AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions
Abstract
:1. Introduction
2. Materials and Methods
- a—weight of argument (factor);
- n—dimension of the matrix.
- —maximum eigen value
- n—dimension of the matrix
3. Results
4. Discussion
5. Conclusions
- The Zawadzki and Michalec methods consider many parameters—not all of which directly affect the safety of the construction, e.g., information boards, benchmarks. The inclusion of these elements in the Zawadzki method results in an excessive overestimation or underestimation of the entire hydrotechnical structure depending on the condition of control and measuring devices.
- The scales used in the Michalec method include elements that are less important for the safety of the hydrotechnical construction. However, this method does not specify the elements of greater importance.
- The Kaca and Interewicz method is recommended for small objects, such as drainage valves and small structures on watercourses, but it is not best suited for assessing large hydrotechnical objects, such as weirs or other elements of the barrage to its too large generality. Moreover, this method does not take into account many significant elements, such as pillars.
- The selection of an appropriate method of technical condition assessment should depend on the size and character of the construction. Moreover, it is important to remember that the main purpose of the assessment is to determine whether the current technical condition does not adversely affect the safety of the object and adjacent areas [95]. The conducted analysis indicates the necessity to develop a new method that takes into account the different importance of particular elements during the assessment of the structure, with particular emphasis on the elements directly affecting safety. Therefore, the analysis uses the multicriteria decision-making method (AHP).
- The highest weight for variant I of the AHP method was given to the gates (0.23), and the smallest abutment (0.13). The obtained results confirm the previously conducted research—that gates are an important element of the construction in the context of safety, and their damage is a huge threat to the areas located below the structure. The most important elements for variant II and III were the downstream apron (weights: 0.3, 0.23), which are an important factor affecting both the damage and parameters of the hydrotechnical construction. Progressive lowering of the bottom below the damming may lead to loss of stability.
- The analysis of the results of technical condition assessment of the construction obtained with three variants of the AHP method indicated that for most of the objects in variant I a lower assessment of a given construction was obtained than in variant II. The values achieved with the proposed variant I of the weights showed correct tendencies of the received assessments concerning the actual technical condition of the structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walczak, N. Operational evaluation of a small hydropower plant in the context of sustainable development. Water 2018, 10, 1114. [Google Scholar] [CrossRef] [Green Version]
- Arbolí, J.; Polimanti, C. Tyrolean weir intakes to cope with peruvian hazardous watersheds. In Proceedings of the Third International Dam World Conference, Foz do Iguac, Brazil, 17–21 September 2018. [Google Scholar]
- Voicu, R.; Radecki-Pawlik, A.; Tymiński, T.; Mokwa, M.; Sotir, R.; Voicu, L. A potential engineering solution to facilitate upstream movement of fish in mountain rivers with weirs: Southern Carpathians, the Azuga River. J. Mt. Sci. 2020, 17, 501–515. [Google Scholar] [CrossRef]
- Suwal, N.; Huang, X.; Kuriqi, A.; Chen, Y.; Pandey, K.P.; Bhattarai, K.P. Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes. Renew. Energy 2020, 158, 453–464. [Google Scholar] [CrossRef]
- Hur, J.W.; Jang, M.-H.; Shin, K.-H.; Lee, K.-L.; Chang, K. Ecological niche space of fish communities in impounded sections of large rivers: Its application to assessment of the impact of weirs on river ecosystems. Sustainability 2018, 10, 4784. [Google Scholar] [CrossRef] [Green Version]
- Im, R.-Y.; Kim, J.Y.; Nishihiro, J.; Joo, G.-J. Large weir construction causes the loss of seasonal habitat in riverine wetlands: A case study of the Four Large River Projects in South Korea. Ecol. Eng. 2020, 152, 105839. [Google Scholar] [CrossRef]
- Dos Santos, D.R.; Schaefer, G.L.; Pellegrini, A.; Alvarez, J.W.R.; Caner, L.; Bortoluzzi, E.C. Weirs control phosphorus transfer in agricultural watersheds. Water Air Soil Pollut. 2020, 231, 1–16. [Google Scholar] [CrossRef]
- Mueller, M.; Pander, J.; Geist, J. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol. 2011, 48, 1450–1461. [Google Scholar] [CrossRef]
- Ko, D.-G.; Choi, J.-W.; An, K.-G. Preliminary ecological assessments of water chemistry, trophic compositions, and the ecosystem health on massive constructions of three weirs in Geum-River watershed. J. Ecol. Environ. 2016, 39, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Amaral, S.D.; Quaresma, A.L.; Branco, P.; Romão, F.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. Assessment of retrofitted ramped weirs to improve passage of Potamodromous fish. Water 2019, 11, 2441. [Google Scholar] [CrossRef] [Green Version]
- Baki, A.B.M.; Zhu, D.Z.; Harwood, A.; Lewis, A.; Healey, K. Rock-weir fishway I: Flow regimes and hydraulic characteristics. J. Ecohydraulics 2017, 2, 122–141. [Google Scholar] [CrossRef]
- Hämmerling, M. Selection of the optimal type of fish pass using the rembrandt method. Acta Sci. Pol. Form. Circumiectus 2019, 18, 51–61. [Google Scholar] [CrossRef]
- Chen, W.-B.; Liu, W.-C.; Huang, L.-T. The influences of weir construction on salt water intrusion and water quality in a tidal estuary—Assessment with modeling study. Environ. Monit. Assess. 2013, 185, 8169–8184. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.; Peterken, C.; Berghuis, A. Design and assessment of weirs for fish passage under drowned conditions. Ecol. Eng. 2012, 48, 61–69. [Google Scholar] [CrossRef]
- Lee, J.-W.; Lee, Y.; Woo, S.; Kim, W.; Kim, S.-J. Evaluation of water quality interaction by dam and weir operation using SWAT in the Nakong River basin of South Korea. Sustainability 2020, 12, 6845. [Google Scholar] [CrossRef]
- Fleischer, H.; Kunz, C.; Ehmann, R.; Spörel, F. Neues BAW-Merkblatt zur Bewertung der Tragfähigkeit bestehender massiver Verkehrswasserbauten. Bautechnik 2016, 93, 907–911. [Google Scholar] [CrossRef]
- Zimmer, M.; Eggeling, T. Erfahrungen mit der Nachrechnung von fünf Wehranlagen nach TbW. Bautechnik 2020, 97, 433–440. [Google Scholar] [CrossRef]
- Zygmunt, M.; Biłka, P. Application of terrestrial laser scanning to the assessment of a dam construction [in Polish]. Acta Sci. Polonorum. Form. Circumiectus 2014, 13, 115–124. [Google Scholar] [CrossRef]
- Levina, S.M.; Vasil’chenko, K.I. General problem of condition and remaining-life assessment of metallic structures in water-delivery runs of hydraulic turbines at HPP. Power Technol. Eng. 2014, 48, 102–111. [Google Scholar] [CrossRef]
- Macioł, A.; Rębiasz, B. Multi-Criteria Decision Analysis (MCDA) methods in Life-Cycle Assessment (LCA): A comparison of private passenger vehicles. Oper. Res. Decis. 2018, 28, 5–26. [Google Scholar] [CrossRef]
- Guitouni, A.; Martel, J.-M. Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 1998, 109, 501–521. [Google Scholar] [CrossRef]
- Sipahi, S.; Timor, M. The analytic hierarchy process and analytic network process: An overview of applications. Manag. Decis. 2010, 48, 775–808. [Google Scholar] [CrossRef]
- Cheng, E.W.L.; Li, H. Application of ANP in process models: An example of strategic partnering. Build. Environ. 2007, 42, 278–287. [Google Scholar] [CrossRef]
- Ali, J.; Roh, B.-H.; Lee, S. QoS improvement with an optimum controller selection for software-defined networks. PLoS ONE 2019, 14, e0217631. [Google Scholar] [CrossRef] [PubMed]
- Reisi, M.; Afzali, A.; Aye, L. Applications of analytical hierarchy process (AHP) and analytical network process (ANP) for industrial site selections in Isfahan, Iran. Environ. Earth Sci. 2018, 77, 537. [Google Scholar] [CrossRef]
- Kabir, G.; Sadiq, R.; Tesfamariam, S. A review of multi-criteria decision-making methods for infrastructure management. Struct. Infrastruct. Eng. 2014, 10, 1176–1210. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Kolios, A.; Mytilinou, V.; Martínez-Sanchís, S.; Salonitis, K. A Comparative study of multiple-criteria decision-making methods under stochastic inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Salomon, V.A.; Montevechi, J.A.B. A compilation of comparisons on the analytic hierarchy process and others multiple criteria decision making methods: Some cases developed in Brazil. In Proceedings of the 6th International Symposium on the Analytic Hierarchy Process, Bern, Switzerland, 2–4 August 2001. [Google Scholar]
- Feng, B.; Sun, K.; Chen, M.; Gao, T. The impact of core technological capabilities of high-tech industry on sustainable competitive advantage. Sustainability 2020, 12, 2980. [Google Scholar] [CrossRef] [Green Version]
- Aminudin, N.; Huda, M.; Ihwani, S.S.; Noor, S.S.M.; Basiron, B.; Jasmi, K.A.; Safar, J.; Mohamed, A.K.; Embong, W.H.W.; Mohamad, A.M.; et al. The family hope program using AHP method. Int. J. Eng. Technol. 2018, 7, 188–193. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, Z.; Wang, H. The strategy selection problem on artificial intelligence with an integrated VIKOR and AHP method under probabilistic dual hesitant fuzzy information. IEEE Access 2019, 7, 103979–103999. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Marra, M. The state of the art development of AHP (1979–2017): A literature review with a social network analysis. Int. J. Prod. Res. 2017, 55, 6653–6675. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.; Ramanathan, R. A review of applications of Analytic Hierarchy Process in operations management. Int. J. Prod. Econ. 2012, 138, 215–241. [Google Scholar] [CrossRef]
- Cay, T.; Uyan, M. Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy 2013, 30, 541–548. [Google Scholar] [CrossRef]
- Davies, M. Adaptive AHP: A review of marketing applications with extensions. Eur. J. Mark. 2001, 35, 872–894. [Google Scholar] [CrossRef]
- Hui, J.; Lim, S. An Analytic Hierarchy Process (AHP) approach for sustainable assessment of economy-based and community-based urban regeneration: The case of South Korea. Sustainability 2018, 10, 4456. [Google Scholar] [CrossRef] [Green Version]
- Danner, M.; Hummel, J.M.; Volz, F.; Van Manen, J.G.; Wiegard, B.; Dintsios, C.-M.; Bastian, H.; Gerber, A.; Ijzerman, M.J. Integrating patients’ views into health technology assessment: Analytic hierarchy process (AHP) as a method to elicit patient preferences. Int. J. Technol. Assess. Health Care 2011, 27, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.-N.; Nguyen, T.T.; Oh, J. Performance indicators framework for assessment of a sanitary sewer system using the Analytic Hierarchy Process (AHP). Sustainability 2019, 11, 2746. [Google Scholar] [CrossRef] [Green Version]
- Nagy, L.; Ruppert, T.; Abonyi, J. Analytic hierarchy process and multilayer network-based method for assembly line balancing. Appl. Sci. 2020, 10, 3932. [Google Scholar] [CrossRef]
- Jajac, N.; Marović, I.; Rogulj, K.; Pamuković, J.K. Decision support concept to selection of wastewater treatment plant location—The case study of town of Kutina, Croatia. Water 2019, 11, 717. [Google Scholar] [CrossRef] [Green Version]
- Darko, A.; Chan, A.P.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Shapira, A.; Simcha, M. AHP-based weighting of factors affecting safety on construction sites with tower cranes. J. Constr. Eng. Manag. 2009, 135, 307–318. [Google Scholar] [CrossRef]
- Bostancioglu, E.; Onder, N.P. Applying analytic hierarchy process to the evaluation of double skin façades. Arch. Eng. Des. Manag. 2018, 15, 66–82. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Chuang, Y.-J.; Huang, C.-H.; Lin, C.-Y.; Chien, S.-W. The adoption of fire safety management for upgrading the fire safety level of existing hotel buildings. Build. Environ. 2012, 51, 311–319. [Google Scholar] [CrossRef]
- Aminbakhsh, S.; Gunduz, M.; Sonmez, R. Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects. J. Saf. Res. 2013, 46, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Sun, S.; Zhang, D. Safety evaluation of construction based on the improved AHP-grey model. Wirel. Pers. Commun. 2018, 103, 209–219. [Google Scholar] [CrossRef]
- Kałuża, T.; Jasiak, A.; Krzysztofiak, B.; Zaborowski, S.; Poznaniu, U.P.W. Assessment of operation Nowy Młyn water water way system in the context of the efficiency of the continuity of the Wełna River ecosystem. Acta Sci. Pol. Form. Circumiectus 2017, 4, 233–242. [Google Scholar] [CrossRef]
- Kałuża, T.; Sojka, M.; Wróżyński, R.; Jaskuła, J.; Zaborowski, S.; Hämmerling, M. Modeling of river channel shading as a factor for changes in hydromorphological conditions of small lowland rivers. Water 2020, 12, 527. [Google Scholar] [CrossRef] [Green Version]
- Zawadzki, P. Stan techniczny jazów na terenie miasta Poznania. Rocz. AR Pozn. Melior. Inżynieria Sr. 2005, 365, 535–544. [Google Scholar]
- Michalec, B.; Cupak, A.; Tarnawski, M.; Wałęga, A.; Krakowie, U.R.W. Assessment of the technical state of the weir at szczyglice on the rudawa river. Acta Sci. Pol. Form. Circumiectus 2017, 4, 5–12. [Google Scholar] [CrossRef]
- Kaca, E.; Interewicz, A. Metodyka Oceny Stanu Technicznego Urządzeń Melioracyjnych w Systemach Nawodnień Podsiąkowych. Mat. Konf. Nauk. Postęp w Projektowaniu i Eksploatacji Systemów Nawodnień Podsiąkowych; SGGW: Warszawa, Poland, 1991; pp. 90–99. [Google Scholar]
- Liberacki, D.; Bykowski, J.; Kozaczyk, P.; Skwierawski, M. En evaluation of maintance and exploitation of land improvement devices in north wielkopolska area. Inżynieria Ekol. 2016, 49, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Kocięcka, J.; Liberacki, D.; Stachowski, P.; Korytowski, M.; Kupiec, J.M. Assessment of the ecological status and the need for renovation of drainage ditches in the Strumień Junikowski catchment. Annu. Set Environ. Prot. 2019, 21, 1473–1488. [Google Scholar]
- Przybyła, C.; Sojka, M.; Wróżyński, R.; Pyszny, K. Planowanie Małej Retencji w Lasach na Przykładzie Puszczy Noteckie; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017. [Google Scholar]
- Gabriel-Martin, I.; Sordo-Ward, A.; Santillan, D.; Garrote, L. Flood control versus water conservation in reservoirs: A new policy to allocate available storage. Water 2020, 12, 994. [Google Scholar] [CrossRef] [Green Version]
- Chanson, H. A review of accidents and failures of stepped spillways and weirs. Proc. Inst. Civ. Eng. Water Marit. Eng. 2000, 142, 177–188. [Google Scholar] [CrossRef]
- Noeiaghaei, T.; Mukherjee, A.; Dhami, N.; Chae, S.-R. Biogenic deterioration of concrete and its mitigation technologies. Constr. Build. Mater. 2017, 149, 575–586. [Google Scholar] [CrossRef]
- Oliveira, T.V.; Nogueira, A.A. Analysis of development of carbonation and surface wear of the concrete: A case study in Ship Lock 1 of the transposition system of Tucuruí dam. J. Build. Pathol. Rehabil. 2016, 1, 17. [Google Scholar] [CrossRef]
- Khassaf, S.I.; Aqeel, S.; Al-Adili, A.S.; Rasheed, R.S. Seepage Analysis Underneath Diyala Weir Foundation. In Water Technology conference; IWTC: Hurghada, Egypt, 2009. [Google Scholar]
- Sztubecki, J.; Mrówczyńska, M.; Sztubecka, M. Deformation monitoring of the steel cylinder of czersko polskie—A historical weir in bydgoszcz. Arch. Civ. Eng. Environ. 2016, 9, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Larosche, C. Types and Causes of Cracking in Concrete Structures. In Failure, Distress and Repair of Concrete Structures; Elsevier: Amsterdam, The Netherlands, 2009; pp. 57–83. [Google Scholar]
- Franek, J.; Kresta, A. Judgment scales and consistency measure in AHP. Procedia Econ. Finance 2014, 12, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Saaty, R.M. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Wijitkosum, S.; Sriburi, T. Fuzzy AHP integrated with GIS analyses for drought risk assessment: A case study from upper Phetchaburi River basin, Thailand. Water 2019, 11, 939. [Google Scholar] [CrossRef] [Green Version]
- Zghibi, A.; Mirchi, A.; Msaddek, M.H.; Merzougui, A.; Zouhri, L.; Taupin, J.D.; Chkirbene, A.; Chenini, I.; Tarhouni, J. Using analytical hierarchy process and multi-influencing factors to map groundwater recharge zones in a semi-arid Mediterranean coastal aquifer. Water 2020, 12, 2525. [Google Scholar] [CrossRef]
- Chmist, J.; Hämmerling, M. Selecting the most effective method of recultivation of water reservoirs using the AHP metod. Acta Sci. Pol. Form. Circumiectus 2016, 15, 27–39. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Moslem, S.; Blaschke, T.; Duleba, S. Sustainable urban transport planning considering different stakeholder groups by an interval-AHP decision support model. Sustainability 2018, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Chen, G.; Mo, R.; Wang, M.; Bao, Y. Benefit evaluation of water and soil conservation measures in shendong based on particle swarm optimization and the analytic hierarchy process. Water 2020, 12, 1955. [Google Scholar] [CrossRef]
- Hämmerling, M.; Spychała, M. The use of analytical hierarchy process (AHP) for choosing of the on-site wastewater treatment plant with soil absorption system. Acta Sci. Pol. Form. Circumiectus 2016, 14, 15–28. [Google Scholar] [CrossRef]
- Karleuša, B.; Hajdinger, A.; Tadić, L. The application of multi-criteria analysis methods for the determination of priorities in the implementation of irrigation plans. Water 2019, 11, 501. [Google Scholar] [CrossRef] [Green Version]
- Kurbatova, A.; Abu-Qdais, H.A. Using multi-criteria decision analysis to select waste to energy technology for a mega city: The case of Moscow. Sustainability 2020, 12, 9828. [Google Scholar] [CrossRef]
- Nekhay, O.; Arriaza, M. How attractive is upland olive groves landscape? Application of the analytic hierarchy process and gis in southern Spain. Sustainability 2016, 8, 1160. [Google Scholar] [CrossRef] [Green Version]
- Do, H.T.; Lo, S.-L.; Thi, L.A.P. Calculating of river water quality sampling frequency by the analytic hierarchy process (AHP). Environ. Monit. Assess. 2012, 185, 909–916. [Google Scholar] [CrossRef]
- Hachoł, J.; Hämmerling, M.; Bondar-Nowakowska, E. Applying the Analytical Hierarchy Process (AHP) into the effects assessment of river training works. J. Water Land Dev. 2017, 35, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.G.; Liu, Z. Research on risk assessment of reservoir by AHP-fuzzy comprehensive analysis method. Adv. Mater. Res. 2012, 430–432, 1974–1978. [Google Scholar] [CrossRef]
- Laks, I.; Walczak, Z. Efficiency of polder modernization for flood protection. Case study of golina polder (Poland). Sustainability 2020, 12, 8056. [Google Scholar] [CrossRef]
- Bozanić, D.; Tešić, D.; Milićević, J. A hybrid fuzzy ahp-mabac model: Application in the serbian army—The selection of the location for deep wading as a technique of crossing the river by tanks. Decis. Mak. Appl. Manag. Eng. 2018, 1, 143–164. [Google Scholar] [CrossRef]
- Peng, S.-H. Landscape assessment for stream regulation works in a watershed using the Analytic Network Process (ANP). Sustainability 2019, 11, 1540. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.-H.; Tang, C. Blending the analytic hierarchy process and fuzzy logical systems in scenic beauty assessment of check dams in streams. Water 2015, 7, 6983–6998. [Google Scholar] [CrossRef] [Green Version]
- Kubicz, J.; Hämmerling, M.; Walczak, N. The use of AHP method for the determination of the most environmentally beneficial variants of barrages. J. Ecol. Eng. 2015, 16, 36–43. [Google Scholar] [CrossRef]
- Fuentes-Bargues, J.L.; Ferrer-Gisbert, P.S. Selecting a small run-of-river hydropower plant by the analytic hierarchy process (AHP): A case study of Miño-Sil river basin, Spain. Ecol. Eng. 2015, 85, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Katoch, S.S. Sustainability assessment and ranking of run of the river (RoR) hydropower projects using analytical hierarchy process (AHP): A study from Western Himalayan region of India. J. Mt. Sci. 2015, 12, 1315–1333. [Google Scholar] [CrossRef]
- Shao, Z.; Jahangir, Z.; Yasir, Q.M.; Rahman, A.-U.; Mahmood, S. Identification of potential sites for a multi-purpose dam using a dam suitability stream model. Water 2020, 12, 3249. [Google Scholar] [CrossRef]
- Njiru, F.M. Hydrological Information for Dam Site Selection by Integrating Geographic Information System (GIS) and An-alytical Hierarchical Process (AHP). Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2017. Available online: http://erepository.uonbi.ac.ke/handle/11295/101173 (accessed on 10 January 2021).
- Dash, P.; Sar, J. Identification and validation of potential flood hazard area using GIS -based multi-criteria analysis and satellite data-derived water index. J. Flood Risk Manag. 2020, 13, 12620. [Google Scholar] [CrossRef]
- Luu, C.; Von Meding, J. A flood risk assessment of Quang Nam, Vietnam using spatial multicriteria decision analysis. Water 2018, 10, 461. [Google Scholar] [CrossRef]
- Sinha, R.; Bapalu, G.V.; Singh, L.K.; Rath, B.S. Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP). J. Indian Soc. Remote. Sens. 2008, 36, 335–349. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, P.-A.; Zhang, Y.; Xu, B.; Ma, B.; Yan, K. Integrated flood risk assessment and zonation method: A case study in Huaihe River basin, China. Nat. Hazards 2015, 78, 635–651. [Google Scholar] [CrossRef]
- Yagoub, M.M.; Alsereidi, A.A.; Mohamed, E.A.; Periyasamy, P.; Alameri, R.; Aldarmaki, S.; Alhashmi, Y. Newspapers as a validation proxy for GIS modeling in Fujairah, United Arab Emirates: Identifying flood-prone areas. Nat. Hazards 2020, 104, 111–141. [Google Scholar] [CrossRef]
- Şerbu, R.; Mârza, B.; Borza, S. A spatial analytic hierarchy process for identification of water pollution with GIS software in an eco-economy environment. Sustainability 2016, 8, 1208. [Google Scholar] [CrossRef] [Green Version]
- Tsiko, R.G.; Haile, T.S. Integrating geographical information systems, fuzzy logic and analytical hierarchy process in modelling optimum sites for locating water reservoirs. A case study of the Debub district in Eritrea. Water 2011, 3, 254–290. [Google Scholar] [CrossRef] [Green Version]
- AMBER Consortium. The AMBER Barrier Atlas. A Pan-European Database of Artificial Instream Barriers. Version 1.0. 29 June 2020. Available online: https://amber.international/european-barrier-atlas/ (accessed on 28 December 2020).
- Stefanyshyn, D. Simulation of accident scenarios and technogenic emergencies in safety analysis of hydrotechnical structures. Power Technol. Eng. 2002, 36, 37–40. [Google Scholar] [CrossRef]
Elements of Construction | Weight Value | |
---|---|---|
Zawadzki Method | Michalec Method | |
A. Solid elements: (abutments, pillars, footbridge, downstream, and upstream apron) | 1.0 | 1.0 |
Surface | ||
Cracks | ||
Losses | ||
Reinforcement exposing | ||
Dripstones and lekages | ||
Discolorations | ||
Lichens | ||
B. Movable elements: | 1.0 | 1.0 |
Gates | ||
Lifting mechanism | ||
Deformations | ||
Corrosion | ||
Conservation | ||
C. Monitoring and measurement devices: | 1.0 | 0.25 |
Benchmarks | ||
Piezometers | ||
Water-level gauges | ||
Information boards | 1.0 | 0.0 |
Elements of Assessment | The Condition of the Element and Its Value | ||
---|---|---|---|
Good Condition (5) | Satisfactory Condition (3) | Unsatisfactory Condition (1) | |
Abutments | No cracks | Slight cracks | Deep cracks |
Abutment backfill | Vertical position correct | Vertical arrangement with lowering of the terrain behind the abutments, 10–20 cm | Clearly tilted with a lowering of the ground behind the abutments >20 cm |
Lifting mechanism | Complete, functional | Incomplete, faulty | Damaged or missing |
Sluice | Complete, operational | Start-up difficult, corroded | Blocked, holes, or missing |
Sluice guide | Functional, tight | Uneven at the contact with the valve | Damaged or missing |
Impervious apron | Equal | On contact with sluice uneven, stamped | Damaged, loss of concrete >10 dm3 |
Upstream apron | Damaged < 10% of the area | Damaged 10–20% of the surface | Damaged >20% of the surface |
Downstream apron | Damaged <10% of the area | Damaged 10–20% of the surface | Damaged >20% of the surface |
Building signposting | Full, clear | Incomplete (e.g., no building number) | Missing |
Corrosion protection | Full | Incomplete | Missing |
Start-up protection | Sufficient | Insufficient | Missing |
Footbridge | Efficient | Damaged | Missing |
Sealing | Good | Broken | Missing |
Matrix Size | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Random Index (RI) | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Elements of Assessment | Assessment | ||||
---|---|---|---|---|---|
Abutments | Pillars | Footbridge | Upstream Apron | Downstream Apron | |
Surface | 4 | 3 | 4 | 3 | 4 |
Cracks | 4 | 4 | 5 | 4 | 5 |
Losses | 3 | 2 | 4 | 5 | 3 |
Uncover of reinforcedrods | 3 | 5 | 5 | 5 | |
Dripstone and lekages | 5 | 5 | 5 | ||
Discolorations | 4 | 4 | 4 | ||
Lichens | 4 | 3 | 4 | 4 | 1 |
Movable Elements: | Assessment | Control-Measuring Devices | Assessment |
---|---|---|---|
Gates | 5 | Benchmarks | 1 |
Lifting mechanism | 2 | Piezometers | 1 |
Deformations | 5 | Water-level gauges | 5 |
Corrosion | 5 | Information boards | 5 |
Conservation | 3 |
Assessment Elements | Assessment | Assessment Value |
---|---|---|
Abutments | No cracks | 5 |
Abutment backfill | Vertical position correct | 5 |
Lifting mechanism | Damaged or missing | 1 |
Sluice | Complete, operational | 5 |
Sluice guide | Functional, tight | 5 |
Impervious apron | Equal | 5 |
Upstream apron | Destroyed 10–20% | 3 |
Downstream apron | Destroyed <10% | 5 |
Building signposting | Full, clear | 5 |
Corrosion protection | Full, clear | 5 |
Start-up protection | Sufficient | 5 |
Footbridge | Efficient | 5 |
Sealing | Good | 5 |
Elements | Zawadzki Method | Kaca and Interewicz Method | Michalec Method |
---|---|---|---|
Abutments | 3.86 | 5.00 | 3.86 |
Pillars | 3.71 | 5.00 | 3.71 |
Lifting mechanism | 3.75 | 3.67 | 3.75 |
Gates | 5.00 | 5.00 | 5.00 |
Downstream apron | 3.25 | 5.00 | 3.25 |
Upstream apron | 4.29 | 3.00 | 4.29 |
Control-measuring devices | 3.00 | 5.00 | 1.75 |
Footbridge | 4.40 | 5.00 | 4.40 |
Object Number | Object Name | Object Coordinates in EPSG2180 | The Results of the Assessment of the Technical Condition of the Individual Methods | ||
---|---|---|---|---|---|
Kaca and Interewicz | Zawadzki | Michalec | |||
1 | Mill weir Oborniki | 351,882.80; 534,109.60 | 4.85 | 4.56 | 4.66 |
2 | Weir Oborniki | 353,313.79; 535,766.27 | 2.85 | 2.98 | 3.15 |
3 | Sill Jaracz | 357,134.33; 540,598.95 | 3.00 | 2.87 | 2.77 |
4 | Weir Jaracz I | 357,109.00; 540,648.80 | 4.54 | 3.85 | 3.91 |
5 | Weir Jaracz II | 357,030.00; 540,674.00 | 3.38 | 3.51 | 3.77 |
6 | Mill weir Nowy Młyn | 361,492.90; 545,388.70 | 1.62 | 2.64 | 2.86 |
7 | Weir Nowy Młyn | 361,534.79; 545,439.10 | 1.62 | 2.14 | 2.22 |
8 | Weir Rogoźno | 365,436.60; 545,025.10 | 4.69 | 4.42 | 4.68 |
Maintaining the Water Damming Level | Erosion under the Foundation | Hydraulic Fracturing | Lichens | Corrosion | Losses and Cracks | Deformations | Dripstone and Discolorations | Erosion Material | |
---|---|---|---|---|---|---|---|---|---|
Local vector | 0.082 | 0.368 | 0.550 | 0.030 | 0.142 | 0.267 | 0.225 | 0.047 | 0.289 |
CR value | 0.074 | 0.028 |
Abutments | Gates | Downstream Apron | Upstream Apron | Pillars | Lifting Mechanism | ||
---|---|---|---|---|---|---|---|
Maintaining the water damming level | Local weight | 0.0303 | 0.3133 | 0.0399 | 0.1142 | 0.2932 | 0.2092 |
CR | 0.0387 | ||||||
Erosion under the foundation | Local weight | 0.0716 | 0.1213 | 0.4572 | 0.0421 | 0.2467 | 0.0611 |
CR | 0.0717 | ||||||
Hydraulic fracturing | Local weight | 0.0453 | 0.1296 | 0.2707 | 0.4212 | 0.0718 | 0.0614 |
CR | 0.0694 | ||||||
Lichens | Local weight | 0.1565 | 0.2298 | 0.0549 | 0.0474 | 0.1795 | 0.3320 |
CR | 0.0752 | ||||||
Corrosion | Local weight | 0.1101 | 0.3127 | 0.0498 | 0.0434 | 0.1272 | 0.3568 |
CR | 0.0798 | ||||||
Losses and cracks | Local weight | 0.1324 | 0.3184 | 0.0747 | 0.0585 | 0.1369 | 0.2792 |
CR | 0.0492 | ||||||
Deformations | Local weight | 0.1282 | 0.3531 | 0.0545 | 0.0529 | 0.1554 | 0.2560 |
CR | 0.0667 | ||||||
Dripstone and discolorations | Local weight | 0.1010 | 0.3135 | 0.0660 | 0.0680 | 0.2612 | 0.1902 |
CR | 0.0733 | ||||||
Erosion material | Local weight | 0.1578 | 0.0461 | 0.3596 | 0.2762 | 0.1172 | 0.0431 |
CR | 0.0534 |
Maintaining the Water Damming Level | Erosion under the Foundation | Hydraulic Fracturing | Lichens | Corrosion | Losses and Cracks | Deformations | Dripstone and Discolorations | Erosion Material | Sum | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Variant I | Abutments | 0.0012 | 0.0132 | 0.0125 | 0.0023 | 0.0078 | 0.0177 | 0.0144 | 0.0024 | 0.0228 | 0.0943 |
Gates | 0.0129 | 0.0223 | 0.0356 | 0.0034 | 0.0222 | 0.0425 | 0.0397 | 0.0074 | 0.0066 | 0.1927 | |
Downstream apron | 0.0016 | 0.0841 | 0.0744 | 0.0008 | 0.0035 | 0.0100 | 0.0061 | 0.0016 | 0.0519 | 0.2341 | |
Upstream apron | 0.0047 | 0.0077 | 0.1158 | 0.0007 | 0.0031 | 0.0078 | 0.0060 | 0.0016 | 0.0399 | 0.1873 | |
Pillars | 0.0120 | 0.0454 | 0.0197 | 0.0027 | 0.0090 | 0.0183 | 0.0175 | 0.0062 | 0.0169 | 0.1478 | |
Lifting mechanism | 0.0086 | 0.0112 | 0.0169 | 0.0049 | 0.0253 | 0.0373 | 0.0288 | 0.0045 | 0.0062 | 0.1438 | |
Sum | 1.0000 | ||||||||||
Variant II | Abutments | 0.0022 | 0.0235 | 0.0222 | 0.0005 | 0.0017 | 0.0039 | 0.0032 | 0.0005 | 0.0050 | 0.0627 |
Gates | 0.0229 | 0.0397 | 0.0634 | 0.0008 | 0.0049 | 0.0093 | 0.0087 | 0.0016 | 0.0015 | 0.1529 | |
Downstream apron | 0.0029 | 0.1498 | 0.1325 | 0.0002 | 0.0008 | 0.0022 | 0.0013 | 0.0003 | 0.0114 | 0.3014 | |
Upstream apron | 0.0083 | 0.0138 | 0.2061 | 0.0002 | 0.0007 | 0.0017 | 0.0013 | 0.0004 | 0.0088 | 0.2412 | |
Pillars | 0.0214 | 0.0808 | 0.0351 | 0.0006 | 0.0020 | 0.0040 | 0.0038 | 0.0014 | 0.0037 | 0.1529 | |
Lifting mechanism | 0.0153 | 0.0200 | 0.0300 | 0.0011 | 0.0056 | 0.0082 | 0.0063 | 0.0010 | 0.0014 | 0.0889 | |
Sum | 1.0000 | ||||||||||
Variant III | Abutments | 0.0003 | 0.0029 | 0.0028 | 0.0041 | 0.0139 | 0.0314 | 0.0256 | 0.0043 | 0.0405 | 0.1258 |
Gates | 0.0029 | 0.0050 | 0.0079 | 0.0061 | 0.0395 | 0.0756 | 0.0706 | 0.0132 | 0.0118 | 0.2325 | |
Downstream apron | 0.0004 | 0.0187 | 0.0165 | 0.0015 | 0.0063 | 0.0177 | 0.0109 | 0.0028 | 0.0923 | 0.1670 | |
Upstream apron | 0.0010 | 0.0017 | 0.0257 | 0.0013 | 0.0055 | 0.0139 | 0.0106 | 0.0029 | 0.0709 | 0.1334 | |
Pillars | 0.0027 | 0.0101 | 0.0044 | 0.0047 | 0.0161 | 0.0325 | 0.0311 | 0.0110 | 0.0301 | 0.1426 | |
Lifting mechanism | 0.0019 | 0.0025 | 0.0037 | 0.0088 | 0.0450 | 0.0663 | 0.0512 | 0.0080 | 0.0111 | 0.1985 | |
Sum | 1.0000 |
Object Number | Object Name | AHP | ||
---|---|---|---|---|
Variant I | Variant II | Variant III | ||
1 | Mill weir Oborniki | 4.66 | 4.55 | 4.60 |
2 | Weir Oborniki | 2.63 | 2.77 | 2.70 |
3 | Sill Jaracz | 3.50 | 3.08 | 3.27 |
4 | Weir Jaracz I | 4.04 | 3.92 | 3.98 |
5 | Weir Jaracz II | 3.13 | 3.18 | 3.16 |
6 | Mill weir Nowy Młyn | 1.84 | 2.18 | 1.98 |
7 | Weir Nowy Młyn | 2.08 | 2.38 | 2.20 |
8 | Weir Rogoźno | 4.75 | 4.83 | 4.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hämmerling, M.; Kocięcka, J.; Zaborowski, S. AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions. Sustainability 2021, 13, 1304. https://doi.org/10.3390/su13031304
Hämmerling M, Kocięcka J, Zaborowski S. AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions. Sustainability. 2021; 13(3):1304. https://doi.org/10.3390/su13031304
Chicago/Turabian StyleHämmerling, Mateusz, Joanna Kocięcka, and Stanisław Zaborowski. 2021. "AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions" Sustainability 13, no. 3: 1304. https://doi.org/10.3390/su13031304
APA StyleHämmerling, M., Kocięcka, J., & Zaborowski, S. (2021). AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions. Sustainability, 13(3), 1304. https://doi.org/10.3390/su13031304