Multidimensional Aspects of Sustainable Biofuel Feedstock Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modeling Process Overview
2.3. Stream Health Indicator
2.3.1. Hydrological Model Description
2.3.2. Hydrological Model Calibration and Validation
2.3.3. Bioenergy Crops Implementation
2.3.4. Stream Health Model
2.4. Life Cycle Analysis
2.5. Economic Analysis
2.6. Multi-Objective Optimization
2.7. Most-Preferred Trade-Off Solutions
3. Results and Discussion
3.1. Economic, Environmental, and Stream Health Impacts of the Best-Case Scenarios
3.2. Distribution of Bioenergy Feedstocks within the Watershed for Most-Preferred Trade-Off Solutions
3.3. Comparison of Evaluation Metrics between Optimal Solutions and Current Land Use Scenario
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. EIA; Kahan, A. EIA Projects Nearly 50% Increase in World Energy Usage by 2050, Led by Growth in Asia. Today in Energy. 2019. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41433 (accessed on 25 December 2020).
- United Nations. The Sustainable Development Agenda. 17 Goals to Transform Our World. 2015. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 25 December 2020).
- IRENA. Renewable Energy Now Accounts for a Third of Global Power Capacity. 2019. Available online: https://www.irena.org/newsroom/pressreleases/2019/Apr/Renewable-Energy-Now-Accounts-for-a-Third-of-Global-Power-Capacity (accessed on 25 December 2020).
- IEA. Transport. Renewables 2019. 2019. Available online: https://www.iea.org/reports/renewables-2019/transport#abstract (accessed on 25 December 2020).
- USEPA. Overview for Renewable Fuel Standard. Renewable Fuel Standard Program. 2017. Available online: https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard (accessed on 25 December 2020).
- Langholtz, M.; Stokes, B.; Eaton, L. 2016 billion-ton report: Advancing domestic resources for a thriving bioeconomy (Executive Summary). Ind. Biotechnol. 2016, 12, 282–289. [Google Scholar] [CrossRef]
- Bai, Y.; Dahl, C. Evaluating the management of U.S. Strategic Petroleum Reserve during oil disruptions. Energy Policy. 2018, 117, 25–38. [Google Scholar] [CrossRef]
- Love, B.J.; Nejadhashemi, A.P. Water quality impact assessment of large-scale biofuel crops expansion in agricultural regions of Michigan. Biomass Bioenergy 2011, 35, 2200–2216. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A. Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II—Biodiversity, land use change, GHG emissions, and sustainability. Renew. Sustain. Energy Rev. 2018, 81, 3159–3177. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Nyakatawa, E.Z.; Mays, D.A.; Tolbert, V.R.; Green, T.H.; Bingham, L. Runoff, sediment, nitrogen, and phosphorus losses from agricultural land converted to sweetgum and switchgrass bioenergy feedstock production in north Alabama. Biomass Bioenergy 2006, 30, 655–664. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Bot, A.; Benites, J. Practices that Influence the Amount of Organic Matter. The Importance of Soil Organic Matter. Food and Agriculture Organization of the United Nations. 2005. Available online: http://www.fao.org/3/a0100e/a0100e00.htm#Contents (accessed on 25 December 2020).
- Jacobson, P.C.; Hansen, G.J.A.; Bethke, B.J.; Cross, T.K. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages. PLoS ONE 2017, 12, e0182667. [Google Scholar] [CrossRef] [Green Version]
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosystems 2016, 104, 393–412. [Google Scholar] [CrossRef]
- Kirchmann, H.; Johnston, A.E.J.; Bergström, L.F. Possibilities for Reducing Nitrate Leaching from Agricultural Land. AMBIO A J. Hum. Environ. 2002, 31, 404–408. [Google Scholar] [CrossRef]
- U.S. EIA. Where Greenhouse Gases Come from. Energy and the Environment Explained. 2020. Available online: https://www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php (accessed on 25 December 2020).
- Chillrud, R. Biofuels versus Gasoline: The Emissions Gap is Widening. Environmental and Energy Study Institute. 2016. Available online: https://advancedbiofuelsusa.info/biofuels-versus-gasoline-the-emissions-gap-is-widening/Contents (accessed on 25 December 2020).
- Follett, R.F.; Vogel, K.P.; Varvel, G.E.; Mitchell, R.B.; Kimble, J. Soil Carbon Sequestration by Switchgrass and No-Till Maize Grown for Bioenergy. Bioenergy Res. 2012, 5, 866–875. [Google Scholar] [CrossRef] [Green Version]
- MSU Product Center; Shepherd Advisors. Michigan’s Position in the U.S. Biofuel and Bioenergy Market. 2010. Available online: https://www.canr.msu.edu/productcenter/uploads/files/michiganspositionintheusbiofuelandbioenergymarket.pdf (accessed on 25 December 2020).
- USDA ERS. U.S. Bioenergy Statistics. 2020. Available online: https://www.ers.usda.gov/data-products/us-bioenergy-statistics/us-bioenergy-statistics/#Feedstocks (accessed on 25 December 2020).
- Amoah, J.; Kahar, P.; Ogino, C.; Kondo, A. Bioenergy and Biorefinery: Feedstock, Biotechnological Conversion, and Products. Biotechnol. J. 2019, 14, 1800494. [Google Scholar] [CrossRef] [PubMed]
- FAO. Perennial Agriculture: Landscape Resilience for the Future Do We Need to Shift Agriculture and Transform Cropping Systems? 2011. Available online: http://www.fao.org/fileadmin/templates/agphome/documents/scpi/PerennialPolicyBrief.pdf (accessed on 25 December 2020).
- Dale, B.E.; Holtzapple, M. The need for biofuels. Chem. Eng. Prog. 2015, 111, 36–40. [Google Scholar]
- Giri, S.; Nejadhashemi, A.P.; Woznicki, S.A. Regulators’ and stakeholders’ perspectives in a framework for bioenergy development. Land Use Policy 2016, 59, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-S.; Mitchell, R.; Heaton, E.; Zumpf, C.; Lee, D.K. Warm-Season Grass Monocultures and Mixtures for Sustainable Bioenergy Feedstock Production in the Midwest, USA. Bioenergy Res. 2019, 12, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.B.; Schmer, M.R.; Anderson, W.F.; Jin, V.; Balkcom, K.S.; Kiniry, J.; Coffin, A.; White, P. Dedicated Energy Crops and Crop Residues for Bioenergy Feedstocks in the Central and Eastern USA. Bioenergy Res. 2016, 9, 384–398. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Saginaw River and Bay AOC. Great Lakes AOCs. 2020. Available online: https://www.epa.gov/great-lakes-aocs/saginaw-river-and-bay-aoc#restoration (accessed on 25 December 2020).
- Pennington, D.; Gould, M.C.; Seamon, M.; Knudson, W.; Gross, P.; McLean, T. Expanding Bioenergy Crops to Non-Traditional Lands in Michigan: Final Report. 2012. Available online: http://msue.anr.msu.edu/uploads/files/F2F/DELEGdraftreport04-03-2012Final.pdf (accessed on 25 December 2020).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. Asabe 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Delkash, M.; Al-Faraj, F.A.M.; Scholz, M. Impacts of Anthropogenic Land Use Changes on Nutrient Concentrations in Surface Waterbodies: A Review. Clean SoilAirWater 2018, 46, 1800051. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- USGS. The National Map. National Geopacial Program. 2020. Available online: https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map (accessed on 25 December 2020).
- Soil Survey Staff, Web Soil Survey. 2020. Available online: https://websoilsurvey.nrcs.usda.gov/ (accessed on 25 December 2020).
- USDA. CropScape—Cropland Data Layer. National Agricultural Statistics Services. 2020. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 25 December 2020).
- NCDC. Climate Data Online. 2020. Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (accessed on 25 December 2020).
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.; Van Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Daneshvar, F.; Nejadhashemi, A.P.; Herman, M.R.; Abouali, M. Response of benthic macroinvertebrate communities to climate change. Ecohydrol. Hydrobiol. 2017, 17, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Glavan, M.; Pintar, M. Strengths, Weaknesses, Opportunities and Threats of Catchment Modelling with Soil and Water Assessment Tool (SWAT) Model. Water Res. Manag. Model. 2012, 39–64. [Google Scholar]
- Battel, R. Site-Specific Corn Nitrogen Management. MSU Extension Corn. 2018. Available online: https://www.canr.msu.edu/news/site-specific-corn-nitrogen-management (accessed on 25 December 2020).
- Min, D.H. Getting your N Application Correct can Boost Switchgrass Production—MSU Extension. MSU Extension. 2012. Available online: https://www.canr.msu.edu/news/switchgrass_nitrogen_fertility_study (accessed on 25 December 2020).
- Staton, M. Nutrient Management Recommendations for Profitable Soybean Production. MSU Extension. 2018. Available online: https://www.canr.msu.edu/news/nutrient_management_recommendations_for_profitable_soybean_production (accessed on 25 December 2020).
- Thelen, K.D.; Gao, J.; Hoben, J.; Qian, L.; Saffron, C.; Withers, K. A spreadsheet-based model for teaching the agronomic, economic, and environmental aspects of bioenergy cropping systems. Comput. Electron. Agric. 2012, 85, 157–163. [Google Scholar] [CrossRef]
- Pennington, D.; Jean, M.; Thelen, K.; Rust, S.; Anderson, E.; Gould, K. Michigan Corn Stover Project: Cattle, Storage and Bioenergy. 2017. Available online: https://www.canr.msu.edu/corn/uploads/files/E-3354WCAG2.0.pdf (accessed on 25 December 2020).
- Vitosh, M.L.; Johnson, J.W.; Mengel, D.B. Tri-state Fertilizer Recommendations for Corn, Soybeans, Wheat and Alfalfa. Extension Bulletin. 1995. Available online: https://www.extension.purdue.edu/extmedia/AY/AY-9-32.pdf (accessed on 25 December 2020).
- Staton, M. Phosphorus and Potassium Fertilizer Recommendations for High-Yielding, Profitable Soybeans. MSU Extension. 2014. Available online: https://www.canr.msu.edu/news/phosphorus_and_potassium_fertilizer_recommendations_for_high_yielding_profi (accessed on 25 December 2020).
- MSU Extension. Canola Production in Michigan. Ext. Bull. 2001, E-2766. [Google Scholar]
- Undersander, D. Sorghums, Sudangrasses, and Sorghum-Sudan Hybrids. Focus Forage 2003, 5, 5. [Google Scholar]
- Hernandez-Suarez, J.S.; Nejadhashemi, A.P. A review of macroinvertebrate-and fish-based stream health modelling techniques. Ecohydrology 2018, 11, e2022. [Google Scholar] [CrossRef]
- Sanchez, G.M.; Nejadhashemi, A.P.; Zhang, Z.; Marquart-Pyatt, S.; Habron, G.; Shortridge, A. Linking watershed-scale stream health and socioeconomic indicators with spatial clustering and structural equation modeling. Environ. Model. Softw. 2015, 70, 113–127. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Nejadhashemi, A.P.; Abouali, M.; Herman, M.R.; Esfahanian, E.; Hamaamin, Y.A.; Zhang, Z. Ecohydrological modeling for large-scale environmental impact assessment. Sci. Total Environ. 2016, 543, 274–286. [Google Scholar] [CrossRef]
- Jang, J.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Abouali, M.; Nejadhashemi, A.P.; Daneshvar, F.; Woznicki, S.A. Two-phase approach to improve stream health modeling. Ecol. Inform. 2016, 34, 13–21. [Google Scholar] [CrossRef]
- Seifi, A.; Riahi-Madvar, H. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models. Environ. Sci. Pollut. Res. 2019, 26, 867–885. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–785. [Google Scholar] [CrossRef]
- Einheuser, M.D.; Nejadhashemi, A.P.; Wang, L.; Sowa, S.P.; Woznicki, S.A. Linking biological integrity and watershed models to assess the impacts of historical land use and climate changes on stream health. Environ. Manag. 2013, 51, 1147–1163. [Google Scholar] [CrossRef]
- Einheuser, M.D.; Nejadhashemi, A.P.; Sowa, S.P.; Wang, L.; Hamaamin, Y.A.; Woznicki, S.A. Modeling the effects of conservation practices on stream health. Sci. Total Environ. 2012, 435–436, 380–391. [Google Scholar] [CrossRef]
- Akamagwuna, F.C.; Mensah, P.K.; Nnadozie, C.F.; Odume, O.N. Evaluating the responses of taxa in the orders Ephemeroptera, Plecoptera and Trichoptera (EPT) to sediment stress in the Tsitsa River and its tributaries, Eastern Cape, South Africa. Environ. Monit. Assess. 2019, 191, 663–678. [Google Scholar] [CrossRef]
- Herman, M.R.; Nejadhashemi, A.P. A review of macroinvertebrate- and fish-based stream health indices. Ecohydrol. Hydrobiol. 2015, 15, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Torres-Olvera, M.J.; Durán-Rodríguez, O.Y.; Torres-García, U.; Pineda-López, R.; Ramírez-Herrejón, J.P. Validation of an index of biological integrity based on aquatic macroinvertebrates assemblages in two subtropical basins of central Mexico. Lat. Am. J. Aquat. Res. 2018, 46, 945–960. [Google Scholar] [CrossRef]
- Gellings, C.W.; Paramenter, K.E. Energy efficiency in fertilizer production and use. Encycl. Life Support. Syst. 2004. [Google Scholar]
- Helsel, Z.R. Energy and alternatives for fertilizer and pesticide use. Energy Farm Prod. 1992, 6, 177–201. [Google Scholar]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelfand, I.; Snapp, S.S.; Robertson, G.P. Energy Efficiency of Conventional, Organic, and Alternative Cropping Systems for Food and Fuel at a Site in the U.S. Midwest. Environ. Sci. Technol. 2010, 44, 4006–4011. [Google Scholar] [CrossRef] [PubMed]
- USDOE. Bioenergy Conversion Factors; Oak Ridge National Lab.: Oak Ridge, TN, USA, 2010. [Google Scholar]
- Battel, B.; Stein, D. 2018 Custom Machine and Work Rate Estimates. Michigan State University Extension. 2018. Available online: https://www.canr.msu.edu/field_crops/uploads/files/2018%20Custom%20Machine%20Work%20Rates.pdf (accessed on 25 December 2020).
- USDA, Michigan Agricultural Statistics 2013–2014. 2013. Available online: www.nass.usda.gov (accessed on 25 December 2020).
- Smith, P. Soil organic carbon dynamics and land-use change. In Land Use and Soil Resources; Springer: Amsterdan, The Netherlands, 2008; pp. 9–22. [Google Scholar]
- Wardynski, F. Sorghum Species Crops as a Drought Emergency Crop. MSU Extension. 2012. Available online: https://www.canr.msu.edu/news/sorghum_species_crops_as_a_drought_emergency_crop (accessed on 25 December 2020).
- USDA ERS. Commodity Costs and Returns. 2020. Available online: https://www.ers.usda.gov/data-products/commodity-costs-and-returns/ (accessed on 25 December 2020).
- Pennington, D. Making Bioenergy Crops Pay. MSU Extension. 2011. Available online: https://www.canr.msu.edu/news/making_bioenergy_crops_pay (accessed on 25 December 2020).
- USDA ERS. U.S. Farm Resource Regions. In Resource Regions; Briefing Rooms ARMS: Malham, UK, 2010. [Google Scholar]
- Canola Council of Canada. Canadian Canola Yield. 2019. Available online: https://www.canolacouncil.org/markets-stats/ (accessed on 25 December 2020).
- Smith, S.A.; Bowling, B.; Buntin, R.; Williams, B.; Manning, D. Field Crop Budgets For 2014. The University of Tennessee, Institute of Agriculture. 2014. Available online: https://ag.tennessee.edu/arec/Documents/budgets/archived/2014RowCropBudgets.pdf (accessed on 25 December 2020).
- Herman, M.R.; Nejadhashemi, A.P.; Daneshvar, F.; Abouali, M.; Ross, D.M.; Woznicki, S.A.; Zhang, Z. Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm. J. Environ. Manag. 2016, 181, 413–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seada, H.; Deb, K. A unified evolutionary optimization procedure for single, multiple, and many objectives. IEEE Trans. Evol. Comput. 2015, 20, 358–369. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Hernandez-Suarez, J.S.; Nejadhashemi, A.P.; Kropp, I.M.; Abouali, M.; Zhang, Z.; Deb, K. Evaluation of the impacts of hydrologic model calibration methods on predictability of ecologically-relevant hydrologic indices. J. Hydrol. 2018, 564, 758–772. [Google Scholar] [CrossRef]
- Kropp, I.; Nejadhashemi, A.P.; Deb, K.; Abouali, M.; Roy, P.C.; Adhikari, U.; Hoogenboom, G. A multi-objective approach to water and nutrient efficiency for sustainable agricultural intensification. Agric. Syst. 2019, 173, 289–302. [Google Scholar] [CrossRef]
- Herman, M.R.; Hernandez-Suarez, J.S.; Nejadhashemi, A.P.; Kropp, I.; Sadeghi, A.M. Evaluation of multi- and many-objective optimization techniques to improve the performance of a hydrologic model using evapotranspiration remote-sensing data. J. Hydrol. Eng. 2020, 25, 1–15. [Google Scholar] [CrossRef]
- Blank, J.; Deb, K. pymoo: Multi-objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E. Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications. Theor. Comput. Sci. 2012, 425, 75–103. [Google Scholar] [CrossRef]
- Zeleny, M.; Cochrane, J.L. Multiple Criteria Decisions Making; University of South Carolina Press: Columbia, SC, USA, 1973. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Inc.: New York, NY, USA, 2001; ISBN 047187339X. [Google Scholar]
- Rachmawati, L.; Srinivasan, D. Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Trans. Evol. Comput. 2009, 13, 810–824. [Google Scholar] [CrossRef]
- Vassilvitskii, A.; Vassilvitskii, D.; Vassilvitskii, S. No k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Indistrial and Applied Mathematics, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- NRCS. The EPT Index. 2012. Available online: https://www.wcc.nrcs.usda.gov/ftpref/wntsc/strmRest/wshedCondition/EPTIndex.pdf (accessed on 25 December 2020).
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant. Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- Elliott, M.R. Combining Data from Probability and Non- Probability Samples Using Pseudo-Weights. Surv. Pract. 2009, 2, 1–7. [Google Scholar] [CrossRef]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? Bioenergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef] [Green Version]
- Sperow, M. The marginal costs of carbon sequestration: Implications of one greenhouse gas mitigation activity. J. Soil Water Conserv. 2007, 62, 367–375. [Google Scholar]
- Woznicki, S.A.; Nejadhashemi, A.P.; Ross, D.M.; Zhang, Z.; Wang, L.; Esfahanian, A.H. Ecohydrological model parameter selection for stream health evaluation. Sci. Total Environ. 2015, 511, 341–353. [Google Scholar] [CrossRef]
- COP. Agricultural biological diversity. Secretariat of the Convention on Biological Diversity. 2000. Available online: https://www.cbd.int/decision/cop/?id=7147 (accessed on 25 December 2020).
- FAO. Agricultural Practices to Manage Agricultural Biodiversity. How to Manage Biodiversity for Food and Agriculture. 2020. Available online: http://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/scpi-home/managing-ecosystems/biodiversity-and-ecosystem-services/bio-how/en/ (accessed on 25 December 2020).
- Department of Plant Sciences University of Wyoming. Forage Identification: Alfalfa. 2020. Available online: http://www.uwyo.edu/plantsciences/uwplant/forages/legume/alfalfa.html (accessed on 25 December 2020).
- Glithero, N.J.; Ramsden, S.J.; Wilson, P. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches. Agric. Syst. 2012, 109, 53–64. [Google Scholar]
Solution | EPT | HBI | IBI | FIBI | Total Sediment | Total Nitrogen | Total Phosphorus | Net Sequestrated C | Net Return |
---|---|---|---|---|---|---|---|---|---|
Compromise programming | 9% | −1% | 2% | 0% | −33% | 96% | −12% | 293% | −583% |
Balanced Pseudo-weights | 4% | −1% | 1% | −1% | −29% | 88% | −16% | 244% | −463% |
Most balanced high trade-off | 10% | −3% | 2% | −2% | −1% | 64% | 1% | 99% | −362% |
Best stream health | 10% | −6% | 3% | 2% | 13% | 71% | 8% | 198% | −658% |
Best environment | 7% | −1% | 2% | 6% | −81% | 137% | −30% | 601% | −1064% |
Best economic | −14% | 1% | 1% | −6% | 32% | 67% | 15% | −30% | 86% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raschke, A.; Hernandez-Suarez, J.S.; Nejadhashemi, A.P.; Deb, K. Multidimensional Aspects of Sustainable Biofuel Feedstock Production. Sustainability 2021, 13, 1424. https://doi.org/10.3390/su13031424
Raschke A, Hernandez-Suarez JS, Nejadhashemi AP, Deb K. Multidimensional Aspects of Sustainable Biofuel Feedstock Production. Sustainability. 2021; 13(3):1424. https://doi.org/10.3390/su13031424
Chicago/Turabian StyleRaschke, Anna, J. Sebastian Hernandez-Suarez, A. Pouyan Nejadhashemi, and Kalyanmoy Deb. 2021. "Multidimensional Aspects of Sustainable Biofuel Feedstock Production" Sustainability 13, no. 3: 1424. https://doi.org/10.3390/su13031424
APA StyleRaschke, A., Hernandez-Suarez, J. S., Nejadhashemi, A. P., & Deb, K. (2021). Multidimensional Aspects of Sustainable Biofuel Feedstock Production. Sustainability, 13(3), 1424. https://doi.org/10.3390/su13031424