aquaZone: An Integrative Tool for Sustainable Fish Farm Zoning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study and Investigation Area
2.2. Identification of Requirements and Limitations for Trout Production
2.3. Criteria Selection and Classification
2.3.1. Landscape Criteria
2.3.2. Water Quality and Quantity Criteria
2.4. GIS-Based Data Processing and Identification of Suitable Areas
2.5. Correlation Analysis and Decision Tree Development
3. Results
3.1. Suitable Areas and Their Distribution
3.2. Suitability Based on Individual Criteria
3.3. Suitability Based on Categories
3.4. Exclusion Criteria
3.5. Correlation Analysis
3.6. Decision Tree
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- FAO. The State of the World Fisheries and Aquaculture 2020—Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- FAO. The State of the World Fisheries and Aquaculture 2016—Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016. [Google Scholar]
- Merino, G.; Barange, M.; Blanchard, J.L.; Harle, J.; Holmes, R.; Allen, I.; Allison, E.H.; Badjeck, M.C.; Dulvy, N.K.; Holt, J.; et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Chang. 2012, 22, 795–806. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- EUMOFA. The EU Fish Market, 2020 Edition; Publication Office of the European Union: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- BMLFUW. Aquakultur 2020—Österreichische Strategie zur Förderung der Nationalen Fischproduktion; Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2012. [Google Scholar]
- Statistik Austria. Supply Balance for Fish 2014 to 2019 in Tonnes. Available online: http://www.statistik.at/web_de/statistiken/wirtschaft/land_und_forstwirtschaft/preise_bilanzen/versorgungsbilanzen/022380.html (accessed on 13 November 2020).
- FAO. Code of Conduct for Responsible Fisheries; FAO: Rome, Italy, 1995. [Google Scholar]
- FAO. Aquaculture Development. 4. Ecosystem Approach to Aquaculture; FAO: Rome, Italy, 2010; Volume 5. [Google Scholar]
- Brugère, C.; Aguilar-Manjarrez, J.; Beveridge, M.C.M.; Soto, D. The ecosystem approach to aquaculture 10 years on—A critical review and consideration of its future role in blue growth. Rev. Aquac. 2018, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Soto, D.; Aguilar-Manjarrez, J.; Brugère, C.; Angel, D.; Bailey, C.; Black, K.; Edwards, P.; Costa-Pierce, B.; Chopin, T.; Deudero, S.; et al. Applying an ecosystem-based approach to aquaculture: Principles, scales and some management measures. FAO Fish Aquac. Proc. 2008, 14, 15–35. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament, the Council, The Economic and Social Committee and the Committee of the Regions—Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020; SEC(2011) 540 final; SEC: Brussels, Belgium, 2011. [Google Scholar] [CrossRef] [Green Version]
- FAO. Blue Growth Initiative—Partnering with Countries to Achieve the Sustainable Development Goals; FAO: Rome, Italy, 2017. [Google Scholar]
- Aguilar-Manjarrez, J.; Soto, D.; Brummett, R. Aquaculture Zoning, Site Selection and Area Management under the Ecosystem Approach to Aquaculture; FAO: Rome, Italy, 2017. [Google Scholar]
- European Commission. Roadmap—Farm to Fork; 2020; Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12183-Farm-to-Fork-Strategy (accessed on 27 December 2020).
- European Commission. From Farm to Fork—The European Green Deal; 2019; Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/actions-being-taken-eu/farm-fork_en (accessed on 27 December 2020).
- Yin, S.; Takeshige, A.; Miyake, Y.; Kimura, S. Selection of suitable coastal aquaculture sites using Multi-Criteria Decision Analysis in Menai Strait, UK. Ocean Coast Manag. 2018, 165, 268–279. [Google Scholar] [CrossRef]
- FAO. Aquaculture Zoning, Site Selection and Area Management under the Ecosystem Approach to Aquaculture. Policy Brief; FAO: Rome, Italy, 2015; p. 4. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000; p. 71. [Google Scholar]
- European Commission. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora; European Commission: Brussels, Belgium, 1992; p. 44. [Google Scholar] [CrossRef]
- European Commission. Directive 2007/60/EC of the European Council and European Parliament of 23 October 2007 on the Assessment and Management of Flood Risks; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- European Commission. Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- FAO. The Water-Energy-Food Nexus. A New Approach in Support of Food Security and Sustainable Agriculture; FAO: Rome, Italy, 2014; pp. 1–28. [Google Scholar] [CrossRef]
- Aguilar-Manjarrez, J.; McDaid Kapetsky, J.; Soto, D. The Potential of Spatial Planning Tools to Support the Ecosystem Approach to Aquaculture; FAO: Rome, Italy, 2010. [Google Scholar]
- Ross, L.G.; Telfer, T.C.; Falconer, L.; Soto, D.; Aguilar-Manjarrez, J.; Asmah, R.; Bermúdez, J.; Beveridge, M.C.M.; Byron, C.J.; Clément, A.; et al. Carrying capacities and site selection within the ecosystem approach to aquaculture. FAO Fish Aquac. Proc. 2013, 21, 19–46. [Google Scholar]
- Francisco, H.R.; Corrêia, A.F.; Feiden, A. Classification of areas suitable for fish farming using geotechnology and multi-criteria analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J. On the use of weighted linear combination method in GIS: Common and best practice approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Falconer, L.; Middelboe, A.L.; Kaas, H.; Ross, L.G.; Telfer, T.C. Use of geographic information systems for aquaculture and recommendations for development of spatial tools. Rev. Aquac. 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Science and Systems, 4th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kane, F.; Jackson, D.; Casserly, J. A critical review of the existing aquaculture licensing and regulatory frameworks in the EU. In Proceedings of the Aquaculture Europe 2017, Dubrovnik, Croatia, 17–20 October 2017. [Google Scholar]
- BMLFUW. Nationaler Gewässerbewirtschaftungsplan 2015; Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2017. [Google Scholar]
- Auer, I.; Böhm, R.; Mohnl, H.; Potzmann, R.; Schöner, W.; Skomorowski, P.Ö. Digitaler Klimaatlas Österreichs. Eine interaktive Reise durch die Vergangenheit, Gegenwart und Zukunft des Klimas. In Die Zentralanstalt für Meteorol. und Geodyn. 1851–2001. 150 Jahre Meteorol. und Geophys; Hammerl, C., Lenhardt, W., Steinacker, R., Steinhauser, P., Eds.; Leykam: Graz, Austria, 2001; Available online: https://www.zamg.ac.at/cms/de/klima/klimaforschung/klimatografien/oeklim-196120131990 (accessed on 13 December 2020).
- BMLFUW. Hydrologischer Atlas Österreich, Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, Abteilung Wasserhaushalt (HZB), 3rd ed.; 2007. Available online: https://www.bmlrt.gv.at/wasser/wasser-oesterreich/wasserkreislauf/hydrologischer_atlas.html (accessed on 29 January 2021).
- Yunis, C.R.C.; López, R.S.; Cruz, S.M.O.; Castillo, E.B.; López, J.O.S.; Trigoso, D.I.; Briceño, N.B.R. Land suitability for sustainable aquaculture of rainbow trout (Oncorhynchus mykiss) in Molinopampa (Peru) based on RS, GIS, and AHP. ISPRS Int. J. Geo-Inf. 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Ssegane, H.; Tollner, E.W.; Veverica, K. Geospatial Modeling of Site Suitability for Pond-Based Tilapia and Clarias Farming in Uganda. J. Appl. Aquac. 2012, 24, 147–169. [Google Scholar] [CrossRef]
- Assefa, W.W.; Abebe, W.B. GIS modeling of potentially suitable sites for aquaculture development in the Lake Tana basin, Northwest Ethiopia. Agric. Food Secur. 2018, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Falconer, L.; Telfer, T.C.; Ross, L.G. Investigation of a novel approach for aquaculture site selection. J. Environ. Manag. 2016, 181, 791–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcleod, I.; Pantus, F.; Preston, N. The use of a geographical information system for land-based aquaculture planning. Aquac. Res. 2002, 33, 231–250. [Google Scholar] [CrossRef]
- Salam, M.A.; Khatun, N.A.; Ali, M.M. Carp farming potential in Barhatta Upazilla, Bangladesh: A GIS methodological perspective. Aquaculture 2005, 245, 75–87. [Google Scholar] [CrossRef]
- Mustafa, F.B.; Bwadi, B.E. Determination of Optimal Freshwater Prawn Farming Site Locations using GIS and Multicriteria Evaluation. J. Coast Res. 2018, 82, 41–54. [Google Scholar] [CrossRef]
- Völcker, C.M.; Scott, P. SIG e sensoriamento remoto para a determinação do potencial para aqüicultura no baixo São João-RJ. Revista Eletrônica Sistemas Gestão 2008, 3, 196–215. [Google Scholar] [CrossRef]
- Kumar, R.S.; Bahadur, G.T.; Prasad, L.G. GIS Based Evaluation on Potential Sites of Cold Water Fish, Rainbow Trout (Oncorhynchus Mykiss) Farming in NUWAKOT, Nepal; Bahadur, G.T., Ed.; Fisheries Research Division, Godawari, Lalitpur of NARC: Kathmandu, Nepal, 2008; pp. 103–108. [Google Scholar]
- Díaz, I.; Mello, A.L.; Salhi, M.; Spinetti, M.; Bessonart, M.; Achkar, M. Multiscalar land suitability assessment for aquaculture production in Uruguay. Aquac. Res. 2017, 48, 3052–3065. [Google Scholar] [CrossRef]
- Kapetsky, J.M.; Nath, S.S. A Strategic Assessment of the Potential for Freshwater Fish Farming in Latin America; FAO: Rome, Italy, 1997. [Google Scholar]
- Aryal, S.P.; Paudel, M.N. GIS Based Potentiality of Rainbow Trout (Oncorhynchus Mykiss) Farming in Northern High Hill Rasuwa, Nepal. Proc. 1st Natl. Work. Scaling-Up Rainbow Trout (Onchorhynchus Mykiss) Farming Strateg; Fisheries Research Division, Godawari, Lalitpur of NARC: Kathmandu, Nepal, 2008; p. 158. [Google Scholar] [CrossRef]
- Taseli, B.K. Response of lake water quality to wastewater inputs from land-based fish farm located on Yuvarlakçay Creek in Köycegiz–Dalyan Specially Protected Area, Turkey. Environ. Monit. Assess. 2009, 157, 557–574. [Google Scholar] [CrossRef]
- Von Lukowicz, M. Site selection and regulation issues for trout and carp farming in Germany. J. Appl. Ichthyol. 1994, 10, 312–318. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI Selva Tutorial. Idrisi Prod. Clark Univ. 2012, 45, 51–63. [Google Scholar]
- Schinegger, R. Vorschläge zur Abgrenzung des potentiellen Fischlebensraums in alpinen Fließgewässern. Master’s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2006. [Google Scholar]
- Mills, D. Salmon and Trout: A Resource, It’s Ecology, Conservation and Management; St. Martin’s Press: New York, NY, USA, 1971. [Google Scholar]
- Illies, J. Versuch einer allgemeinen biozönotischen Gliederung der Fließgewässer. Int. Rev. Ges. Hydrobiol. Hydrogr. 1961, 46, 205–213. [Google Scholar] [CrossRef]
- Haunschmid, R.; Wolfram, G.; Spindler, T.; Honsig-Erlenburg, W.; Wimmer, R.; Jagsch, A.; Kainz, E.; Hohenwarter, K.; Wagner, B.; Konecny, R.; et al. Erstellung einer fischbasierten Typologie Österreichischer Fließgewässer sowie einer Bewertungsmethode des fischökologischen Zustandes gemäß EU-Wasserrahmenrichtlinie. Bundesamt Wasserwirtschaft 2006. [Google Scholar]
- Haßlacher, P.; Langegger, C. Österreichisches Gletscherbachinventar; Österreichischer Alpenverein: Innsbruck, Austria, 1988. [Google Scholar]
- Füreder, L.; Vacha, C. Fließgewässertypisierung im Nationalpark Hohe Tauern. Wiss. Mitt. Aus. Dem. Natl. Hohe Tauern. 2001, 6, 191–209. [Google Scholar]
- Zick, D.; Gassner, H.; Filzmoser, P.; Wanzenböck, J.; Pamminger-Lahnsteiner, B.; Tischler, G. Changes in the fish species composition of all Austrian lakes > 50 ha during the last 150 years. Fish Manag. Ecol. 2006, 13, 103–111. [Google Scholar] [CrossRef]
- Gafner, K.; Meyer, M. Brown trouts in the Canton of Bern—Migration corridors and monitoring. WasserWirtschaft 2018, 108, 14–17. [Google Scholar] [CrossRef]
- Copernicus. Coperenicus (clc2018) 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 13 April 2019).
- Forstgesetz. BGBl. Nr. 440/1975. Bundesgesetz vom 3. Juli 1975, mit dem das Forstwesen Geregelt Wird. 1975. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10010371 (accessed on 29 January 2021).
- BMLRT. Waldentwicklungsplan 2018. Available online: https://www.waldentwicklungsplan.at/ (accessed on 15 May 2019).
- BFW. Waldkarte. Bundesforschungszentrum für Wald, Naturgefahren und Landschaft 2018. Available online: https://bfw.ac.at/rz/bfwcms.web?dok=7222 (accessed on 1 December 2020).
- AMA. AgrarMarkt Austria—Integriertes Verwaltung-und Kontrollsystem (Invekos); AMA: Chicago, IL, USA, 2018. [Google Scholar]
- BMLFUW. BGBl. II Nr. 100/2015. Horizontale GAP Verordnung. 2015. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20009149 (accessed on 29 January 2021).
- Murer, E. Abschätzung des Rückhaltevermögens der landwirtschaftlich genutzten Böden Österreichs. Schriftenr BAW 2003, 19, 70–79. [Google Scholar]
- Wasserrechtsgesetz. BGBl. Nr. 215/1959. 1959. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10010290 (accessed on 29 January 2021).
- BMLFUW. Qualitätszielverordnung Ökologie Oberflächengewässer—QZVO Ökologie OG (CELEX-Nr.: 32000L0060). Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. 2010. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20006736 (accessed on 15 May 2020).
- BGBl. Nr. 299/1989. Bundesgesetz vom 7. Juni 1989 zur Finanzierung und Durchführung der Altlastensanierung (Altlastensanierungsgesetz). 1989. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10010583 (accessed on 17 August 2020).
- Elliott, J.M. Some Aspects of Thermal Stress on Freshwater Teleosts; Academic Press: London, UK, 1981. [Google Scholar]
- Humpesch, U.H. Inter- and intra-specific variation in hatching success and embryonic development of five species of salmonids and Thymallus thymallus. Arch. Für Hydrobiol. 1985, 104, 129–144. [Google Scholar]
- Jungwirth, M.; Winkler, H. The temperature dependence of embryonic development of grayling (Thymallus thymallus), Danube salmon (Hucho hucho), arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta fario). Aquaculture 1984, 38, 315–327. [Google Scholar] [CrossRef]
- Elliott, J.M.; Elliott, J.A.; Allonby, J.D. The critical thermal limits for the stone loach, Noemacheilus barbatulus, from 3 populations in North-West England. Freshw. Biol. 1994, 32, 593–601. [Google Scholar] [CrossRef]
- Jungwirth, M.; Haidvogl, G.; Moog, O.; Muhar, S.; Schmutz, S. Angewandte Fischökologie an Fließgewässern; Facultas: Wien, Austria, 2003; Volume 53. [Google Scholar] [CrossRef]
- Borgwardt, F.; Unfer, G.; Auer, S.; Waldner, K.; El-Matbouli, M.; Bechter, T. Direct and Indirect Climate Change Impacts on Brown Trout in Central Europe: How Thermal Regimes Reinforce Physiological Stress and Support the Emergence of Diseases. Front. Environ. Sci. 2020, 8, 59. [Google Scholar] [CrossRef]
- Therneau, T.M.; Atkinson, E.J. An Introduction to Recursive Partitioning Using the RPART Routines; Mayo Foundation: Rochester, MN, USA, 2019. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J. Classificatoin and Regression Trees; Chapman and Hall/CRC: Boca Raton, FL, USA, 1984. [Google Scholar]
- Buck, B.H.; Langan, R. Aquaculture perspective of multi-use sites in the open ocean: The untapped potential for marine resources in the anthropocene. In Aquaculture Perspective of Multi-Use Sites in the Open Ocean; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Bricker, S.B.; Getchis, T.L.; Chadwick, C.B.; Rose, C.M.; Rose, J.M. Integration of ecosystem-based models into an existing interactive web-based tool for improved aquaculture decision-making. Aquaculture 2016, 453, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Gimpel, A.; Stelzenmüller, V.; Töpsch, S.; Galparsoro, I.; Gubbins, M.; Miller, D.; Murillas, A.; Murray, A.G.; Pınarbaşı, K.; Roca, G.; et al. A GIS-based tool for an integrated assessment of spatial planning trade-offs with aquaculture. Sci. Total Environ. 2018, 627, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Gomes Ferreira, R.; Ferreira, J.G.; Boogert, F.J.; Corner, R.A.; Nunes, J.P.; Grant, J.; Johansen, J.; Dewey, W.F. A multimetric investor index for aquaculture: Application to the European Union and Norway. Aquaculture 2020, 516, 734600. [Google Scholar] [CrossRef]
- Vianna, L.F.d.N.; Filho, J.B. Spatial analysis for site selection in marine aquaculture: An ecosystem approach applied to Baía Sul, Santa Catarina, Brazil. Aquaculture 2018, 489, 162–174. [Google Scholar] [CrossRef]
- Nayak, A.K.; Kumar, P.; Pant, D.; Mohanty, R.K. Land suitability modelling for enhancing fishery resource development in Central Himalayas (India) using GIS and multi-criteria evaluation approach. Aquac. Eng. 2018, 83, 120–129. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Schmidt, H.; Radinger, J.; Stoll, S.; Teschlade, D. The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt. Ecol. Model. 2020, 418, 108937. [Google Scholar] [CrossRef]
- Schinegger, R.; Pucher, M.; Aschauer, C.; Schmutz, S. Configuration of multiple human stressors and their impacts on fish assemblages in Alpine river basins of Austria. Sci. Total Environ. 2018, 616–617, 17–28. [Google Scholar] [CrossRef]
- Hadipour, A.; Vafaie, F.; Hadipour, V. Land suitability evaluation for brackish water aquaculture development in coastal area of Hormozgan, Iran. Aquac. Int. 2014, 23, 329–343. [Google Scholar] [CrossRef]
- SAEPEA. A Sustainable Food System for the European Union. Science Advice for Policy by Eropean Academies. Evid. Rev. Rep. 2020, 7, 221. [Google Scholar] [CrossRef]
Parameter Group | Frequently Used Criteria | References |
---|---|---|
Environmental prerequisites | Proximity to water source | [34,36,37,38,39,40,41,42] |
Available area | [38] | |
Elevation | [26,38,43] | |
Slope | [34,35,36,37,40,43,44] | |
Geology and related criteria (e.g., pH) | [34,36,40,45] | |
Special river types (e.g., glacial river) | [45,46] | |
Land use/cover | Land use | [26,34,36,40,41,42,43] |
Soil characteristics | [26,35,36,37,40,43,44] | |
Legal constraints/ risks | Protected areas | [34,40,43,47] |
Competing uses | [38,40,47] | |
Natural hazards | [43,47] | |
Water quality/ quantity | Water quality | [37,40,43,45,47] |
Water temperature | [34,35,36,40,45] | |
Water quantity/availability | [35,36,43,44] |
Suitability | Unsuitable (0) | Low (0.25) | Medium (0.5) | High (0.75) | Very High (1) | |
---|---|---|---|---|---|---|
Category | criteria | |||||
Considered areas | Distance to river 1 | >250 m | ≤250 m | |||
Min. area (ha) 2 | <0.4 | ≥0.4 | ||||
Environmental prerequisites | Elevation (m) 2 | >1000 | ≤1000 | |||
Slope (%)2 | >20 | >10–20 | >5–10 | ≤5 | ||
Geology 1 | Bohemian Massif | Limestone and silicate, silicate of the Central Alps | Limestone | |||
Fish region 1 | Others | Trout region | ||||
Lake in-/outflow 1 | Yes | No | ||||
Glacial river 1 | Yes | No | ||||
Land use/cover | Land use 3 | Artificial surfaces, water bodies | Agriculture, grassland and forests * | |||
Agricultural unit 4 | No | Yes | ||||
Forest function 5 | Protective (cat. 2+3), Welfare (cat. 2+3), Recreational (cat. 3) ** | Protective (cat. 1), welfare (cat. 1), recreational (cat. 1+2) **, no forest | ||||
Nitrate retention capacity 1 | Very low/low, settlement, waterbody | Medium/high, unknown, forest | ||||
Legal constraints/risks | Ecological status 1 | High | Good or worse | |||
Residual flow section 1 | Yes | No | ||||
Impoundments 1 | Yes | No | ||||
Bathing area 1 | Yes | No | ||||
National park 6 | Yes | No | ||||
Nature reserve 6 | Yes | No | ||||
N2000 area 1,6 | Water-related | Not water-related | No | |||
Water protection area 1,6 | Yes | No | ||||
Valuable river stretch 7–10 | In conflict | With constraints | Not in conflict, not included | |||
Flood risk area 1 | Yes | No | ||||
Water quality/quantity | Status of nutrient pollution 1 | Moderate or worse | High/good, unknown | |||
Status of nat. pollutants 1 | Moderate or worse | High/good, unknown | ||||
Status of EU pollutants 1 | Moderate or worse | High/good, unknown | ||||
Pollution risk 1 | Potential risk/risk | Unknown *** | No risk | |||
Emission discharge 1 | Yes | No | ||||
Contaminated site 1 | Yes | No | ||||
Water temperature WTQ95 (°C) 11 | >16 | 12–16 | <12 | |||
Summer low flow 12 | July, August and September | Other months | ||||
Mean annual low flow 12 | <50 L/s | ≥50 L/s |
Calculated Suitability | |||||||
---|---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | 0.75 | 1 | |||
Predicted suitability | 0 | 366 | 0 | 0 | 0 | 0 | 366 (100%) |
0.25 | 50 | 469 | 30 | 0 | 0 | 549 (85%) | |
0.5 | 79 | 64 | 421 | 0 | 0 | 564 (75%) | |
0.75 | 26 | 12 | 55 | 475 | 0 | 568 (84%) | |
1 | 1 | 0 | 3 | 0 | 508 | 512 (99%) | |
522 (70%) | 545 (86%) | 509 (83%) | 475 (100%) | 508 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seliger, C.; Haslauer, M.; Unfer, G.; Schmutz, S. aquaZone: An Integrative Tool for Sustainable Fish Farm Zoning. Sustainability 2021, 13, 1470. https://doi.org/10.3390/su13031470
Seliger C, Haslauer M, Unfer G, Schmutz S. aquaZone: An Integrative Tool for Sustainable Fish Farm Zoning. Sustainability. 2021; 13(3):1470. https://doi.org/10.3390/su13031470
Chicago/Turabian StyleSeliger, Carina, Melanie Haslauer, Günther Unfer, and Stefan Schmutz. 2021. "aquaZone: An Integrative Tool for Sustainable Fish Farm Zoning" Sustainability 13, no. 3: 1470. https://doi.org/10.3390/su13031470
APA StyleSeliger, C., Haslauer, M., Unfer, G., & Schmutz, S. (2021). aquaZone: An Integrative Tool for Sustainable Fish Farm Zoning. Sustainability, 13(3), 1470. https://doi.org/10.3390/su13031470