Energy Finance Electric Vehicle Outlook 2020. Available online: https://bnef.turtl.co/story/evo-2020/ (accessed on 28 May 2020).
- Sustainable Bus. Electric Bus, Main Fleets and Projects around the World 2019. Available online: https://www.sustainable-bus.com/electric-bus/electric-bus-public-transport-main-fleets-projects-around-world/ (accessed on 12 February 2020).
- Swedish Petroleum and Biofuel Institute. Utlevererad Volym Av Drivmedel 2020. Available online: https://www.petrolplaza.com/organisations/937 (accessed on 28 May 2020).
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and Perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Vassileva, I.; Campillo, J. Adoption Barriers for Electric Vehicles: Experiences from Early Adopters in Sweden. Energy 2017, 120, 632–641. [Google Scholar] [CrossRef]
- Civitas. Smart Choices for Cities: Alternative Fuel Buses; Civitas: Brussels, Belgium, 2016. [Google Scholar]
- Lindgren, L. Electrification of City Bus. Traffic—A Simulation Study Based on Data from Linköping; Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology: Lund, Sweden, 2017. [Google Scholar]
- Ally, J.; Pryor, T. Life-Cycle Assessment of Diesel, Natural Gas and Hydrogen Fuel Cell Bus Transportation Systems. J. Power Sources 2007, 170, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Caban, J.; Ignaciuk, P. Technical-Economic Aspects of CNG Gas Usage in Buses of Urban Communication. In Proceedings of the 17 International Scientific Conference “Engineering For Rural Development”, Jelgava, Latvia, 23–25 May 2018. [Google Scholar]
- Lajunen, A.; Lipman, T. Lifecycle Cost Assessment and Carbon Dioxide Emissions of Diesel, Natural Gas, Hybrid Electric, Fuel Cell Hybrid and Electric Transit Buses. Energy 2016, 106, 329–342. [Google Scholar] [CrossRef]
- Stempien, J.P.; Chan, S.H. Comparative Study of Fuel Cell, Battery and Hybrid Buses for Renewable Energy Constrained Areas. J. Power Source 2017, 340, 347–355. [Google Scholar] [CrossRef]
- Sweco. Innovative Biogas Fuelling System Alternatives for Buses; Baltic Biogas Bus: Bergen, Norway, 2012. [Google Scholar]
- Aldenius, M.; Khan, J.; Nikoleris, A. Elektrifiering av stadsbussar: En Genomgång av Erfarenheter i Sverige Och Europa; K2-Sveriges nationella centrum för forskning och utbildning om kollektivtrafik: Lund, Sweden, 2016; p. 66. [Google Scholar]
- Borén, S.; Nurhadi, L.; Ny, H.; Andersson, M.; Nilsson, S.; Lööf, J. GreenCharge—Demotest i Fält Med. Elbuss; Blekinge Tekniska Högskola: Karlskrona, Sweden, 2015. [Google Scholar]
- Ahmadi Moghaddam, E.; Ahlgren, S.; Hulteberg, C.; Nordberg, Å. Energy Balance and Global Warming Potential of Biogas-Based Fuels from a Life Cycle Perspective. Fuel Process. Technol. 2015, 132, 74–82. [Google Scholar] [CrossRef]
- Ecotraffic. Kunskapssammanställning—Stadsbussar Euro VI. 2015. Available online: http://www.ecotraffic.se/media/13180/kunskapspm-euro_vi-bussar_-g_teborg_20_nov_2015.pdf (accessed on 12 February 2020).
- Guslén, B. Volvo Bussar har fått stororder. Göteborgs-Posten, 29 April 2015. [Google Scholar]
- Harris, A.; Soban, D.; Smyth, B.M.; Best, R. Assessing Life Cycle Impacts and the Risk and Uncertainty of Alternative Bus Technologies. Renew. Sustain. Energy Rev. 2018, 97, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Lundström, A.-C.; Ninasdotter Holmström, M.; Torstensson, E.; Eriksson, M. Elbussar i Sveriges Kollektivtrafik—En Kartläggning av Trafikförvaltningen Stockholm, Skånetrafiken och Västtrafik Utifrån Fyra Perspektiv; Trafikverket: Solna, Sweden, 2019; p. 132.
- Mahmoud, M.; Garnett, R.; Ferguson, M.; Kanaroglou, P. Electric Buses: A Review of Alternative Powertrains. Renew. Sustain. Energy Rev. 2016, 62, 673–684. [Google Scholar] [CrossRef]
- Laizāns, A.; Graurs, I.; Rubenis, A.; Utehin, G. Economic Viability of Electric Public Busses: Regional Perspective. Procedia Eng. 2016, 134, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Rogge, M.; van der Hurk, E.; Larsen, A.; Sauer, D.U. Electric Bus Fleet Size and Mix Problem with Optimization of Charging Infrastructure. Appl. Energy 2018, 211, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Topal, O.; Nakir, İ. Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City. Energies 2018, 11, 2369. [Google Scholar] [CrossRef] [Green Version]
- Dyr, T.; Misiurski, P.; Ziółkowska, K. Costs and Benefits of Using Buses Fuelled by Natural Gas in Public Transport. J. Clean. Prod. 2019, 225, 1134–1146. [Google Scholar] [CrossRef]
- Scania. Scania E-Mail Conversation with Senior Engineer at Scania; Scania: Södertälje, Sweden, 2018. [Google Scholar]
- Eudy, L.; Jeffers, M. Foothill Transit Agency Battery Electric Bus Progress Report Data Period Focus: Jan. 2019 through Jun. 2019. Available online: https://www.osti.gov/biblio/1573208-foothill-transit-agency-battery-electric-bus-progress-report-data-period-focus-jan-through-jun (accessed on 12 February 2020).
- Tong, F.; Hendrickson, C.; Biehler, A.; Jaramillo, P.; Seki, S. Life Cycle Ownership Cost and Environmental Externality of Alternative Fuel Options for Transit Buses. Transp. Res. Part Transp. Environ. 2017, 57, 287–302. [Google Scholar] [CrossRef]
- DahlÖberg, J.; Vehabovic, A. Well-to-Wheel Greenhouse Gas Emissions of Heavy-Duty Vehicles Using Different Energy Carriers—Dependent on Electricity Carbon Intensity and Vehicle Applications. Master’s Thesis, Linköping University, Linköping, Sweden, 2018. [Google Scholar]
- Swedish Energy Agency Elbusspremie. Available online: https://www.energimyndigheten.se/klimat--miljo/transporter/transporteffektivt-samhalle/elbusspremie/ (accessed on 13 February 2020).
- Börjesson, P.; Lundgren, J.; Ahlgren, S.; Nyström, I. Dagens Och Framtidens Hållbara Biodrivmedel—I Sammandrag. Rapport f3. 18 June 2013, p. 209. Available online: https://www.energimyndigheten.se/globalassets/klimat--miljo/transporter/oppet-forum/f3/sammandrag_hallbara-biodrivmedel_160512.pdf (accessed on 25 January 2021).
- Smith, M.; Gonzales, J. Costs Associated with Compressed Natural Gas Vehicle Fueling Infrastructure; Technical Report DOE/GO-102014-4471; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014.
- Chen, Z.; Yin, Y.; Song, Z. A Cost-Competitiveness Analysis of Charging Infrastructure for Electric Bus Operations. Transp. Res. Part C Emerg. Technol. 2018, 93, 351–366. [Google Scholar] [CrossRef]
- Kunith, A.; Mendelevitch, R.; Goehlich, D. Electrification of a City Bus Network—An Optimization Model for Cost-Effective Placing of Charging Infrastructure and Battery Sizing of Fast-Charging Electric Bus Systems. Int. J. Sustain. Transp. 2017, 11, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Okullo, S.J. Understanding Oil Scarcity through Drilling Activity. Energy Econ. 2018, 69, 261–269. [Google Scholar] [CrossRef]
- Banerjee, R.; Benson, S.M.; Bouille, D.H.; Brew-Hammond, A.; Cherp, A.; Coelho, S.T.; Emberson, L.; Figueroa, M.J.; Grubler, A.; Jaccard, M.; et al. Global Energy Assessment; Cambridge University Press: Cambridge, UK; New York, NY, USA; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012; p. 1865. [Google Scholar]
- Haugom, E.; Mydland, Ø.; Pichler, A. Long Term Oil Prices. Energy Econ. 2016, 58, 84–94. [Google Scholar] [CrossRef]
- Arzaghi, E.; Abbassi, R.; Garaniya, V.; Binns, J.; Khan, F. An Ecological Risk Assessment Model for Arctic Oil Spills from a Subsea Pipeline. Mar. Pollut. Bull. 2018, 135, 1117–1127. [Google Scholar] [CrossRef]
- Suprenand, P.M.; Hoover, C.; Ainsworth, C.H.; Dornberger, L.N.; Johnson, C.J. Preparing for the Inevitable: Ecological and Indigenous Community Impacts of Oil Spill-Related Mortality in the United States’ Arctic Marine Ecosystem. In Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War; Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., Wetzel, D.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 470–493. ISBN 978-3-030-12963-7. [Google Scholar]
- Caldara, D.; Cavallo, M.; Iacoviello, M. Oil Price Elasticities and Oil Price Fluctuations. J. Monet. Econ. 2019, 103, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Swedish Petroleum and Biofuel Institute. Diesel—Priser Och Skatter; SPBI: Stockholm, Sweden, 2020. [Google Scholar]
- European Commission 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 27 February 2020).
- Swedish Environmental Protection Agency Sveriges Klimatmål Och Klimatpolitiska Ramverk. Available online: https://www.naturvardsverket.se/Miljoarbete-i-samhallet/Miljoarbete-i-Sverige/Uppdelat-efter-omrade/Klimat/Sveriges-klimatlag-och-klimatpolitiska-ramverk/ (accessed on 27 February 2020).
- Kallis, G.; Sager, J. Oil and the Economy: A Systematic Review of the Literature for Ecological Economists. Ecol. Econ. 2017, 131, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Swedish Petroleum and Biofuel Institute SPBI Branschfakta 2019. Available online: https://spbi.se/wp-content/uploads/2019/07/SPBI_branschfakta_2019_DIGITAL-online1.pdf (accessed on 2 June 2020).
- Hjort, A.; Hansson, J.; Lönnqvist, T.; Nilsson, J. Utsikt För Förnybar Flytande Metan i Sverige till År 2030; f3. 2019. Available online: https://f3centre.se/app/uploads/f3-2019-05_Hjort-et-al-FINAL-191204.pdf (accessed on 3 June 2020).
- OKQ8 Prishistorik Företag 2020. Available online: https://www.okq8.se/~/media/dokument-foretag/drivmedel/prishistorik-foretag_2.xlsx (accessed on 2 June 2020).
- Weimar, A. HVO Kan få en Prislapp på 27 Kronor per Liter. Available online: https://www.atl.nu/entreprenad/hvo-kan-fa-en-prislapp-pa-27-kronor-per-liter/ (accessed on 3 June 2020).
- Swedish Petroleum and Biofuel Institute Skatter Förnybara Drivmedel 2020. Available online: https://spbi.se/statistik/skatter/skatter-fornybara-drivmedel/ (accessed on 28 February 2020).
- Swedish Tax Agency Ändrade Bestämmelser om Skattebefrielse för Biodrivmedel. Available online: https://www.skatteverket.se/foretagochorganisationer/skatter/punktskatter/energiskatter/energiskatterpabranslen/skattebefrielseforbiodrivmedel.4.2b543913a42158acf800021393.html (accessed on 28 February 2020).
- European Commission Sustainability Criteria for Biofuels Specified. Available online: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_19_1656 (accessed on 3 June 2020).
- European Commission Renewable Energy—Recast to 2030 (RED II). Available online: https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (accessed on 3 June 2020).
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural Gas from Shale Formation—The Evolution, Evidences and Challenges of Shale Gas Revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Šebalj, D.; Mesarić, J.; Dujak, D. Predicting Natural Gas Consumption—A Literature Review. In Proceedings of the 28th International Conference “Central European Conference on Information and Intelligent Systems”, Varazdin, Croatia, 27–29 September 2017. [Google Scholar]
- Kan, S.Y.; Chen, B.; Wu, X.F.; Chen, Z.M.; Chen, G.Q. Natural Gas Overview for World Economy: From Primary Supply to Final Demand via Global Supply Chains. Energy Policy 2019, 124, 215–225. [Google Scholar] [CrossRef]
- Mouette, D.; Machado, P.G.; Fraga, D.; Peyerl, D.; Borges, R.R.; Brito, T.L.F.; Shimomaebara, L.A.; dos Santos, E.M. Costs and Emissions Assessment of a Blue Corridor in a Brazilian Reality: The Use of Liquefied Natural Gas in the Transport Sector. Sci. Total Environ. 2019, 668, 1104–1116. [Google Scholar] [CrossRef] [PubMed]
- Pfoser, S.; Aschauer, G.; Simmer, L.; Schauer, O. Facilitating the Implementation of LNG as an Alternative Fuel Technology in Landlocked Europe: A Study from Austria. Res. Transp. Bus. Manag. 2016, 18, 77–84. [Google Scholar] [CrossRef]
- Thomson, H.; Corbett, J.J.; Winebrake, J.J. Natural Gas as a Marine Fuel. Energy Policy 2015, 67, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Michalski, R.; Ficek, A. Environmental Pollution by Chemical Substances Used in the Shale Gas Extraction—A Review. Desalination Water Treat. 2016, 57, 1336–1343. [Google Scholar] [CrossRef]
- Visschedijk, A.J.H.; Denier van der Gon, H.A.C.; Doornenbal, H.C.; Cremonese, L. Methane and Ethane Emission Scenarios for Potential Shale Gas Production in Europe. Adv. Geosci. 2018, 45, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Tamba, J.G.; Essiane, S.N.; Sapnken, E.F.; Koffi, F.D.; Nsouandélé, J.L.; Soldo, B.; Njomo, D. Forecasting Natural Gas: A Literature Survey. Int. J. Energy Econ. Policy 2018, 8, 216–249. [Google Scholar]
- IEA. Outlook for Biogas and Prospects for Organic Growth; International Energy Agency: Paris, France, 2020.
- Ammenberg, J.; Feiz, R. Assessment of Feedstock for Biogas Production, Part II: Results for Strategic Decision Making. Resour. Conserv. Recycl. 2017. [Google Scholar] [CrossRef]
- Larsson, M.; Grönkvist, S.; Alvfors, P. Upgraded Biogas for Transport in Sweden—Effects of Policy Instruments on Production, Infrastructure Deployment and Vehicle Sales. J. Clean. Prod. 2016, 112, 3774–3784. [Google Scholar] [CrossRef]
- Ottosson, M.; Magnusson, T.; Andersson, H. Shaping Sustainable Markets—A Conceptual Framework Illustrated by the Case of Biogas in Sweden. Environ. Innov. Soc. Transit. 2020, 36, 303–320. [Google Scholar] [CrossRef]
- Fallde, M.; Eklund, M. Towards a Sustainable Socio-Technical System of Biogas for Transport: The Case of the City of Linköping in Sweden. J. Clean. Prod. 2015, 98, 17–28. [Google Scholar] [CrossRef]
- Ammenberg, J.; Anderberg, S.; Lönnqvist, T.; Grönkvist, S.; Sandberg, T. Biogas in the Transport Sector—Actor and Policy Analysis Focusing on the Demand Side in the Stockholm Region. Resour. Conserv. Recycl. 2018, 129, 70–80. [Google Scholar] [CrossRef]
- Karlsson, N.P.E.; Halila, F.; Mattsson, M.; Hoveskog, M. Success Factors for Agricultural Biogas Production in Sweden: A Case Study of Business Model Innovation. J. Clean. Prod. 2017, 142, 2925–2934. [Google Scholar] [CrossRef]
- Gustafsson, M.; Ammenberg, J.; Murphy, J.D. Country Reports Summaries 2019; IEA Bioenergy: Paris, France, 2019; p. 78. [Google Scholar]
- Le Fevre, C. A Review of Prospects for Natural Gas as a Fuel in Road Transport; Oxford Institute for Energy Studies: Oxford, UK, 2019. [Google Scholar]
- Dahlgren, S.; Kanda, W.; Anderberg, S. Drivers for and Barriers to Biogas Use in Manufacturing, Road Transport and Shipping: A Demand-Side Perspective. Biofuels 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Taljegard, M.; Göransson, L.; Odenberger, M.; Johnsson, F. Impacts of Electric Vehicles on the Electricity Generation Portfolio—A Scandinavian-German Case Study. Appl. Energy 2019, 235, 1637–1650. [Google Scholar] [CrossRef]
- Eskilstuna Energi & Miljö Effektpris—En Mer Rättvis Elnätsavgift. Available online: https://www.eem.se/globalassets/privat/elnat/dokument/effektpris---en-mer-rattvis-elnatsavgift.pdf (accessed on 3 June 2020).
- Skellefteå Kraft Priser för Anslutning till Elnät Och Abonnemang. Available online: https://www.skekraft.se/foretag/elnat/priser/ (accessed on 3 June 2020).
- Tekniska Verken Världsunikt Samarbete när Toyota Tar Ett Stort Kliv Mot Fossilfrihet Med Flytande Biogas [Unique Collaboration When Toyota Takes a Big Step towards Fossil Freedom with Liquefied Biogas]. Available online: http://www.mynewsdesk.com/se/tekniskaverken/pressreleases/toyota-tar-stort-kliv-mot-fossilfrihet-med-flytande-biogas-2414206 (accessed on 15 January 2019).
- Swedish Energy Agency. Fyra Framtider—Energisystemet Efter 2020. Explorativa Scenarier (Eng.: Four Futures—The Energysystem after 2020. Explorative Scenarios); 2016. Available online: https://www.energimyndigheten.se/globalassets/klimat--miljo/fyra-framtider/fyra-framtider-for-skarmlasning.pdf (accessed on 25 January 2020).
- Rydén, B.; Sköldberg, H.; Unger, T.; Göransson, A.; Linnarsson, J.; Badano, A.; Montin, S. Elanvändningen i Sverige 2030 Och 2050—Slutrapport, Oktober 2015 (Eng.: The Use of Electricity in Sweden 2030 and 2050—Final Report, October 2015). 2015. Available online: https://www.nepp.se/etapp1/pdf/20_resultat_elanv.pdf (accessed on 25 January 2021).
- Carrara, S. Reactor Ageing and Phase-out Policies: Global and European Prospects for Nuclear Power Generation. SSRN Electron. J. 2019. [Google Scholar] [CrossRef] [Green Version]
- Hake, J.-F.; Fischer, W.; Venghaus, S.; Weckenbrock, C. The German Energiewende—History and Status Quo. Energy 2015, 92, 532–546. [Google Scholar] [CrossRef]
- Li, S.; He, S.; Wang, S.; He, T.; Chen, J. Data-Driven Battery-Lifetime-Aware Scheduling for Electric Bus Fleets. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–22. [Google Scholar] [CrossRef]
- Nykvist, B.; Nilsson, M. Rapidly Falling Costs of Battery Packs for Electric Vehicles. Nat. Clim. Chang. 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Gustafsson, M.; Svensson, N.; Anderberg, S. Energy Performance Indicators as Policy Support for Public Bus Transport—The Case of Sweden. Transp. Res. Part. Transp. Environ. 2018, 65, 697–709. [Google Scholar] [CrossRef]
- Edwards, R.; Mahieu, V.; Griesemann, J.-C.; Larivé, J.-F.; Rickeard, D.J. WELL-TO-TANK Appendix 2—Version 4a. 2014. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/wtt_appendix_2_v4a.pdf (accessed on 2 March 2020).
- Gode, J.; Martinsson, F.; Hagberg, L.; Öman, A.; Höglund, J.; Palm, D. Uppskattade Emissionsfaktorer för Bränslen, el, Värme Och Transporter; Värmeforsk: Stockholm, Sweden, 2011; p. 165. [Google Scholar]
- Palm, D.; Ek, M. Livscykelanalys av Biogas Från Avloppsverksslam; Svenskt Gastekniskt Center: Malmö, Sweden, 2010; p. 26. [Google Scholar]
- Jerksjö, M. En Kunskapsinventering om Utsläpp Från Bränslevärmare i Elbussar; IVL (Svenska miljöinstitutet): Stockholm, Sweden, 2018; p. 18. [Google Scholar]
- Swedish Meteorological and Hydrological Institute Yearly and Monthly Statistics. Available online: https://www.smhi.se/klimat/klimatet-da-och-nu/manadens-vader-och-vatten-sverige/manadens-vader-i-sverige/ars-och-manadsstatistik (accessed on 28 August 2020).
- Prussi, M.; Yugo, M.; De Prada, L.; Padella, M.; Edwards, R. JEC Well-To-Wheels Report V5; JRC Science for Policy Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Khan, M.I.; Shahrestani, M.; Hayat, T.; Shakoor, A.; Vahdati, M. Life Cycle (Well-to-Wheel) Energy and Environmental Assessment of Natural Gas as Transportation Fuel in Pakistan. Appl. Energy 2019, 242, 1738–1752. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Zhou, S.; Peng, T.-D.; Wang, G.-H.; Ou, X.-M. Petroleum Substitution, Greenhouse Gas Emissions Reduction and Environmental Benefits from the Development of Natural Gas Vehicles in China. Pet. Sci. 2018, 15, 644–656. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, O.; Dincer, I. Comparative Assessment of the Environmental Impacts of Nuclear, Wind and Hydro-Electric Power Plants in Ontario: A Life Cycle Assessment. J. Clean. Prod. 2017, 164, 848–860. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Du, H.; Zuo, J.; Yi Man Li, R.; Zhou, Z.; Bi, F.; Garvlehn, M.P. A Comparative Life-Cycle Assessment of Hydro-, Nuclear and Wind Power: A China Study. Appl. Energy 2019, 249, 37–45. [Google Scholar] [CrossRef]
- LM Agroetanol ED95. Available online: https://www.lantmannenagroetanol.se/produkter/etanol/ed95/ (accessed on 12 March 2020).
- Prussi, C.M.; Yugo, M.; Prada, L.D.; Padella, M.; Edwards, R.; Lonza, L. JRC Sciency for Policy Report. JEC Well-to-Tank Report v5. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. 2020. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC121213/jec_wtw_v5_121213_final.pdf (accessed on 26 October 2020).
- Carslaw, D.C.; Rhys-Tyler, G. New Insights from Comprehensive On-Road Measurements of NOx, NO2 and NH3 from Vehicle Emission Remote Sensing in London, UK. Atmos. Environ. 2013, 81, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Rosero, F.; Fonseca, N.; López, J.-M.; Casanova, J. Real-World Fuel Efficiency and Emissions from an Urban Diesel Bus Engine under Transient Operating Conditions. Appl. Energy 2020, 261, 114442. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Liu, S.; Qu, L. Using a Chassis Dynamometer to Determine the Influencing Factors for the Emissions of Euro VI Vehicles. Transp. Res. Part Transp. Environ. 2018, 65, 564–573. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Hu, J.; Huang, R.; Zhou, Y.; Bao, X.; Fu, L.; Hao, J. Can Euro V Heavy-Duty Diesel Engines, Diesel Hybrid and Alternative Fuel Technologies Mitigate NO X Emissions? New Evidence from on-Road Tests of Buses in China. Appl. Energy 2014, 132, 118–126. [Google Scholar] [CrossRef]
- Söderena, P.; Nylund, N.-O.; Pettinen, R.; Mäkinen, R. Real Driving NOx Emissions from Euro VI Diesel Buses; VTT Technical Research Center of Finland, Helsinki Region Transport: Helsinki, Finland, 2018. [Google Scholar]
- Grigoratos, T.; Fontaras, G.; Giechaskiel, B.; Zacharof, N. Real World Emissions Performance of Heavy-Duty Euro VI Diesel Vehicles. Atmos. Environ. 2019, 201, 348–359. [Google Scholar] [CrossRef]
- Mendoza-Villafuerte, P.; Suarez-Bertoa, R.; Giechaskiel, B.; Riccobono, F.; Bulgheroni, C.; Astorga, C.; Perujo, A. NOx, NH3, N2O and PN Real Driving Emissions from a Euro VI Heavy-Duty Vehicle. Impact of Regulatory on-Road Test Conditions on Emissions. Sci. Total Environ. 2017, 609, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Moody, A.; Tate, J. In Service CO2 and NOX Emissions of Euro 6/VI Cars, Light- and Heavy- Dutygoods Vehicles in Real London Driving: Taking the Road into the Laboratory. J. Earth Sci. Geotech. Eng. 2017, 12, 51–62. [Google Scholar]
- Järvinen, A.; Timonen, H.; Karjalainen, P.; Bloss, M.; Simonen, P.; Saarikoski, S.; Kuuluvainen, H.; Kalliokoski, J.; Dal Maso, M.; Niemi, J.V.; et al. Particle Emissions of Euro VI, EEV and Retrofitted EEV City Buses in Real Traffic. Environ. Pollut. 2019, 250, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hallquist, Å.M.; Fallgren, H.; Jerksjö, M.; Jutterström, S.; Salberg, H.; Hallquist, M.; Le Breton, M.; Pei, X.; Pathak, R.K.; et al. Roadside Assessment of a Modern City Bus Fleet: Gaseous and Particle Emissions. Atmospheric Environ. X 2019, 3, 100044. [Google Scholar] [CrossRef]
- Moldanova, J.; Tang, L.; Gustafsson, M.; Blomgren, H.; Wisell, T.; Fridell, E.; Forsberg, B. Emissions from Traffic with Alternative Fuels—Air Pollutants and Health Risks in 2020. Available online: https://www.ivl.se/download/18.7e136029152c7d48c201a6a/1461592220439/C130.pdf2015 (accessed on 9 June 2020).
- Murtonen, T.; Aakko-Saksa, P.; Kuronen, M.; Mikkonen, S.; Lehtoranta, K. Emissions with Heavy-Duty Diesel Engines and Vehicles Using FAME, HVO and GTL Fuels with and without DOC+POC Aftertreatment. SAE Int. J. Fuels Lubr. 2009, 2, 147–166. [Google Scholar] [CrossRef]
- Khan, M.I.; Yasmeen, T.; Khan, M.I.; Farooq, M.; Wakeel, M. Research Progress in the Development of Natural Gas as Fuel for Road Vehicles: A Bibliographic Review (1991–2016). Renew. Sustain. Energy Rev. 2016, 66, 702–741. [Google Scholar] [CrossRef]
- Napolitano, P.; Alfè, M.; Guido, C.; Gargiulo, V.; Fraioli, V.; Beatrice, C. Particle Emissions from a HD SI Gas Engine Fueled with LPG and CNG. Fuel 2020, 269, 117439. [Google Scholar] [CrossRef]
- Laib, F.; Braun, A.; Rid, W. Modelling Noise Reductions Using Electric Buses in Urban Traffic. A Case Study from Stuttgart, Germany. Transp. Res. Procedia 2019, 37, 377–384. [Google Scholar] [CrossRef]
- Ross, J.C.; Staiano, M.A. A Comparison of Green and Conventional Diesel Bus Noise Levels. Noise-con 2007, 2007, 8. [Google Scholar]
- Scholz-Starke, K.; Fortino, A.; Hammer, J. City Buses with Alternative Power Trains under Realistic Driving Conditions. World Electr. Veh. J. 2016, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Borén, S.; Nurhadi, L.; Ny, H. Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities. Int. J. Environ. Ecol. Eng. 2016, 10, 320–329. [Google Scholar]
- Anyogita, S.; Prakash, A.; Jain, V.K. A Study of Noise in CNG Driven Modes of Transport in Delhi. Appl. Acoust. 2004, 65, 195–201. [Google Scholar] [CrossRef]
- Conti, V.; Orchi, S.; Valentini, M.P.; Nigro, M.; Calò, R. Design and Evaluation of Electric Solutions for Public Transport. Transp. Res. Procedia 2017, 27, 117–124. [Google Scholar] [CrossRef]
- Larsson, K.; Holmes, M. Nyttoberäkningar av Minskat Buller Från Elbusstrafik i Göteborg; SP Sveriges Tekniska Forskningsinstitut: Borås, Sweden, 2016; p. 68. [Google Scholar]
- Osorio-Tejada, J.L.; Llera-Sastresa, E.; Scarpellini, S. A Multi-Criteria Sustainability Assessment for Biodiesel and Liquefied Natural Gas as Alternative Fuels in Transport Systems. J. Nat. Gas Sci. Eng. 2017, 42, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Borén, S. Electric Buses’ Sustainability Effects, Noise, Energy Use, and Costs. Int. J. Sustain. Transp. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Adheesh, S.R.; Vasisht, M.S.; Ramasesha, S.K. Air-Pollution and Economics: Diesel Bus versus Electric Bus. Curr. Sci. 2016, 110, 858–862. [Google Scholar]
- Nunns, P.; Varghese, J.; Adli, S. Better Bus Fleets for New Zealand: Evaluating Costs and Trade-Offs. In Proceedings of the IPENZ Transportation Group Conference, Christchurch, New Zealand, 22–24 March 2015; p. 15. [Google Scholar]
- Allen, L.; Cohen, M.J.; Abelson, D.; Miller, B. Fossil Fuels and Water Quality. In The World’s Water; Gleick, P.H., Ed.; Island Press/Center for Resource Economics: Washington, DC, USA, 2012; pp. 73–96. ISBN 978-1-61091-048-4. [Google Scholar]
- Burton, G.A.; Basu, N.; Ellis, B.R.; Kapo, K.E.; Entrekin, S.; Nadelhoffer, K. Hydraulic “Fracking”: Are Surface Water Impacts an Ecological Concern?: Hydraulic Fracturing versus Surface Waters. Environ. Toxicol. Chem. 2014, 33, 1679–1689. [Google Scholar] [CrossRef] [Green Version]
- Mendelssohn, I.A.; Andersen, G.L.; Baltz, D.M.; Caffey, R.H.; Carman, K.R.; Fleeger, J.W.; Joye, S.B.; Lin, Q.; Maltby, E.; Overton, E.B.; et al. Oil Impacts on Coastal Wetlands: Implications for the Mississippi River Delta Ecosystem after the Deepwater Horizon Oil Spill. BioScience 2012, 62, 562–574. [Google Scholar] [CrossRef]
- Soam, S.; Hillman, K. Factors Influencing the Environmental Sustainability and Growth of Hydrotreated Vegetable Oil (HVO) in Sweden. Bioresour. Technol. Rep. 2019, 7, 100244. [Google Scholar] [CrossRef]
- Bernesson, S.; Nilsson, D.; Hansson, P.-A. A Limited LCA Comparing Large- and Small-Scale Production of Rape Methyl Ester (RME) under Swedish Conditions. Biomass Bioenergy 2004, 26, 545–559. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Life Cycle Assessment of Various Cropping Systems Utilized for Producing Biofuels: Bioethanol and Biodiesel. Biomass Bioenergy 2005, 29, 426–439. [Google Scholar] [CrossRef]
- Malça, J.; Coelho, A.; Freire, F. Environmental Life-Cycle Assessment of Rapeseed-Based Biodiesel: Alternative Cultivation Systems and Locations. Appl. Energy 2014, 114, 837–844. [Google Scholar] [CrossRef]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; de Snoo, G.R.; Eden, P. Ecological Impacts of Arable Intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef]
- von Blottnitz, H.; Curran, M.A. A Review of Assessments Conducted on Bio-Ethanol as a Transportation Fuel from a Net Energy, Greenhouse Gas, and Environmental Life Cycle Perspective. J. Clean. Prod. 2007, 15, 607–619. [Google Scholar] [CrossRef]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of Life Cycle Assessment for Biogas Production in Europe. Renew. Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- Börjesson, P.; Mattiasson, B. Biogas as a Resource-Efficient Vehicle Fuel. Trends Biotechnol. 2008, 26, 7–13. [Google Scholar] [CrossRef]
- Florou-Paneri, P.; Christaki, E.; Giannenas, I.; Bonos, E.; Skoufos, I.; Tsinas, A.; Tzora, A.; Peng, J. Alternative Protein Sources to Soybean Meal in Pig Diets. J. Food Agric. Environ. 2014, 12, 655–660. [Google Scholar]
- Zagorakis, K.; Liamadis, D.; Milis, C.; Dotas, V.; Dotas, D. Effects of Replacing Soybean Meal with Alternative Sources of Protein on Nutrient Digestibility and Energy Value of Sheep Diets. S. Afr. J. Anim. Sci. 2018, 48, 489. [Google Scholar] [CrossRef]
- Garrett, R.D.; Rausch, L.L. Green for Gold: Social and Ecological Tradeoffs Influencing the Sustainability of the Brazilian Soy Industry. J. Peasant Stud. 2016, 43, 461–493. [Google Scholar] [CrossRef] [Green Version]
- Tomei, J.; Upham, P. Argentinean Soy-Based Biodiesel: An Introduction to Production and Impacts. Energy Policy 2009, 37, 3890–3898. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The Future of Anaerobic Digestion and Biogas Utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
- Koniuszewska, I.; Korzeniewska, E.; Harnisz, M.; Czatzkowska, M. Intensification of Biogas Production Using Various Technologies: A Review. Int. J. Energy Res. 2020. [Google Scholar] [CrossRef]
- Koppelmäki, K.; Parviainen, T.; Virkkunen, E.; Winquist, E.; Schulte, R.P.O.; Helenius, J. Ecological Intensification by Integrating Biogas Production into Nutrient Cycling: Modeling the Case of Agroecological Symbiosis. Agric. Syst. 2019, 170, 39–48. [Google Scholar] [CrossRef]
- Lantz, M.; Svensson, M.; Björnsson, L.; Börjesson, P. The Prospects for an Expansion of Biogas Systems in Sweden—Incentives, Barriers and Potentials. Energy Policy 2007, 35, 1830–1843. [Google Scholar] [CrossRef]
- Börjesson, P.; Berglund, M. Environmental Systems Analysis of Biogas Systems—Part II: The Environmental Impact of Replacing Various Reference Systems. Biomass Bioenergy 2007, 31, 326–344. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of Anaerobic Digestion on Digestate Nutrient Availability and Crop Growth: A Review: Digestate Nutrient Availability. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Pain, B.F.; Misselbrook, T.H.; Clarkson, C.R.; Rees, Y.J. Odour and Ammonia Emissions Following the Spreading of Anaerobically-Digested Pig Slurry on Grassland. Biol. Wastes 1990, 34, 259–267. [Google Scholar] [CrossRef]
- Powers, W.J.; Wilkie, A.C.; Van Horn, H.H.; Nordstedt, R.A. Effects of Hydraulic Retention Time on Performance and Effluent Odor of Conventional and Fixed-Film Anaerobic Digesters Fed Dairy Manure Wastewaters. Trans. ASAE 1997, 40, 1449–1455. [Google Scholar] [CrossRef]
- Welsh, F.W.; Schulte, D.D.; Kroeker, K.J.; Lapp, H.M. The Effect of Anaerobic Digestion upon Swine Manure Odors. Can. Agric. Eng. 1977, 19, 122–126. [Google Scholar]
- Insam, H.; Gómez-Brandón, M.; Ascher, J. Manure-Based Biogas Fermentation Residues—Friend or Foe of Soil Fertility? Soil Biol. Biochem. 2015, 84, 1–14. [Google Scholar] [CrossRef]
- Wentzel, S.; Schmidt, R.; Piepho, H.-P.; Semmler-Busch, U.; Joergensen, R.G. Response of Soil Fertility Indices to Long-Term Application of Biogas and Raw Slurry under Organic Farming. Appl. Soil Ecol. 2015, 96, 99–107. [Google Scholar] [CrossRef]
- Swedish Government Official Reports. Hållbar Slamhantering; Elanders Sverige AB: Stockholm, Sweden, 2020; ISBN 978-91-38-25017-4.
- Leung, D.Y.C.; Yang, Y. Wind Energy Development and Its Environmental Impact: A Review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H.W. Collision Effects of Wind-Power Generators and Other Obstacles on Birds. Ann. N. Y. Acad. Sci. 2008, 1134, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Botelho, A.; Ferreira, P.; Lima, F.; Pinto, L.M.C.; Sousa, S. Assessment of the Environmental Impacts Associated with Hydropower. Renew. Sustain. Energy Rev. 2017, 70, 896–904. [Google Scholar] [CrossRef]
- Pearce, J.M. Limitations of Nuclear Power as a Sustainable Energy Source. Sustainability 2012, 4, 1173–1187. [Google Scholar] [CrossRef] [Green Version]
- Rashad, S.M.; Hammad, F.H. Nuclear Power and the Environment: Comparative Assessment of Environmental and Health Impacts of Electricity-Generating Systems. Appl. Energy 2000, 65, 211–229. [Google Scholar] [CrossRef]
- Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium Recovery from Brines: A Vital Raw Material for Green Energies with a Potential Environmental Impact in Its Mining and Processing. Sci. Total Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.-C. The Effects of Organic Agriculture on Biodiversity and Abundance: A Meta-Analysis: Organic Agriculture, Biodiversity and Abundance. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Energigas Sverige Produktion Och Distribution. Available online: https://www.energigas.se/fakta-om-gas/naturgas/produktion-och-distribution/ (accessed on 11 April 2020).
- Swedegas Fakta Om Naturgas. Available online: https://www.swedegas.se/gas/naturgas/fakta_om_naturgas (accessed on 11 April 2020).
- Kärnkraftsäkerhet och Utbildning. Uran. 1 November 2009. Available online: https://analys.se/wp-content/uploads/2015/05/uran-bakgrund2009-1.pdf (accessed on 11 April 2020).
- Swedish Center for Nuclear Technology Uran som Bränsle. Available online: https://www.skc.kth.se/omkarnkraft/uran-som-bransle-1.426145 (accessed on 11 April 2020).
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life Cycle Assessment (LCA) of Waste Management Strategies: Landfilling, Sorting Plant and Incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Rulkens, W. Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options. Energy Fuels 2008, 22, 9–15. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative Study of the Methods Used for Treatment and Final Disposal of Sewage Sludge in European Countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.; Kamran, M.; Rashid, U. Impact Analysis of Vehicle-to-Grid Technology and Charging Strategies of Electric Vehicles on Distribution Networks—A Review. J. Power Source 2015, 277, 205–214. [Google Scholar] [CrossRef]
- Göransson, L.; Karlsson, S.; Johnsson, F. Integration of Plug-in Hybrid Electric Vehicles in a Regional Wind-Thermal Power System. Energy Policy 2010, 38, 5482–5492. [Google Scholar] [CrossRef]
- Delgado, J.; Faria, R.; Moura, P.; de Almeida, A.T. Impacts of Plug-in Electric Vehicles in the Portuguese Electrical Grid. Transp. Res. Part D Transp. Environ. 2018, 62, 372–385. [Google Scholar] [CrossRef]
- Gibson, R.B. Sustainability Assessment: Basic Components of a Practical Approach. Impact Assess. Proj. Apprais. 2006, 24, 170–182. [Google Scholar] [CrossRef]
- Waas, T.; Hugé, J.; Block, T.; Wright, T.; Benitez-Capistros, F.; Verbruggen, A. Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability 2014, 6, 5512–5534. [Google Scholar] [CrossRef] [Green Version]
- Lăzăroiu, G.; Ionescu, L.; Uță, C.; Hurloiu, I.; Andronie, M.; Dijmărescu, I. Environmentally Responsible Behavior and Sustainability Policy Adoption in Green Public Procurement. Sustainability 2020, 12, 2110. [Google Scholar] [CrossRef] [Green Version]
- Sönnichsen, S.D.; Clement, J. Review of Green and Sustainable Public Procurement: Towards Circular Public Procurement. J. Clean. Prod. 2020, 245, 118901. [Google Scholar] [CrossRef]
- Bernal, R.; San-Jose, L.; Retolaza, J.L. Improvement Actions for a More Social and Sustainable Public Procurement: A Delphi Analysis. Sustainability 2019, 11, 4069. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xue, J.; Yang, L.; Shi, B. Enhancing Green Public Procurement Practices in Local Governments: Chinese Evidence Based on a New Research Framework. J. Clean. Prod. 2019, 211, 842–854. [Google Scholar] [CrossRef]
- Testa, F.; Grappio, P.; Gusmerotti, N.M.; Iraldo, F.; Frey, M. Examining Green Public Procurement Using Content Analysis: Existing Difficulties for Procurers and Useful Recommendations. Environ. Dev. Sustain. 2016, 18, 197–219. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy for Sustainable Development: Key Issues and Challenges. Energy Sources Part B Econ. Plan. Policy 2007, 2, 73–83. [Google Scholar] [CrossRef]
- Nanaki, E.A.; Koroneos, C.J. Comparative LCA of the Use of Biodiesel, Diesel and Gasoline for Transportation. J. Clean. Prod. 2012, 20, 14–19. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of Liquid Biofuels from Renewable Resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Demırbas, A. The Social, Economic, and Environmental Importance of Biofuels in the Future. Energy Sources Part B Econ. Plan. Policy 2017, 12, 47–55. [Google Scholar] [CrossRef]
- Olsson, L. The Role of Electric Vehicles in Reducing Climate Impact: Swedish Public Debate 2010–2018. Int. J. Clim. Change Impacts Responses 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does Organic Farming Benefit Biodiversity? Biol. Conserv. 2005, 18. [Google Scholar] [CrossRef]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A Potential Approach for Sustainable Agriculture Development. Environ. Sci. Pollut. Res. 2017, 24, 3315–3335. [Google Scholar] [CrossRef]
- Fontaras, G.; Zacharof, N.-G.; Ciuffo, B. Fuel Consumption and CO2 Emissions from Passenger Cars in Europe—Laboratory versus Real-World Emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
- Kadijk, G.; van Mensch, P.; Spreen, J. Detailed Investigations and Real-World Emission Performance of Euro 6 Diesel Passenger Cars; TNO: Delft, The Netherlands, 2015; p. 50. [Google Scholar]
- Cameron, W.B. Informal Sociology: A Casual Introductino to Sociological Thinking; Random House: New York, NY, USA, 1963. [Google Scholar]
- Kügemann, M.; Polatidis, H. Multi-Criteria Decision Analysis of Road Transportation Fuels and Vehicles: A Systematic Review and Classification of the Literature. Energies 2020, 13, 157. [Google Scholar] [CrossRef] [Green Version]
Key Areas and Key Questions | Indicators |
---|---|
Technical performance Is the technology robust and convenient to use? | Technical maturity Daily operational availability |
Economic performance Is the technology cost-efficient with a stable cost development? | Total cost of ownership Need for investments in infrastructure Cost stability |
Environmental performance Is the technology favorable concerning environmental impacts and management of natural resources? | Non-renewable primary energy efficiency Greenhouse gas emission savings Local/regional impact on land and aquatic environments Air pollution Noise |
Social performance Is the technology favorable concerning societal and social issues? | Energy security Sociotechnical system services |
Technology | Basic Assumptions |
---|---|
Diesel | 100% fossil |
HVO | 50% slaughterhouse waste (tallow oil) and 50% PFAD (palm oil) |
FAME | 100% rapeseed |
Ethanol (ED95) | 50% maize and 50% wheat |
Natural gas | 100% fossil |
Biomethane | 33% wastewater treatment sludge, 33% manure, and 33% food waste |
Electricity | 40% nuclear, 40% hydropower, and 20% wind power |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |
---|---|---|---|---|---|---|---|
Assessment of indicator | VG | VG | VG | G | VG | VG | S |
Certainty of assessment | *** | *** | *** | *** | *** | *** | *** |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | VG | VG | VG | VG | S | - | VG | S | - | VG | VP | - | VG |
Certainty of assessment | *** | *** | *** | *** | *** | *** | *** |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | P | - | VG | VP | - | VG | S | - | VG | VP | - | P | VP | - | G | VP | - | G | VP | - | VG |
Certainty of assessment | ** | ** | * | * | ** | ** | * |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |
---|---|---|---|---|---|---|---|
Assessment of indicator | If there is no existing infrastructure, all alternatives require significant investments (i.e., Very Poor). In real cases, the specific needed infrastructure investments can be estimated and compared in a more meaningful way. | ||||||
Certainty of assessment |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | VP | - | P | VP | VP | - | S | VP | - | S | P | - | S | P | - | S | P | - | G |
Certainty of assessment | * | ** | ** | ** | * | * | * |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | VP | G | - | VG | VP | - | S | VP | VP | S | - | VG | VP | - | P |
Certainty of assessment | ** | ** | ** | ** | ** | ** | ** |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | VP | S | - | VG | P | - | VG | VP | - | S | VP | - | P | VG | VG |
Certainty of assessment | ** | ** | ** | ** | ** | ** | ** |
Diesel. | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | P | - | S | P | - | S | P | - | S | S | G | G | G |
Certainty of assessment | * | * | * | * | * | * | *** |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | S | - | VG | S | - | VG | S | - | VG | S | - | VG | S | - | VG | S | - | VG | VG |
Certainty of assessment | * | * | * | * | * | * | *** |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |
---|---|---|---|---|---|---|---|
Assessment of indicator | VP | VP | P | P | VP | G | VP |
Certainty of assessment | *** | ** | ** | ** | *** | ** | ** |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |
---|---|---|---|---|---|---|---|
Assessment of indicator | VP | VP | VP | S | S | S | VP |
Certainty of assessment | *** | *** | *** | *** | * | *** | * |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||
---|---|---|---|---|---|---|---|---|---|
Assessment of indicator | S | S | S | S | S | VG | VP | - | G |
Certainty of assessment | *** | *** | *** | *** | *** | *** | *** |
Diesel | HVO | FAME | Ethanol | Natural Gas | Biomethane | Electricity | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Technical maturity | VG | VG | VG | G | VG | VG | S | ||||||||||||||
*** | *** | *** | *** | *** | *** | *** | |||||||||||||||
Daily operational availability | VG | VG | VG | VG | S | - | VG | S | - | VG | VP | - | VG | ||||||||
*** | *** | *** | *** | *** | *** | *** | |||||||||||||||
Total cost of ownership | P | - | VG | VP | - | VG | S | - | VG | VP | - | P | VP | - | G | VP | - | G | VP | - | VG |
** | ** | * | * | ** | ** | * | |||||||||||||||
Need for investment in infrastructure | If there is no existing infrastructure, all alternatives require significant investments (i.e., Very Poor). In real cases, the specific needed infrastructure investments can be estimated and compared in a more meaningful way. | ||||||||||||||||||||
Cost stability | VP | - | P | VP | VP | - | S | VP | - | S | P | - | S | P | - | S | P | - | G | ||
* | ** | ** | ** | * | * | * | |||||||||||||||
Non-renewable primary energy efficiency | VP | G | - | VG | VP | - | S | VP | VP | S | - | VG | VP | - | P | ||||||
** | ** | ** | ** | ** | ** | ** | |||||||||||||||
Greenhouse gas emission savings | VP | S | - | VG | P | - | VG | VP | - | S | VP | - | P | VG | VG | ||||||
** | ** | ** | ** | ** | ** | ** | |||||||||||||||
Air pollution | P | - | S | P | - | S | P | - | S | S | G | G | G | ||||||||
* | * | * | * | * | * | *** | |||||||||||||||
Noise | S | - | VG | S | - | VG | S | - | VG | S | - | VG | S | - | VG | S | - | VG | VG | ||
* | * | * | * | * | * | *** | |||||||||||||||
Local/regional impact on land and aquatic environments | VP | VP | P | P | VP | G | VP | ||||||||||||||
*** | ** | ** | ** | *** | ** | ** | |||||||||||||||
Energy security | VP | VP | VP | S | S | S | VP | ||||||||||||||
*** | *** | *** | *** | * | *** | * | |||||||||||||||
Sociotechnical system services | S | S | S | S | S | VG | VP | - | G | ||||||||||||
*** | *** | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlgren, S.; Ammenberg, J. Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies. Sustainability 2021, 13, 1273. https://doi.org/10.3390/su13031273
Dahlgren S, Ammenberg J. Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies. Sustainability. 2021; 13(3):1273. https://doi.org/10.3390/su13031273
Chicago/Turabian StyleDahlgren, Sofia, and Jonas Ammenberg. 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies" Sustainability 13, no. 3: 1273. https://doi.org/10.3390/su13031273
APA StyleDahlgren, S., & Ammenberg, J. (2021). Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies. Sustainability, 13(3), 1273. https://doi.org/10.3390/su13031273