Biochar Role in the Sustainability of Agriculture and Environment
Abstract
:1. Introduction
2. Brief Methodology
3. Formulation, Morphology and Biochemistry of Biochar
4. Biochar and Nutrients
5. Biochar and Chemical Properties
6. Biochar and Physical Properties
7. Effect of Biochar on Microbiota
8. Biochar and Abatement of Greenhouse Gases
9. Biochar and Soil Fertility
9.1. Effect of Biochar on Soil Nutrients
9.2. Effect of Biochar on Soil Organic Matter
10. Affinity of Biochar and Soil Characteristics
11. Immutability of Soil Organic Matter and Soil Configuration
12. Biochar and Sustainability
13. Constraints of Biochar Application
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Nair, V.D.; Nair, P.K.; Dari, B.; Freitas, A.M.; Chatterjee, N.; Pinheiro, F.M. Biochar in the agroecosystem–climate-change–sustainability nexus. Front. Plant. Sci. 2017, 8, 2051. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. Biochar for environmental management. Sci. Technol. 2009, 1, 1–12. [Google Scholar]
- Ilvo, P.; Uog, P.; Slu, P.; Inra, P.; Upm, P.; Unitus, P.; Iamo, P.; Iea-ar, P. D5.2 Participatory Impact Assessment of Sustainabil-ity and Resilience of EU Farming Systems. 2019. No. June 2017. Available online: https://www.surefarmproject.eu/wordpress/wp-content/uploads/2019/06/D5.2-FoPIA-SURE-Farm-Cross-country-report.pdf (accessed on 26 January 2021).
- Lu, L.; Yu, W.; Wang, Y.; Zhang, K.; Zhu, X.; Zhang, Y.; Chen, B. Application of biochar-based materials in environmental remediation: From multi-level structures to specific devices. Biochar 2020, 2, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchère, V.; Alberola, C.; Ménassieu, J. Agronomy for sustainable agriculture: A review. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 1–7. [Google Scholar]
- Jalal, F.; Arif, M.; Akhtar, K.; Khan, A.; Naz, M.; Said, F.; Ali, M. Biochar Integration with Legume Crops in Summer Gape Synergizes Nitrogen Use Efficiency and Enhance Maize Yield. Agronomy 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Nie, E.; Khan, A.; Feng, Y.; Yang, G.; Wang, H. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 2020, 741, 140488. [Google Scholar] [CrossRef]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B.; Davies, C.A. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.S.; Kim, K.H.; Ok, Y.S.; Kuzyakov, Y. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere 2018, 198, 40. [Google Scholar] [CrossRef]
- Arif, M.; Ali, S.; Ilyas, M.; Riaz, M.; Akhtar, K.; Ali, K.; Wang, H. Enhancing phosphorus availability, soil organic carbon, maize productivity, and farm profitability through biochar and organic-inorganic fertilizers in an irrigated maize agroecosystem under semi-arid climate. Soil Use Manag. 2020. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Arunachalam, K. Biochar: Production, properties, and emerging role as a support for enzyme immobilization. J. Clean. Prod. 2020, 255, 120267. [Google Scholar] [CrossRef]
- Sewu, D.D.; Tran, H.N.; Ohemeng-Boahen, G.; Woo, S.H. Facile magnetic biochar production route with new goethite nanoparticle precursor. Sci. Total Environ. 2020, 717, 137091. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Meng, J.; Muhammad, N.; Liu, X.; Wang, H.; He, Y.; Xu, J. The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. J. Soils Sediments 2013, 13, 989–1000. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- De Freitas, M.I.; Lucas, A.A.T.; Gonzaga, M.I.S. Biochar and Its Impact on Soil Properties and on The Growth of Okra Plants. Colloquium Agrariae. 2020, Volume 16, pp. 29–39. Available online: http://revistas.unoeste.br/index.php/ca/article/view/3302 (accessed on 26 January 2021).
- Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Jiefei, M.; Zhang, K.; Chen, B. Linking hydrophobicity of biochar to the water repellency and waterholding capacity of biochar-amended soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar]
- Jia, Y.; Hu, Z.; Mu, J.; Zhang, W.; Xie, Z.; Wang, G. Preparation of biochar as a coating material for biochar-coated urea. Sci. Total Environ. 2020, 731, 139063. [Google Scholar] [CrossRef]
- Tang, Y.H.; Liu, S.H.; Tsang, D.C. Microwave-assisted production of CO2-activated biochar from sugarcane bagasse for electrochemical desalination. J. Hazard. Mater. 2020, 383, 121192. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Awasthi, M.K. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota–A review. Soil Boil. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Zhang, H. Heavy metal phytoavailability in a contaminated soil of northeastern Oklahoma as affected by biochar amendment. Environ. Sci. Pollut. Res. 2019, 26, 33582–33593. [Google Scholar] [CrossRef] [PubMed]
- Albert, H.A.; Li, X.; Jeyakumar, P.; Wei, L.; Huang, L.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.; Rinklebe, J. Influence of Biochar and Soil Properties on Soil and Plant Tissue Concentrations of Cd and Pb: A Meta-Analysis. Sci. Total Environ. 2020, 755, 142582. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, X.; Wang, H.; Sarkar, B.; Shaheen, S.M.; Gielen, G.; Rinklebe, J. Animal carcass-and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. J. Environ. Manag. 2020, 261, 110246. [Google Scholar] [CrossRef]
- Xinyu, J.; Tan, X.; Cheng, J.; Michelle, L.; Haddix, M.; Cotrufo, F. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations. Geoderma 2019, 333, 99–107. [Google Scholar]
- Aller, D.; Rathke, S.; Laird, D.; Cruse, R.; Hatfield, J. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 2017, 307, 114–121. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013, 193, 122–130. [Google Scholar] [CrossRef]
- Wang, K.; Peng, N.; Lu, G.; Dang, Z. Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar. Waste Biomass Valoriz. 2020, 11, 613–624. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, N.; Purakayastha, T.J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017, 577, 376. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Das, K.C.; Tassistro, A.S.; Sonon, L.; Harris, K.; Hawkins, B. Characterization of char for agricultural use in the soils of the southeastern United States. In Amazonian Dark Earths: Wim Sombroek’s Vision; Springer: Dordrecht, Germany, 2009; p. 433. [Google Scholar]
- Purakayastha, T.J.; Kumari, S.; Pathak, H. Characterization, stability, and microbial effects of four biochars produced from crop residues. Geoderma 2015, 239, 293. [Google Scholar] [CrossRef]
- El-Bassi, L.; Azzaz, A.A.; Jellali, S.; Akrout, H.; Marks, E.A.N.; Ghimbeu, C.M.; Jeguirim, M. Application of Olive Mill Waste-Based Biochars in Agriculture: Impact on Soil Properties, Enzymatic Activities and Tomato Growth. Sci. Total Environ. 2021, 755, 142531. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Chang, S.T. Antioxidant potency of phenolic phytochemicals from the root extract of Acacia confusa. Ind. Crops Prod. 2013, 49, 871–878. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Adhikari, S.; Ma, H.; Kim, D.-H.; Bai, Y.; Hou, D. Progress and Future Prospects in Biochar Composites: Application and Reflection in the Soil Environment. Crit. Rev. Environ. Sci. Technol. 2020, 1–53. [Google Scholar] [CrossRef]
- Wei, L.; Shutao, W.; Jin, Z.; Tong, X. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour. Technol. 2014, 154, 148–154. [Google Scholar]
- Smebye, A.; Alling, V.; Vogt, R.D.; Gadmar, T.C.; Mulder, J.; Cornelissen, G.; Hale, S.E. Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 2016, 142, 100–105. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Sun, H.; Zhou, S.; Zou, G. Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresour. Technol. 2016, 200, 876–883. [Google Scholar] [CrossRef]
- Jain, M.S.; Jambhulkar, R.; Kalamdhad, A.S. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics, and nutritional properties. Bioresour. Technol. 2018, 253, 204–213. [Google Scholar] [CrossRef]
- Masto, R.E.; Ansari, M.A.; George, J.; Selvi, V.; Ram, L. Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecol. Eng. 2013, 58, 314–322. [Google Scholar] [CrossRef]
- Jindo, K.; Sonoki, T.; Matsumoto, K.; Canellas, L.; Roig, A.; Sanchez-Monedero, M.A. Influence of biochar addition on the humic substances of composting manures. Waste Manag. 2016, 49, 545–552. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa–Hersztek, M.; Tabor, S. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 2018, 315, 27–35. [Google Scholar] [CrossRef]
- Bao, H.; Wang, J.; Zhang, H.; Li, J.; Li, H.; Wu, F. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils. J. Hazard. Mater. 2020, 385, 121595. [Google Scholar] [CrossRef] [PubMed]
- Okareh, O.T.; Gbadebo, A.O. Enhancement of Soil Health Using Biochar. Appl. Biochar Environ. Saf. 2020, 143. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology, and Implementation; Routledge: Abingdon, UK, 2015; pp. 1–33. [Google Scholar]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Lentz, R.D. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Q. 2012, 41, 973–989. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Yuan, X.; Li, Y.; Han, L. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresour. Technol. 2020, 296, 122318. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Mullen, C.A.; Boateng, A.A.; Goldberg, N.M.; Lima, I.M.; Laird, D.A.; Hicks, K.B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 2010, 34, 67–74. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod. Biorefining 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Antonangelo, J.A.; Zhang, H.; Sun, X.; Kumar, A. Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar 2019, 1, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Huhnke, R.L. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 2013, 6, 3972–3986. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O: C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, N.; Aziz, R.; Brookes, P.C.; Xu, J. Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult. J. Soil Sci. Plant. Nutr. 2017, 17, 808–823. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.A.; Khalid, M.; Aon, M.; Abbas, G.; Tahir, M.; Amjad, M.; Akhtar, S.S. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Arch. Agron. Soil Sci. 2017, 63, 2048–2061. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Zhao, Y.; Jing, M.; Xu, Y.; Chen, J. A field experiment on enhancement of crop yield by rice straw and corn stalk-derived biochar in Northern China. Sustainability 2015, 7, 13713–13725. [Google Scholar] [CrossRef] [Green Version]
- O’toole, A.; Moni, C.; Weldon, S.; Schols, A.; Carnol, M.; Bosman, B.; Rasse, D.P. Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway. Agriculture 2018, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Azeem, M.; Hayat, R.; Hussain, Q.; Ahmed, M.; Pan, G.; Tahir, M.I.; Imran, M.; Irfan, M. Biochar Improves Soil Quality and N2-Fixation and Reduces Net Ecosystem CO2 Exchange in a Dryland Legume-Cereal Cropping System. Soil Tillage Res. 2019, 186, 172–182. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant. Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant. Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Lai, W.Y.; Lai, C.M.; Ke, G.R.; Chung, R.S.; Chen, C.T.; Cheng, C.H.; Chen, C.C. The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J. Taiwan Inst. Chem. Eng. 2013, 44, 1039–1044. [Google Scholar] [CrossRef]
- Sigua, G.C.; Stone, K.C.; Hunt, P.G.; Cantrell, K.B.; Novak, J.M. Increasing biomass of winter wheat using sorghum biochars. Agron. Sustain. Dev. 2015, 35, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, V.; Mulder, J.; Shitumbanuma, V.; Sparrevik, M.; Børresen, T.; Cornelissen, G. Farmer-led maize biochar trials: Effect on crop yield and soil nutrients under conservation farming. J. Plant. Nutr. Soil Sci. 2014, 177, 681–695. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; del Campillo, M.D.C.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. Sci. World J. 2020. [Google Scholar] [CrossRef]
- Boersma, M.; Wrobel-Tobiszewska, A.; Murphy, L.; Eyles, A. Impact of biochar application on the productivity of a temperate vegetable cropping system. N. Z. J. Crop. Horticult. Sci. 2017, 45, 277–288. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Scheckel, K. Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Werdin, J.; Fletcher, T.D.; Rayner, J.P.; Williams, N.S.; Farrell, C. Biochar made from low density wood has greater plant available water than biochar made from high density wood. Sci. Total Environ. 2020, 705, 135856. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Radwan, N.M.; Marzouk, E.R.; El-Melegy, A.M.; Hassan, M.A. Improving Soil Properties by Using Biochar Under Drainage Conditions in North Sinai. Sinai J. Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Laghari, M.; Naidu, R.; Xiao, B.; Hu, Z.; Mirjat, M.S.; Hu, M.; Abudi, Z.N. Recent developments in biochar as an effective tool for agricultural soil management: A review. J. Sci. Food Agric. 2016, 96, 4840–4849. [Google Scholar] [CrossRef] [PubMed]
- Barrow, C.J. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenergy 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Mondini, C. Agronomic evaluation of biochar, compost, and biochar-blended compost across different cropping systems: Perspective from the European project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yan, M.; Wong, M.H.; Mo, W.Y.; Wang, Y.; Chen, X.W.; Wang, J.J. Effects of biochar on soil microbial community and functional genes of a landfill cover three years after ecological restoration. Sci. Total Environ. 2020, 717, 137133. [Google Scholar] [CrossRef]
- Otsuka, S.; Sudiana, I.; Komori, A.; Isobe, K.; Deguchi, S.; Nishiyama, M.; Shimizu, H.; Senoo, K. Community structure of soil bacteria in a tropical rainforest several years after fire. Microbes Environ. 2008, 23, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutigliano, F.A.; Romano, M.; Marzaioli, R.; Baglivo, I.; Baronti, S.; Miglietta, F.; Castaldi, S. Effect of biochar addition on soil microbial community in a wheat crop. Eur. J. Soil Biol. 2014, 60, 9–15. [Google Scholar] [CrossRef]
- Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.I.; Jones, D.L.; Murphy, D.V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant. Soil 2012, 354, 311–324. [Google Scholar] [CrossRef]
- De Boer, W.; Kowalchuk, G.A. Nitrification in acid soils: Micro-organisms and mechanisms. Soil Biol. Biochem. 2001, 33, 853–866. [Google Scholar] [CrossRef]
- Gao, L.; Wang, R.; Shen, G.; Zhang, J.; Meng, G.; Zhang, J. Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. J. Soil Sci. Plant. Nutr. 2017, 17, 884–896. [Google Scholar] [CrossRef] [Green Version]
- Farrell, M.; Kuhn, T.K.; Macdonald, L.M.; Maddern, T.M.; Murphy, D.V.; Hall, P.A.; Singh, B.P.; Baumann, K.; Krull, E.S.; Baldock, J.A. Microbial utilization of biochar-derived carbon. Sci. Total Environ. 2013, 465, 288–297. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Wallace, H. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Biol. Biochem. 2010, 42, 2345–2347. [Google Scholar] [CrossRef]
- Lunde, C.F.; Hake, S. Florets & Rosettes: Meristem Genes in Maize and Arabidopsis. Maydica 2005, 50, 451–458. [Google Scholar]
- Reddy, S.B.N. Biochar Culture: Biochar for Environment and Development; MetaMeta: s-Hertogenbosch, The Netherlands, 2014. [Google Scholar]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeoscience 2014, 11, 6613–6621. [Google Scholar] [CrossRef] [Green Version]
- Mclennon, E.; Solomon, J.K.Q.; Neupane, D.; Davison, J. Biochar and Nitrogen Application Rates Effect on Phosphorus Removal from a Mixed Grass Sward Irrigated with Reclaimed Wastewater. Sci. Total Environ. 2020, 715, 137012. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Rondon, M.; Ramirez, J.A.; Lehmann, J. Greenhouse gas emissions decrease with charcoal additions to tropical soils. In Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, MD, USA, 21–24 March 2005; Volume 208. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. IPCC. Climate change, the physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Metaanalysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Vanholme, B.; Desmet, T.; Ronsse, F.; Rabaey, K.; van Breusegem, F.; De Mey, M. Towards a carbon negative sustainable bio-based economy. Front. Plant. Sci. 2013, 4, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downie, A.; Munroe, P.; Cowie, A.; van Zwieten, L.; Lau, D.M.S. Biochar as a geo engineering climate solution: Hazard identification and risk management. Crit. Rev. Environ. Sci. Technol. 2012, 42, 225–250. [Google Scholar] [CrossRef]
- Jia, J.; Li, B.; Chen, Z.; Xie, Z.; Xiong, Z. Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Sci. Plant. Nutr. 2012, 58, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, L.; Chen, Z.; Wang, J.; Xiong, Z. Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Sci. Plant. Nutr. 2014, 60, 254–265. [Google Scholar] [CrossRef]
- Hale, S.E.; Nurida, N.L.; Mulder, J.; Sørmo, E.; Silvani, L.; Abiven, S.; Joseph, S.; Taherymoosavi, S.; Cornelissen, G. The Effect of Biochar, Lime and Ash on Maize Yield in a Long-Term Field Trial in a Ultisol in the Humid Tropics. Sci. Total Environ. 2020, 719, 137455. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef]
- Randolph, P.; Bansode, R.R.; Hassan, O.A.; Rehrah, D.; Ravella, R.; Reddy, M.R.; Watts, D.W.; Novak, J.M.; Ahmedna, M. Effect of biochars produced from solid organic municipal waste on soil quality parameters. J. Environ. Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef]
- El-Naggara, A.; Lee, S.S.; Rinklebed, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheend, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Koide, R.T. Biochar—Arbuscular mycorrhiza interaction in temperate soils. In Mycorrhizal Mediation of Soil; Elsevier: New York, NY, USA, 2017; pp. 461–477. [Google Scholar]
- Mohanty, P.; Nanda, S.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J. Anal. Appl. Pyrol. 2013, 104, 485–493. [Google Scholar] [CrossRef]
- Filiberto, D.M.; Gaunt, J.L. Practicality of biochar additions to enhance soil and crop productivity. Agriculture 2013, 3, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Oguntunde, P.G.; Fosu, M.; Ajayi, A.E.; Van De Giesen, N. Effects of charcoal production on maize yield, chemical properties, and texture of soil. Biol. Fertil Soils 2004, 39, 295–299. [Google Scholar] [CrossRef]
- Yao, Y.N.; Gao, B.; Chen, H.; Jiang, L.; Inyang, M.; Zimmerman, A.R. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J. Hazard. Mater. 2012, 209, 408–413. [Google Scholar] [CrossRef]
- Wu, F.; Jia, Z.; Wang, S.; Chang, S.X.; Startsev, A. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fert. Soils 2013, 49, 555–565. [Google Scholar] [CrossRef]
- Awad, Y.M.; Blagodatskaya, E.; Ok, Y.K.; Kuzyakov, Y. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by C and enzyme activities. Eur. J. Soil Biol. 2012, 48, 1–10. [Google Scholar] [CrossRef]
- Demisie, W.; Liu, Z.Y.; Zhang, M.K. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Akça, M.O.; Namli, A. Effects of poultry litter 1053 biochar on soil enzyme activities and tomato, pepper and lettuce plants growth. Eur. J. Soil Sci. 2014, 4, 161–168. [Google Scholar]
- Shang, J.; Geng, Z.C.; Wang, Y.T.; Chen, X.X.; Zhao, J. Effect of biochar amendment on soil microbial biomass carbon and nitrogen and enzyme activity in tier soils. Sci. Agric. Sin. 2016, 49, 1142–1151. [Google Scholar]
- Paz-Ferreiro, J.; Fu, S.; Mendez, A.; Gasco, G. Biochar modifies the thermodynamic parameters of soil enzyme activity in a tropical soil. J. Soil Sediment. 2015, 15, 578–583. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Gascó, G.; Gutiérrez, B.; Méndez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fert. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, G.; Feng, H.; Sun, B.; Zhao, Y.; Chen, H.; Chen, J.; Dyck, M.; Wang, X.; Zhang, J.; et al. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. Res. 2017, 24, 10108–10120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xiao, Q.; Chenga, H.; Shi, B.; Shen, Y.; Li, S. Seasonal dynamics of soil microbial activity after biochar addition in a dry land maize field in North-Western China. Ecol. Eng. 2017, 104, 141–149. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Lianga, C.; Xu, O.; Li, Y.; Qin, H.; Fuhrman, J.J. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Sci. Total Environ. 2017, 574, 24–33. [Google Scholar] [CrossRef]
- Pokharel, P.; Kwak, J.H.; Ok, Y.S.; Chang, S.X. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Sci. Total Environ. 2018, 625, 1247–1256. [Google Scholar] [CrossRef]
- Li, S.; Liang, C.; Shangguan, Z. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Sci. Total Environ. 2017, 607–608, 109–119. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Klimkowicz-Pawlas, A.; Baran, A. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield. Int. Agrophys. 2017, 31, 367–375. [Google Scholar] [CrossRef]
- Pei, J.; Zhuang, S.; Cui, J.; Li, J.; Li, B.; Wu, J.; Fang, C. Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field. Agric. Ecosyst. Environ. 2017, 249, 156–164. [Google Scholar] [CrossRef]
- Bashir, S.; Hussain, Q.; Akmal, M.; Riaz, M.; Hu, H.; Ijaz, S.S.; Iqbal, M.; Abro, S.; Mehmood, S.; Ahmad, M. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. J. Soil Sediment. 2017, 18, 874–886. [Google Scholar] [CrossRef]
- Wang, D.; Fonte, S.J.; Parikh, S.J.; Six, J.; Scow, K.M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 2017, 303, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant. Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Singh, B.; Singh, B.P. Effect of temperature on biochar priming effects and its stability in soils. Soil Biol. Biochem. 2015, 80, 136–145. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep. 2014, 4, 3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Kimetu, J.M.; Lehmann, J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res. 2010, 48, 577–585. [Google Scholar] [CrossRef]
- Harvey, O.R.; Kuo, L.J.; Zimmerman, A.R.; Louchouarn, P.; Amonette, J.E.; Herbert, B.E. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 2012, 46, 1415–1421. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Lehmann, J. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2008, 45, 629–634. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, S.; Wang, J.; Ding, X. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column, and field tests. Environ. Pollut. 2020, 261, 114223. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Glaser, B.; Lehr, V.I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Dharmakeerthi, R.S.; Kumaragamage, D.; Goltz, D.; Indraratne, S.P. Phosphorus release from unamended and gypsum-or biochar-amended soils under simulated snowmelt and summer flooding conditions. J. Environ. Q. 2019, 48, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Liang, X.; Niyungeko, C.; Sun, T.; Liu, F.; Arai, Y. Effects of biochar amendments on soil phosphorus transformation in agricultural soils. Adv. Agron. 2019, 158, 131–172. [Google Scholar]
- Pottmaier, D.; Costa, M.; Farrow, T.; Oliveira, A.A.; Alarcon, O.; Snape, C. Comparison of rice husk and wheat straw: From slow and fast pyrolysis to char combustion. Energy Fuels 2013, 27, 7115–7125. [Google Scholar] [CrossRef]
- Bourke, J.; Manley-Harris, M.; Fushimi, C.; Dowaki, K.; Nunoura, T.; Antal, M.J. Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind. Eng. Chem. Res. 2007, 46, 5954–5967. [Google Scholar] [CrossRef]
- Kondo, Y.; Fukuzawa, Y.; Kawamitsu, Y.; Ueno, M.; Tsutsumi, J.; Takemoto, T.; Kawasaki, S. A new application of bagasse char as a solar energy absorption and accumulation material. Earth Environ. Sci. Trans. Royal Soc. Edinburgh 2012, 103, 31–38. [Google Scholar] [CrossRef]
- Burhenne, L.; Damiani, M.; Aicher, T. Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis. Fuel 2013, 107, 836–847. [Google Scholar] [CrossRef]
- Zeng, K.; Minh, D.P.; Gauthier, D.; Weiss-Hortala, E.; Nzihou, A.; Flamant, G. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood. Bioresour. Technol. 2015, 182, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trubetskaya, A.; Jensen, P.A.; Jensen, A.D.; Steibel, M.; Spliethoff, H.; Glarborg, P. Influence of fast pyrolysis conditions on yield and structural transformation of biomass chars. Fuel Proc. Technol. 2015, 140, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Li, Y.; Yue, X.; Hussain, Q.; Zhang, J.; Liu, Q.; Cui, D. Effect of cotton straw-derived materials on native soil organic carbon. Sci. Total Environ. 2019, 663, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Giagnoni, L.; Maienza, A.; Baronti, S.; Vaccari, F.P.; Genesio, L.; Taiti, C.; Mancuso, S. Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma 2019, 344, 127–136. [Google Scholar] [CrossRef]
- Awad, Y.M.; Wang, J.; Igalavithana, A.D.; Tsang, D.C.; Kim, K.H.; Lee, S.S.; Ok, Y.S. Biochar effects on rice paddy: Meta-analysis. Adv. Agron. 2018, 148, 1–32. [Google Scholar]
- Abdelhafez, A.A.; Abbas, M.H.; Li, J. Biochar: The black diamond for soil sustainability, contamination control and agricultural production. Eng. Appl. Biochar 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Elshony, M.; Farid, I.M.; Alkamar, F.; Abbas, M.H.; Abbas, H. Ameliorating a sandy soil using biochar and compost amendments and their implications as slow release fertilizers on plant growth. Egypt. J. Soil Sci. 2019, 59, 305–322. [Google Scholar] [CrossRef]
- Rahman, G.M.; Rahman, M.M.; Alam, M.S.; Kamal, M.Z.; Mashuk, H.A.; Datta, R.; Meena, R.S. Biochar and organic amendments for sustainable soil carbon and soil health. In Carbon and Nitrogen Cycling in Soil; Springer: Singapore, 2020; pp. 45–85. [Google Scholar]
- Zheng, H.; Wang, X.; Luo, X.; Wang, Z.; Xing, B. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Sci. Total Environ. 2018, 610, 951–960. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, W.; Lu, L.; Yan, L.; Yu, D. Utilization of biochar for the removal of nitrogen and phosphorus. J. Clean. Prod. 2020, 257, 120573. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manag. 2016, 181, 484. [Google Scholar] [CrossRef]
- Manolikaki, I.; Diamadopoulos, E. Agronomic potential of biochar prepared from brewery byproducts. J. Environ. Manag. 2020, 255, 109856. [Google Scholar] [CrossRef] [PubMed]
- Wiersma, W.; van der Ploeg, M.J.; Sauren, I.J.; Stoof, C.R. No effect of pyrolysis temperature and feedstock type on hydraulic properties of biochar and amended sandy soil. Geoderma 2020, 364, 114209. [Google Scholar] [CrossRef]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of Biochar and Compost on Soil Properties and Organic Matter in Aggregate Size Fractions under Field Conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant. Soil 2014, 1–15. [Google Scholar] [CrossRef]
- Hansen, V.; Hauggaard-Nielsen, H.; Petersen, C.T.; Mikkelsen, T.N.; Müller-Stöver, D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 2016, 161, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ebenezer, A.A.; Rainer, H.O.R.N. Biochar-induced changes in soil resilience: Effects of soil texture and biochar dosage. Pedosphere 2017, 27, 236–247. [Google Scholar]
- Pituello, C.; Dal Ferro, N.; Francioso, O.; Simonetti, G.; Berti, A.; Piccoli, I.; Morari, F. Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils. Eur. J. Soil Sci. 2018, 69, 827–842. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, L.; Zhang, Y.; Yang, L.; Yu, C.; Yin, G.; Ma, X. Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thionģo, M.; Okeyo, I.; Tenywa, M.; Neufeldt, H. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil Tillage Res. 2017, 165, 190–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant. Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–A review. Biol. Fertile. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organ. Geochem. 2000, 31, 669–678. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J.E.; Skjemstad, J.O.; Wirick, S. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Piccolo, A.; Pietramellara, G.; Mbag Demisie, J.S.C. Use of humic substances as soil conditioners to increase aggregate stability. Geoderma 1997, 75, 267–277. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, I. Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR 2010, 24099, 162. [Google Scholar]
- Patel, J.S.; Singh, A.; Singh, H.B.; Sarma, B.K. Plant genotype, microbial recruitment and nutritional security. Front. Plant. Sci. 2015, 6, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.E.; Bever, J.D.; Labbé, J.; Yang, X.; Yin, H. Mitigating Climate Change through Managing Constructed-Microbial Communities in Agriculture. Agric. Ecosyst. Environ. 2016, 216, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Srivastav, A.L. Chemical fertilizers and pesticides: Role in groundwater contamination. In: Agrochemicals detection, treatment, and remediation. Butterworth-Heinemann 2020, 143–159. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Sarkar, B.; Bolan, N.; Novak, J.; Ok, Y.S.; Van Zwieten, L.; Singh, B.P.; Kirkham, M.B.; Choppala, G.; Spokas, K.; et al. Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1367–1401. [Google Scholar] [CrossRef]
- El-Naggar, A.; Awad, Y.M.; Tang, X.Y.; Liu, C.; Niazi, N.K.; Jien, S.H.; Tsang, D.C.W.; Song, H.; Yong, S.O.; Sang, S.L. Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degrad. Dev. 2018. [Google Scholar] [CrossRef]
- Yu, K.L.; Show, P.L.; Ong, H.C.; Ling, T.C.; Chen, W.H.; Salleh, M.A.M. Biochar production from microalgae cultivation through pyrolysis as a sustainable carbon sequestration and biorefinery approach. Clean. Technol. Environ. Policy 2018, 20, 2047–2055. [Google Scholar] [CrossRef]
- Panwar, N.L.; Pawar, A.; Salvi, B.L. Comprehensive review on production and utilization of biochar. SN Appl. Sci. 2019, 1, 168. [Google Scholar] [CrossRef] [Green Version]
- Schiermeier, Q. Putting the carbon back: The hundred billion tonne challenge. Nature 2006, 442, 620–624. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig Adapt. Strat Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Plant. Nutr. Soil Sci. 2008, 171, 591–596. [Google Scholar] [CrossRef]
- Dang, V.M.; Joseph, S.; Van, H.T.; Mai, T.L.A.; Duong, T.M.H.; Weldon, S.; Taherymoosavi, S. Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: The significant role of minerals on the biochar surfaces. Environ. Technol. 2019, 40, 3200–3215. [Google Scholar] [CrossRef]
- Bolan, N.S.; Choppala, G.; Kunhikrishnan, A.; Park, J.; Naidu, R. Microbial transformation of trace elements in soils in relation to bioavailability and remediation. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2013; pp. 1–56. [Google Scholar]
- Aziz, T.; Ullah, S.; Sattar, A.; Nasim, M.; Farooq, M.; Khan, M.M. Nutrient availability and maize (Zea mays. L) growth in soil amended with organic manures. Int. J. Agric. Biol. 2010, 12, 621–624. [Google Scholar]
- Alshankiti, A.; Gill, S. Integrated plant nutrient management for sandy soil using chemical fertilizers, compost, biochar and biofertilizers. J. Arid. Land Stud. 2016, 26, 101–106. [Google Scholar]
- Bohara, H.; Dodla, S.; Wang, J.J.; Darapuneni, M.; Acharya, B.S.; Magdi, S.; Pavuluri, K. Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil Tillage Res. 2019, 189, 44–51. [Google Scholar] [CrossRef]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Lehman, J.; Silva, J.P.D.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrients availability and leaching in an archaeological Anthrosol and Ferralsol of the Central Amazon basin: Fertilizer, manure, and charcoal amendments. J. Plant. Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Tian, X.; Li, C.; Zhang, M.; Wan, Y.; Xie, Z.; Chen, B.; Li, W. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE 2018, 13, e0189924. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Nartey, O.D.; Zhao, B. Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Adv. Mater. Sci. Eng. 2014. [Google Scholar] [CrossRef] [Green Version]
- Poole, N. Smallholder Agriculture and Market. Participation; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017. [Google Scholar]
- Buol, S.W.; Eswaran, H.O. Advances in Agronomy; Academic Press: Cambridge, MA, USA, 1999; Volume 68, pp. 151–195. [Google Scholar]
- Safaei Khorram, M.; Fatemi, A.; Khan, M.A.; Kiefer, R.; Jafarnia, S. Potential risk of weed outbreak by increasing biochar’s application rates in slow-growth legume, lentil (Lens culinaris Medik.). J. Sci. Food Agric. 2018, 98, 2080–2088. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef]
- Anyanwu, I.N.; Alo, M.N.; Onyekwere, A.M.; Crosse, J.D.; Nworie, O.; Chamba, E.B. Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicol. Environ. Saf. 2018, 153, 116–126. [Google Scholar] [CrossRef]
- Hol, W.G.; Vestergård, M.; ten Hooven, F.; Duyts, H.; van de Voorde, T.F.; Bezemer, T.M. Transient negative biochar effects on plant growth are strongest after microbial species loss. Soil Biol. Biochem. 2017, 115, 442–451. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, T.; Zhang, Q.; Du, Z.; Wang, Y. Effects of biochar amendment on soil thermal properties in the North China Plain. Soil Sci. Soc. Am. J. 2016, 80, 1157–1166. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Maienza, A.; Miglietta, F.; Baronti, S.; Di Lonardo, S.; Giagnoni, L.; Valboa, G. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agric. Ecosyst. Environ. 2015, 207, 163–170. [Google Scholar] [CrossRef]
- Denyes, M.J.; Rutter, A.; Zeeb, B.A. Bioavailability assessments following biochar and activated carbon amendment in DDT-contaminated soil. Chemosphere 2016, 144, 1428–1434. [Google Scholar] [CrossRef]
Biochar Feedstock | Pyrolysis Temp. (°C) | pH | C | N | C/N | P | K | CA | MG | References |
---|---|---|---|---|---|---|---|---|---|---|
(%) | ||||||||||
Corn cob | 600 | 10.1 | 79.1 | 4.25 | 19 | - | - | - | - | [31] |
Corn stover | 600 | 9.95 | 69.8 | 1.01 | 70 | 0.181 | 2.461 | 0.938 | 0.858 | [32] |
Peanut hull | 400 | 10.0 | 65.5 | 2.0 | 33 | 0.00162 | 0.0015 | 0.00044 | - | [33] |
Pearl millet | 400 | 10.6 | 64 | 1.10 | 58 | 1.60 | 2.52 | 1.47 | 1.06 | [34] |
Corn stover | 300 | 7.33 | 59.5 | 1.16 | 51 | 0.137 | 1.705 | 0.648 | 0.588 | [32] |
Dairy manure | 700 | 9.9 | 56.7 | 1.51 | 38 | 1.69 | 2.31 | 4.48 | 2.06 | [35] |
Poultry litter | 350 | 8.7 | 51.1 | 4.45 | 12 | 2.08 | 4.58 | 2.66 | 0.94 | [35] |
Turkey litter | 700 | 9.9 | 44.8 | 1.94 | 23 | 3.63 | 5.59 | 5.61 | 1.24 | [35] |
Cow manure | 500 | 9.20 | 33.6 | 0.15 | 22 | 0.814 | 0.005 | 0.042 | 0.034 | [36] |
Biochar Types | Temperature | Country/Type of Experiment | Application Rate | Biochar Properties | Soil Type/Texture | Result | Reference |
---|---|---|---|---|---|---|---|
Wheat Straw | 300–500 °C | China/Greenhouse | 3% w/w | pH 10.60 | Psammaquent and Plinthudult | Increased rice yields in both soils | [61] |
Wheat Straw | 300, 400 and 500 °C | China/Greenhouse | 1% w/w | pH = 6.74, 7.8 and 8.0 C = 52, 62 and 66 g % N = 23.8, 19.4 and 18 g kg−1 | Sandy clay loam and Calcisols Yermi | Biochar prepared at 300 °C significantly increased Maize crop yield | [62] |
Rice Straw and Corn Stalk | 450 °C | China/Field | 1, 2 and 4 ton/ha | C = 71.7 and 63.5%, H = 3.70% and 1.6, O = 16.50 and 9.2% N = 2.40 and 1.3% | Inceptisol | Increased Corn, peanut and sweet potato by 5%, 15% and 20%, respectively | [63] |
Miscanthus Giganteous Straw | 500–750 °C | Norway/Field | 8 and 25 ton/ha | pH = 7.86 C = 80% H = 1.2% O = 0.6% N = 6.6% | Silty clay loam Albeluvisol | No effect on crop yield | [64] |
Cow Manure | 600 °C | Japan/Greenhouse | 0, 10, 15 and 20 ton/ha | pH = 9.20 C = 33.61% N = 1.51% | Sandy soil | Significantly enhanced Maize crop yield | [65] |
Rice Husks | 450 °C | China/Greenhouse | 0, 10, 25 and 50 tha−1 | pH = 9.21 C = 465.4 g kg−1 N = 6.2 g kg−1 | Upland soil and paddy soil | Increased rice and wheat yield by 12% and 17%, respectively | [66] |
Maize Stover | 600 °C | USA/Field | 0, 1, 3, 12 and 30 tha−1 | pH = 10.02 C = 290 mg g−1 N = 3.02 mg g−1 | Kendaia silt loam | No significant effect on crop yield | [67] |
Woodchips | 290 °C | Taiwan/Greenhouse | 2% w/w | pH 6.3 C = 59.1%, N = 0.35%, H = 5.73%, K = 0.78 g kg−1 | Clay texture and sandy loam texture | No significant effect on crop yield | [68] |
Woodchips | 700 °C | USA/Field | 5% w/w | pH = 9.6 C = 83.0%, N = 0.34%, H = 2.57%, K = 3.90 g kg−1 | Clay texture and sandy loam texture | No significant effect on crop yield | [68] |
Rice straw | 300,400 and 500 °C | Taiwan/Greenhouse | 1% w/w | pH = 6.74, 7.8 and 8.0 C = 52, 62 and 66 g kg−1 N = 23.8, 19.4, 18 g kg−1 | Sandy clay loam, Calcisols Yermi | No effect on Maize crop yield | [62] |
Sorghum | 500 °C | USA/Laboratory | 200 bushels ha−1 | C = 750.5 g kg−1 N = 13.5 g kg−1 | Norfolk soil and Dunbar soil (fine, kaolinitic, thermic, Aeric Paleaquults) | Wheat yield increased by 31% | [69] |
Maize Cobs | 300–550 °C | Ghana/Field | 0, 2 and 6 t ha−1 | pH = 7.6–9.7 C = 69–81g kg−1 N = 0.6–0.7% | Sand and loamy sandy soil | Has positive effect on crop yield | [70] |
Wheat Straw | 370 °C | Spain/Greenhouse | 0, 0.5, 1 and 2.5% w/w | pH = 9.8–11 Total C = 483–894 g kg−1 Total N = 3.7–8.3 g kg−1 | Haplic Luvisol | 20–30% increase in wheat grain yield | [71] |
Hard Wood | 500 °C | Nigeria/Field | 0,10, 20 and 30 t ha−1 | pH = 7.5 Total N = 0.65% Organic carbon = 52% | Sandy loam | 30 t ha−1 of biochar significantly enhanced Cocoyam crop yield | [72] |
Eucalyptus Polybractea | 550 °C | UK/Greenhouse | 10 t ha−1 | pH = 9.5 Total N = 1.1% Total C = 42 | Ferrosol Soil | No effect on Cauliflower, peas or broccoli crops | [73] |
Biochar Feedstock | Type of Soil | Sand | Silt | Clay | pH | TN | TC | References |
---|---|---|---|---|---|---|---|---|
% | ||||||||
Wheat straw | Sandy loam | - | - | 16 | 5.6 | 0.18% | 2.01% | [115] |
Charcoal biochar | sandy | 90.9 | 4.6 | 4.5 | 6.8 | 0.1 g kg−1 | 1.0 g kg−1 | [116] |
Charcoal biochar | Sandy loam | 67.3 | 25.9 | 6.8 | 6.1 | 1.7 g kg−1 | 31.0 g kg−1 | [116] |
Oak and wood Bamboo | Clay loam | 22 | 40 | 38 | 4.57 | 0.94 g kg−1 | 5.50 g kg−1 | [117] |
Poultry litter | Silt loam | 26.6 | 33.7 | 39.7 | 7.99 | 0.13% | 0.70% | [118] |
Fruit tree and stem branches | Sandy loam | 61.7 | 32.1 | 6.17 | 7.33 | 0.71 | 12.6 g kg−1 | [119] |
Poultry litter | Sandy clay loam | 52 | 17 | 31 | 3.95 | 0.25% | 3.5% | [120] |
Sewage sludge | Loam | 71 | 25 | 4 | 6.50 | 0.04 | 5.48% | [121] |
Wheat straw | Silt clay loam | 16 | 52 | 32 | 8.3 | 1.0 g kg−1 | 8.1 g kg−1 | [122] |
Maize straw | Silty loam | 13 | 72 | 15 | 7.9 | 0.99 g kg−1 | 15.1 g kg−1 | [123] |
Commercial biochar | Silt loam | 16.1 | 64.1 | 19.8 | 6.90 | 0.13% | 1.96% | [123] |
Bamboo biochar | Sandy loam | 49.2 | 39.2 | 11.6 | 4.72 | 0.17% | 1.83% | [124] |
Pine sawdust | Silt loam | 30 | 56 | 14 | 5.7 | 2.2 g kg−1 | 21.3 g kg−1 | [125] |
Apple branches | Silty clay | 10.7 | 73.0 | 16.8 | 6.23 | 0.47 g kg−1 | 3.32 g kg−1 | [126] |
Wheat straw (WSB) and miscanthus straw (MSB) | Sandy loam | 73 | 15 | 12 | 6.46 | 1.28 g kg−1 | 9.84 g kg−1 | [127] |
Corncob | Silty loam | 12.0 | 85.1 | 2.94 | 7.94 | 0.95 g kg−1 | 8.23 g kg−1 | [128] |
Sugarcane bagasse | Sandy loam | 77.3 | 20.3 | 14.5 | 7.54 | 13.40 g kg−1 | 4.20 g kg−1 | [129] |
Pine sawdust | Clay loam | 29 | 36 | 35 | 6.3 | 9.0 g kg−1 | 97.2 g kg−1 | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaz, M.; Feizienė, D.; Tilvikienė, V.; Akhtar, K.; Stulpinaitė, U.; Iqbal, R. Biochar Role in the Sustainability of Agriculture and Environment. Sustainability 2021, 13, 1330. https://doi.org/10.3390/su13031330
Ayaz M, Feizienė D, Tilvikienė V, Akhtar K, Stulpinaitė U, Iqbal R. Biochar Role in the Sustainability of Agriculture and Environment. Sustainability. 2021; 13(3):1330. https://doi.org/10.3390/su13031330
Chicago/Turabian StyleAyaz, Muhammad, Dalia Feizienė, Vita Tilvikienė, Kashif Akhtar, Urte Stulpinaitė, and Rashid Iqbal. 2021. "Biochar Role in the Sustainability of Agriculture and Environment" Sustainability 13, no. 3: 1330. https://doi.org/10.3390/su13031330
APA StyleAyaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar Role in the Sustainability of Agriculture and Environment. Sustainability, 13(3), 1330. https://doi.org/10.3390/su13031330